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Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation
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(Received 11 September 2013; revised manuscript received 17 May 2014; published 31 July 2014)

We analyze the combined effect of three ingredients of an aggregation model—surface tension, particle flow and
particle source—representing typical characteristics of many aggregation growth processes in nature. Through
extensive numerical experiments and for different underlying lattice structures we demonstrate that the location
of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of
the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases
the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed
these ingredients separately. Our results indicate that the considered combination of effects is fundamental for
modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence
of external fields, such as rocks, crystals, corals, and biominerals.
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I. INTRODUCTION

Simulation growth models are readily used to describe a
wide range of natural structures [1]. They are usually devised to
reflect the essential features of a specific growth phenomenon,
but often remain applicable to many other natural phenomena.
The choice of the most appropriate model to explain the
growth observed in a given system is based on identification
of the minimal set of factors that govern formation of large
structures by aggregation of small subunits (particles) and
lead to a realistic description of the phenomenon in question.
In order to make this choice, the relevance of each possible
ingredient factor should be examined separately and the effect
of combining these factors should be fully understood.

A wide variety of materials and biological structures are
formed by aggregation [2], a process where identical particles
are joined into clusters according to some general rule.
Numerical experiments devised to simulate these phenomena
are usually carried out on regular lattices, where the diameter
of the particles is taken to correspond to the lattice spacing
and the characteristics of the trajectory of the incoming
particles play a decisive role in the resultant formation and
shape of the aggregate [1–3]. However, in order to better
understand a variety of shapes of physical, chemical, and
biological species-specific structures (e.g., fish otoliths [4]
and stony corals [5]), further studies are needed to distinguish
between the effects of various individual microscopic model
ingredients, and their combined effects, on the shape of the
aggregated structure.

Diffusion-limited aggregation (DLA), introduced by Witten
and Sander in 1981 [6], is one of the most commonly used
models to simulate the growth by aggregation of natural
structures, including biological phenomena such as bacterial,
neural, and stony coral growth [2,5,7]. Due to the simplicity
of its algorithm and the realism of the resulting aggregates,
this model plays a paradigmatic role in the field of kinetic
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growth phenomena [8]. The standard DLA is based on the
following process. A seed particle is fixed at a central point of
the substrate and another particle is released from a random
position of a circle far away from the seed. The released particle
moves according to a Brownian trajectory until it reaches one
of the sites on the perimeter of the seed, where it is fixed,
forming a cluster of two particles. This process is carried out
repeatedly by releasing particles from the far away perimeter
until they reach the existing cluster and stick to it.

Several generalizations of the original DLA model have
been proposed, by considering, e.g., changes in particle
density [9,10], surface tension [11,12], or particle flow
(drift) [13–15]. In particular, changes in surface tension lead
to more compact aggregates [11,12,16], while modification of
particle flux produces anisotropic ramified clusters that grow
in the flux direction [13–15]. While these generalizations are
certainly justified for simulations of various natural processes
and are thus plausible ingredients of a microscopic growth
model for many natural phenomena, they have been treated
separately in the past, therefore producing a rather narrow
range of shapes.

In the present work we show that the combination and in
some cases competing effects of these model ingredients can
provide a much wider range of resulting aggregate shapes. To
further widen the spectrum of natural growth phenomena that
may be emulated, we additionally simulate a localized source
of particles (as is frequently the case in nature) rather than
launching particles uniformly from a distant perimeter. More-
over, the effects of these ingredients were evaluated for differ-
ent underlying lattice structure for aggregation, as well as dif-
ferent properties of the confinement and the boundary condi-
tion. Finally, we show how the morphology of obtained shapes
can be analyzed, classified, and compared to self-assembled
systems in nature using their basic geometric properties.

The paper is organized as follows. In Sec. II we describe the
simulation framework. The results are shown first for varied
surface tension (sticking probability) in Sec. III and then
expanded by analysis of the additional influence of particle
flow and location of the particle source in Secs. IV and V,
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respectively. Finally, in Sec. VI we reveal the relevance of
our results to the morphology of various objects in nature,
particularly ones formed by biomineralization, and show how
the obtained shapes can be compared and their differences
quantified so that model can be further improved. Our findings
are summarized in Sec. VII.

II. NUMERICAL SIMULATIONS

In this paper we examine the effects of additional model
ingredients to the generalized DLA model proposed by
Batchelor and Henry [12], which takes into account the local
sticking probability of the constituent particles in aggregation.
For aggregation on a square lattice, the sticking probability is
defined as

s = α3−B
p , (1)

where 0 < αp < 1 is a parameter corresponding to local
surface tension and B ∈ {1,2,3} is the number of neighboring
sites experienced by the incoming particle.

However, DLA on a square lattice is known to suffer
from pronounced anisotropy of the aggregates. As reported
by Meakin [17], lower anisotropy is obtained by growing
clusters on an off-lattice DLA or on lattices with fivefold
or higher symmetry. In the current work we address several
modifications of the original algorithm, with the intent of
enhancing the realism of the numerical simulations. First, one
can modify the restriction in the number of possible directions
for the random walk. For instance, for a triangular lattice the
particle moves randomly in six directions or one can use a
continuous random walk instead of a walk on a lattice (i.e.,
off-lattice DLA). Another modification concerns the growing
directions, i.e., change in the number of neighboring sites
experienced by the incoming particles. Namely, in the DLA of
Batchelor and Henry the definition of the number of nearest
neighbors and the corresponding sticking probabilities (on
the underlying lattice) has a crucial role. In Ref. [16], DLA
generalization was extended to a triangular lattice, where the
sticking probability s was introduced as

s = α5−B
p (2)

for B ∈ {1, . . . ,5} first neighbors. However, the number of
neighbors cannot be universally defined for the off-lattice
model, i.e., it depends on particular system to be simulated,
where the definition of sticking probability should reflect the
underlying (particular) crystal structure, or the properties of the
underlying protein network (as in the case of calcified organs
in living organisms). We therefore adopt in the current paper
the most general pragmatic approach: For off-lattice DLA we
perform a continuous random walk of particles, but we apply
the sticking algorithm using blocks (or pixels) on a square
lattice grid. As soon as the given block (pixel) is occupied by a
particle, the block (pixel) is labeled as occupied, the coordinate
of the occupying particle is discarded, and thereon the sticking
probability of new incoming particles is defined in relation to
the existing occupied block structure [either the four nearest
neighbors, using Eq. (1), or all eight immediate neighbors on
a square lattice, where s = α7−B

p and B ∈ {1, . . . ,7}].
Indeed, the DLA algorithm can be relatively easily gener-

alized and numerous scenarios can be investigated, depending

on the system to be studied. For the purpose of this paper,
we concentrate efforts on the simplest possible approach that
captures relevant physics, i.e., DLA on a square lattice, and
perform a detailed analysis of several important ingredients
in the model. Nevertheless, we also show results for other
above-described modifications in order to present an extensive
discussion of the role of all growth conditions on the obtained
agglomerates.

In particular, the DLA model is studied under external
factors and in the presence of certain confinement, where
in addition to the local sticking probability the eventual
directional bias in movement and the nonuniform distribution
of launched particles are also taken into account. More
precisely, three distinct scenarios are considered.

(1) In the generalized DLA model of Batchelor and
Henry [12] in circular confinement, the surface tension αp

is varied.
(2) For each αp value, the probabilities of motion of

particles in different directions are modified so that, e.g.,
probability ρ1 for motion in one direction is increased
(simulating flow), while the motion in the other three directions
is taken to be equiprobable [(1 − ρ1)/3]. We also consider the
case of more probable motion in two directions on a square
lattice, as well as the off-lattice spatial distribution of motion
probabilities favoring a particular direction of flow.

(3) Instead of launching particles uniformly from a circular
perimeter, a von Mises distribution is used to simulate the
preferential location of the source and lateral spread of released
particles. For each αp value, the location and concentration
parameters of the von Mises distribution are modified.

For each of the scenarios a seed is placed at the center
of a 512 × 512 matrix. The new particles are then released
from a random position (according to a uniform or a von
Mises distribution) on a distant circle, after which they move
randomly in four directions on the square lattice (up, down,
left, and right), six directions on the triangular lattice, or
in an arbitrary direction for off-lattice simulations. Particles
that reach the growing cluster stick with probability s [given
by, e.g., Eq. (1)] or continue moving with probability 1 − s.
Finally, the aggregation process is terminated when the cluster
reached the size of 50 000 particles. Each growth condition is
repeated 20 times to minimize variations due to random noise.

Another important aspect that depends on the system to
simulate is the boundary condition. We initially set the release
circle for particles to 150 and increase its radius to maintain a
minimum distance between the circle and the cluster equal to
�r = 100 as the accumulated cluster grows. As opposed to the
standard DLA model where particles are always launched from
a distant circle (i.e., infinite launching distance), our choice of
a small distance between the cluster to the launching circle
was made to simulate elastic growth chambers comparable in
size to the cluster itself, a situation frequently encountered in
nature. For example, this models the growth of biostructures
inside soft or growing membranes (such as agglomerates inside
any cell or otoliths in the inner ear of fish and mammals).
For permeable membranes, one can use the open boundary
conditions, i.e., particles that reach the release circle during
random motion are discarded. If unspecified otherwise, we
used open boundary conditions in this work. However, we also
performed some comparative calculations for a fully closed
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system (i.e., when reaching the release circle, the random-
walking particles bounce back inside).

III. MICROSCOPIC AGGREGATION AS A FUNCTION OF
SURFACE TENSION

Figures 1 and 2 show clusters obtained in the scenario of the
generalized DLA model [12] in a confined geometry. They are
all isotropic or converge to an isotropic shape with the increase
of the number of particles since the particles are released
from a uniform random position and move according to a
Brownian trajectory. The square symmetry observed for low
values of αp stems from the choice of the underlying square
grid. Clusters obtained with a low αp value are more compact,

FIG. 1. Morphological diagram of clusters with 50 000 particles
aggregated with different surface tension (αp values).

FIG. 2. (Color online) Exemplified clusters with 50 000 particles
aggregated under different surface tension (αp values). Here different
colors reveal growth stages, each corresponding to 1000 aggregated
particles.

resembling an Eden-like cluster [2], and the closer αp gets
to unity, the more standard (expected, DLA-like) the cluster
becomes.

For DLA growth, the parameter αp is analogous to the sur-
face tension [3,12]. This analogy is often related to fluid-fluid
interaction when the shape of the surface of a fluid depends
of the properties of the surrounding fluid, such as viscous
fingering [3]. The reference to the effect of surface tension
on the form of aggregates was made by Thompson in 1917
to describe the form of aggregates of cells and tissues [18].
However, independently of the kind of phenomenon, the
effect of surface tension results in minimizing the area and
potential energy of the system. More precisely, surface tension
reduces the surface in contact with the environment, as much
as the present conditions and circumstances of growth will
permit.

It can be seen in Fig. 1, and with more details in Fig. 2
for distinct growth stages (1000 particles at the time), that
the lower αp values yield stronger particle connections since
the particle requires more neighbors to attach to the cluster.
This results in a more dense cluster and a smoother reduced
surface. Increasing αp makes the border of the clusters
more corrugated, with protrusions and cavities, increasing the
interface with the environment. Hence, the way that particles
connect with one another is an important characteristic
that controls the shape of a structure in terms of surface
roughness.

In nature, it is often true that growth of biological systems
depends on the underlying lattice (e.g., protein network for
otoliths). All observed structures in figures so far have quite
common anisotropy, which may be reduced by using a different
lattice for growth and/or different definitions of sticking
probability (preferential growth directions). The latter was
pointed out by Meakin [17] as important for the reduction
of anisotropy. For this reason, we show in Fig. 3 the results
obtained for square, triangular, and off-lattice simulations (the
latter for either four or eight growth directions) for either
open [Fig. 3(a)] or closed boundary conditions [Fig. 3(b)]
and for varied surface tension. The observed effects of surface
tension, already discussed in relation to Figs. 1 and 2, clearly

012312-3



P. DUARTE-NETO et al. PHYSICAL REVIEW E 90, 012312 (2014)

FIG. 3. (Color online) Comparison of clusters with 50 000 par-
ticles aggregated under different surface tension (αp values) for
different rules for the available directions in the random walk of
particles and different allowed directions for growth, for either
(a) open or (b) closed boundary conditions. Here different colors re-
veal growth stages, each corresponding to 1000 aggregated particles.

do not change if lower anisotropy of the underlying lattice is
considered. A closed boundary condition is actually known
to have no effect at all on the cluster structure, as previously
observed by Havlin and Trus [19]. Imposed restrictions of
the growth direction (i.e., the number of neighboring sites
experienced by the incoming particle) appear to be more
important for the shape plasticity of the aggregates than the
restrictions in the available directions for the random walks.
Rounder shapes are obtained using a triangular lattice or
off-lattice DLA with 8-neighbors, while off-lattice DLA with
4-neighbors result in square shapes similar to the ones in
simulations on a square lattice. Still, we conclude this section
by reiterating that the reported physical effects of the surface
tension do not depend on the chosen growth scenarios in Fig. 3.

IV. AGGREGATION AS A FUNCTION OF SURFACE
TENSION AND DIRECTIONAL FLOW

In this section we address the scenario (ii) from Sec. II
in terms of varied directional probabilities ρi and the sticking
probability αp (surface tension). In general, we observe a wide
spectrum of shapes, where, as may be expected, the aggregates
tend to grow more rapidly in the direction of the increased
incoming flux, yielding anisotropic clusters.

In Fig. 4 we show the formed clusters under the influence of
increased flow in one particular direction. Generally speaking,
the higher the probability of a preferable direction, the less
spread out the aggregate is, with suppressed branching. At the
same time, the type of branches and surface of the cluster
turn out to be very sensitive to the flux increase. More
precisely, broader branches and a more compact surface are
observed for higher fluxes, converging to a ballistic deposition
aggregate [2]. This occurs because the growth probability in
the interior of the cluster increases as the particles lose freedom
of movement and go straight in some direction, such as in the
case of am assembly of magnetic particles in magnetic field,
particles in water current, or a gradient in environment density.

Note that the branch formation and their roughness are
still more strongly related to αp (the mechanism of particle
aggregation) since branches are only observed for clusters with
αp higher than 0.1. This conclusion is general, as verified in
our results for scenario (iii) (varied flux in two perpendicular
directions), shown in Fig. 5. The only additional feature to note
is that very asymmetric shapes can be obtained when the two
varied probabilities are different from each other and different
from those of other directions.

We point out here that the effects of flow in a particular
direction can also be studied (more realistically, or at least
with decreased influence of the underlying lattice) in the off-
lattice model by taking a spread distribution of probabilities
for particle motion centered around the preferential direction.
To test our conclusions of this section on an off-lattice model,
we used the von Mises distribution for motion probability
(equivalent to a Gaussian distribution, but on a circle, as a
function of angle x):

f (x,μ,κ) = eκ cos(x−μ)

2πI0(κ)
, (3)

where I0(x) is the modified Bessel function, the preferential
direction of flow is determined by the angle μ, and the spread
of the distribution is controlled by the parameter κ (κ is
a reciprocal measure of dispersion, so 1/κ is analogous to
the variance of a normal distribution). We exemplified some
characteristic results in Fig. 6, for off-lattice simulations with
either 4- or 8-neighbors, only to conclude that our findings of
the present section, based on a simplified model, still hold.
In the von Mises implementation of the preferential flow, the
obtained structures are elongated in the direction prescribed
by angle μ and lateral extension of the cluster as well as
its branching are governed by κ (increasing 1/κ decreases
the probability of motion in the preferential direction and
increases the probability of motion laterally to the preferential
direction). In Fig. 6 we deliberately show results for very
small αp (=0.02), where compact structures are expected
and all observed peripheral branching is due to the flow
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FIG. 4. Morphological diagram of clusters with 50 000 particles aggregated for different surface tension (αp , on the x axis) and flow (ρ1,
as depicted in the inset, varied on the y axis).

(as emphasized before, larger αp always enhances branching
effects).

FIG. 5. Morphological diagram of clusters with 50 000 particles
aggregated for varied flow probabilities ρ1 (left to right) and ρ2 (top
to bottom) and probabilities for the two remaining directions ρ =
(1 − ρ1 − ρ2)/2. In each image, a sequence of clusters is shown for
varied sticking probability αp = 0.01–0.5, as shown in the dedicated
inset.

V. AGGREGATION AS A FUNCTION OF SURFACE
TENSION AND LOCALIZED PARTICLE SOURCE

In the previous scenarios the particles were released from
a uniformly chosen random position on the circular perimeter
that envelopes the cluster. In this section we discuss cluster
growth when predefined localization of the particle source is
used, e.g., based on a von Mises distribution (with μ = 3π/2

FIG. 6. Diagram of clusters with 50 000 particles aggregated
for varied preferential direction of flow (angle μ) and dispersion
of the von Mises distribution for motion probabilities 1/κ , sticking
probability αp = 0.02, and off-lattice model with (a) 4-neighbors or
(b) 8-neighbors.
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FIG. 7. Schematic representation of the location parameter μ for
the source of incoming particles and the importance of its choice
compared to the underlying (in this case square) grid in the simulation.
Here κ is the concentration parameter of the von Mises distribution
used to choose the site on the perimeter from which the particle is
released.

or 5π/4, as shown in Fig. 7). In other words, the source point
was put at the perimeter, with location determined by the angle
μ, and then the von Mises distribution was applied so that
incoming particles were generated around the source point
with a spread controlled by the parameter κ .

The taken choice of source locations is significant for the
visual appearance of the final shape of the clusters, trapezoidal
for μ = 3π/2 (270◦) and leaflike for μ = 5π/4 (225◦) (see
Fig. 8), resulting from the fact that the square grid was used
in the simulations. More precisely, for low αp values, if a
random source of particles is used the resultant shape is a

FIG. 8. Morphological diagram of clusters with 50 000 particles
aggregated under different surface tension αp and for different
concentration of released particles (parameter κ), considering two
locations of the particle source (i.e., angle μ, marking the maximum
of the distribution of the released particles on a distant circle).

FIG. 9. Summarizing figure for Sec. V, showing the influence of
parameters of the nonuniform distribution of released particles and
the surface tension on the obtained aggregates with 50 000 particles
for the off-lattice DLA model used with either (a) 4-neighbors or
(b) 8-neighbors.

square (Fig. 1); in the case of μ = 3π/2, the frontal side to
the source is flat and the cluster narrows away from the source
shape; finally, for μ = 5π/4 the vertex of the square is obtained
frontal to the source, decaying into a point apex away from the
source (see Fig. 8). The schematic representation in Fig. 9
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reinforces the strong relationship between the source location
and the underlying lattice for the growth, independently of
the restriction in the allowed directions for the random walks.
Namely, in Fig. 9 off-lattice motion of particles was adopted
(i.e., a continuous random walk of particles), but a strong
difference in anisotropy was observed depending on the chosen
geometry for cluster growth (i.e., the number of neighbors in
the model).

However, regardless of the chosen model or lattice, in the
case of higher surface tension, more developed lateral and
secondary branches are observed (see Fig. 8 for square lattice
DLA), all widening for decreased κ values (i.e., spread out and
a lower concentration of incoming particles). This is confirmed
for an off-lattice DLA (Fig. 9), independently of the number
of neighboring sites experienced by the incoming particle.

This exercise is important for two reasons. First, it is
frequently the case in nature that the source of particles to
assemble is localized and the effects of such localization should
be understood. Naively, one often identifies the preferential
unidirectional flow with a localized source of particles, while
their differences are very clear from Figs. 2 and 8, respectively.
For example, for a weak surface tension (large αp), the large
flow leads to large fanning out of the dendritic branches of
the cluster, whereas large localization and concentration of
incoming particles lead to a practically linear stem with weak
and roughly uniform lateral branching along it. The second
important aspect of this section is to pinpoint the influence of
the location of the source on the anisotropy of the aggregate due
to the geometry of the underlying matrix for the aggregation.

VI. SIMILARITIES TO NATURAL STRUCTURES

The behavior of aggregation growth shown in Sec. III
is typically observed during the biomineralization process,
especially during the assembly of crystalline polymorphic
structures composed of calcium carbonate: calcite, aragonite,
and vaterite. The growth of these crystalline polymorphs
can be both environmentally and genetically regulated. More
precisely, modifications of the environmental [20] or of genetic
conditions [4] can change the way that molecules aggregate
and consequently also change the morphology of the resulting
structure.

Such modifications are readily observed in biominerals
such as otoliths, where, e.g., vaterinic otoliths are frequently
abnormal [21], bigger, and less dense [22]. For example,
experiments demonstrate that the zebrafish otoliths present
a rough surface [a star-shaped otolith; see Fig. 10(c)] rather
than the regular smooth appearance [a wild-type otolith; see
Fig. 10(a)] when the gene starmaker activity is reduced [4].
It is implied that modification of this gene affects the level of
protein formation and hence causes changes in the structure
of the protein matrix, in the crystalline polymorph, and
consequently in the formation of the calcium carbonate crystal.
Comparing Fig. 1 with Fig. 10, one could see that the change
of the otolith shape by the reduction of starmaker activity
demonstrates behavior strongly resembling our simulated
structures when αp is increased (decreasing surface tension).

As another example we show the crystal in Fig. 11 that
is very similar in appearance to the cluster obtained for
αp = 0.08 in Fig. 2. This crystal structure was obtained

FIG. 10. (Color online) Otoliths of zebrafish after gradual re-
duction of activity of the starmaker gene, from Söllner et al. [4]:
(a) wild-type otolith, (b) slightly irregular otolith obtained after
intermediate reduction, and (c) star-shaped otolith obtained after
strong reduction.

after an experimental process of emulated osseointegration
on titanium implant surface, by submersion in an artificial
corporal fluid. In this experiment it was observed that the
agglomeration pattern is governed by the topology (roughness)
of the implant surface. It is plausible that the surface roughness
of the substrate projects itself onto the energetically favorable
shape of the growing crystal, i.e., a desirable surface tension
for the agglomerate, so that our DLA cluster for αp = 0.08
nicely matches the resulting structure.

Our third example outside the usual applications of DLA
concerns stony corals. In Ref. [5] Merks et al. concluded
that branch formation in stony corals is spontaneous in their
Laplacian-based growth model and that compactness of the
corals depends on the ratio of the rates of growth and nutrient
transport. In a subsequent work [23] the same authors stated
that the spacing of polyps influences the thickness of branches
and the overall compactness. The results obtained by the
present generalized DLA model indicate that branch formation
in the clusters depends primarily on the surface tension αp and
the thickness of branches and the overall compactness depend
on both surface tension and flow.

In Fig. 12 we show some available data from the literature,
where stony corals that grew in a sheltered site were found to
have a more open branched structure than those species that

FIG. 11. Electron microscopy image of a crystal formation
on an implant surface treated with calcium phosphate and
acid.
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FIG. 12. Growth forms of the stony coral Pocillopora damicornis
(from Kaandorp et al. [7]; original from Veron and Pichon [24]). The
forms originate from (a) an exposed site, (b) a semiprotected site, and
(c) a site sheltered from water movement.

are collected from an exposed site [5]. In Sec. V we showed
that wider shapes and more developed secondary branches are
observed for a broader spread of released particles [lower κ of
the von Mises distribution (see Fig. 8)] and the cluster becomes
more compact as the surface tension is changed (αp is made
lower). The corals in a sheltered site arguably have access to
fewer (and widely distributed) resources for growth, as well
as to a low concentration of nutrients. The former corresponds
to low κ in our von Mises distribution, whereas the latter
causes the surface of the coral to enlarge for efficient feeding,
i.e., surface tension lowers, i.e., larger αp is envisaged for our
model. It is therefore of no surprise that the observed changes
in the structure of the cluster in Fig. 8 going diagonally from
high κ and low αp to low κ and high αp nicely correspond to
the changes shown in Figs. 12(a)–12(c).

Quantification of similarity

In this article we have dealt primarily with the observable
physical effects of several ingredients in the DLA model on
the obtained aggregates. It is, however, frequently the case that
obtained morphologies need to be further analyzed, classified,
or their particular features linked to the known ongoing
processes in nature during growth of a particular simulated
system. In this section we propose the use of the contour
fluctuations of the aggregates for the comparison between the
details of the DLA aggregates and the simulated system, based
on which DLA model can be further improved. In nature,
fluctuations in the boundary of a natural structure during
growth are a response to surface interaction and the internal
mechanisms of the growth process and these fluctuations can
be easily obtained from just images of any natural structure.

We analyzed these fluctuations using the recently proposed
traveling observer contour decomposition [25]. The idea
behind this technique is to map the contour of the observed
structure onto a time series of radial distances from the actual
contour, as seen by a virtual observer traveling along the
zeroth harmonic (best fit circle), at constant angular speed.
This sequence of distances (considered here as a time series)
captures the fluctuations in a sequential (directional) manner.

More precisely, the x and y coordinates of the cluster
contour pixels were used to determine the radius of each
contour point with respect to the center of mass, as well as
the average radius of the structure a0 (zeroth harmonic) used
to normalize the individual contour pixel radii. Thus, for each

aggregate (obtained for a given set of input parameters) a
series of normalized radii from −π to π was obtained as
rc(ϕ) =

√
x2 + y2/a0. Therefore rc, at a certain angle ϕ, is

less than one if the contour point lies inside the circle and it is
greater than unity if the point lies outside the circle.

One interesting possibility to extract information from the
contour fluctuations is to deploy a multifractal analysis of
the above time series (see, e.g., [25] and references therein).
Although that method may reveal a plethora of information,
the link between the observed physical phenomena and the
multifractal parameters is often nontrivial to make. Therefore,
in this article we opt for an alternative method. For the purpose
of quantifying the similarity among the real and the simulated
shapes we propose the following procedure.

To make the comparison of N shapes (some of which may
be the result of simulation, while others may represent real
structures), we first perform a mapping of all the considered
shapes to the corresponding normalized time series rij (i =
1, . . . ,N ; j = 1, . . . ,ni), where ni is the number of contour
pixels of the ith shape, consecutively distributed between
ϕ = −π and π . Next the maximum number of observed shape
pixels n = max(ni) (i = 1, . . . ,N) is found and for the purpose
of mutual comparison all the series with ni < n are (linearly)
interpolated to produce coincident series r∗

ij (i = 1, . . . ,N ;
j = 1, . . . ,n). An example of such a normalized aligned
sequence for two otoliths and a simulated aggregate is shown
in Fig. 13.

The distance between any two series � = 1, . . . ,N and m =
1, . . . ,N can now be defined as

d∗
�−m =

√√√√1

n

n∑
j=1

(r∗
�j − rmj )2. (4)

This measure of the difference between series is, however,
dependent on the rotation and reflection on an (arbitrary)
axis passing through the shape’s center of mass, so for each
pair of shapes we also perform reflection on the axis y = 0
of one of the shapes of the considered pair and rotation at

FIG. 13. (Color online) Example of three series generated by
the traveling observer contour decomposition (corresponding to
shapes 12–14 in Fig. 14) after interpolation, reflection, and rotation.
Pairwise distances among series are d12–13 = 0.130, d13–14 = 0.070,
and d12–14 = 0.108.
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FIG. 14. (Color online) Similarity analysis of simulated aggregates obtained in this paper and experimental images of real otoliths. The
tree classification (on the left-hand side) was carried out based on Ward’s method [26]. Images grouped together by cluster analysis (thus shown
to be similar) are displayed on the right-hand side, where pairwise distances among structures are also indicated. The parameter sets used to
generate the artificial aggregates are shown in curly brackets below each image.

j = 1, . . . ,n possible angles to find the minimum distance
d�−m ≡ min(d∗

�−m) for all the reflection and rotation options.
Finally, the obtained minimal d is considered as a similarity
measure between two series.

By considering all the pairs of the N compared shapes, a
distance matrix is produced, which can then be used within any
conventional amalgamation (linkage) schedule, such as Ward’s
method [26], to perform a hierarchical (tree) classification
of the considered shapes. We demonstrate this in Fig. 14
using experimental data of several real fish otoliths and
artificial aggregates generated in scenarios (i)–(iii) of the
current work. It is clearly shown in Fig. 14 that the currently
proposed procedure yields a rather convincing hierarchical
classification of real and simulated aggregates, which may
serve as a starting point in the quest for the best set of model
parameters, pertinent for describing a given real physical
aggregate. It also follows from Fig. 14 that flux may be one
of the most important factors that control the overall shape of
otoliths. Shape anisotropy of fish otoliths caused by particle
flux was also observed experimentally by Wu et al. [27].
They found that the pronounced anisotropy of otoliths (which
is rather common) may be attributed to different growth
probabilities on sites exposed to the flux of incoming particles,
due to their confinement in the inner ear of the fish. This
finding is corroborated by the simulations performed in the
present work. Furthermore, this suggests that generalizations
of the DLA model presented in this paper make possible
a rather realistic modeling of the fish otolith growth, even
though the model does not explicitly contain microscopic,

genetic, or environmental mechanisms that control the otolith
morphogenesis.

In a more general context of growth of biomineral struc-
tures, such as growth and branching of stony corals, judging
from the diversity of shapes produced by the generalized
DLA model presented in this work, one may again expect
a close match between real shapes and the shapes obtained
through simulated aggregation for a suitable choice of model
parameters. On the other hand, the precise relationship
between the best model parameters (that yield the minimal
distance between the real and simulated shapes) and the actual
microscopic mechanisms responsible for the observed growth
phenomenon remains to be elucidated for each particularly
considered aggregation phenomenon in nature.

VII. SUMMARY

In this paper we analyzed the combined effect of three
added ingredients to a diffusion-limited-aggregation model,
which seem to be quite intrinsic to many aggregation growth
processes found in nature. The surface tension is a property
that is very much controlled by environmental conditions,
substrate, and desired functions of the growing structure.
The particle flow and particle source are also commonly
encountered conditions in nature, as the source is frequently
localized and the flow (or external field, gravity, etc.) is
characteristic of many systems. The preferential flow direction
and source location of incoming particles can significantly
effect the shape, primary and secondary branching, and
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thickening of the aggregate, while the surface tension controls
the roughness of the border or surface. Our systematic analysis
of aggregation in a loosely confined geometry showed that
when combined, these ingredients generate a wide range
of shapes, making their competing effects fundamental for
modeling growth phenomena of structures in confined or
sheltered spaces and/or in the presence of external fields, such
as rocks, crystals, biominerals, and corals.
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