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The use of network theory to model disease propagation on populations introduces important elements of reality
to the classical epidemiological models. The use of random geometric graphs (RGGs) is one of such network
models that allows for the consideration of spatial properties on disease propagation. In certain real-world
scenarios—like in the analysis of a disease propagating through plants—the shape of the plots and fields where
the host of the disease is located may play a fundamental role in the propagation dynamics. Here we consider
a generalization of the RGG to account for the variation of the shape of the plots or fields where the hosts of
a disease are allocated. We consider a disease propagation taking place on the nodes of a random rectangular
graph and we consider a lower bound for the epidemic threshold of a susceptible-infected-susceptible model or
a susceptible-infected-recovered model on these networks. Using extensive numerical simulations and based on
our analytical results we conclude that (ceteris paribus) the elongation of the plot or field in which the nodes
are distributed makes the network more resilient to the propagation of a disease due to the fact that the epidemic
threshold increases with the elongation of the rectangle. These results agree with accumulated empirical evidence
and simulation results about the propagation of diseases on plants in plots or fields of the same area and different
shapes.
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I. INTRODUCTION

The study of epidemiological models on networks is one
of the areas that has observed a major development in the
application of network theory to real-world problems [1].
The discovery of the fact that networks with fat-tailed degree
distributions do not display an epidemic threshold in the
asymptotic limit is a relevant example of how the connectivity
pattern of interacting agents can dramatically change the
course of an epidemic [2,3]. The use of network theory in
epidemiological models provides a way to incorporate the
individual-level heterogeneity necessary for the mechanistic
understanding of the spread of infectious disease. These
characteristics are very attractive for the application of network
epidemiological models in ecology on the different spatial and
temporal scales.

Although there have been many successful applications
of network theory to human and animal epidemiology, the
situation is a little less developed for epidemics on plants. Ten
years ago Jeger et al. [4] recognized the relatively low use
of network theory for studying plant diseases. Since then,
more theoretical developments have been presented in the
literature. These models include the important description of
the geometric constraints in which the pathogen is spreading
as well as stochasticity and several sources of heterogeneity in
the transmission of infection [5–8].

In order to consider spatial effects in the transmission of
diseases it is possible to consider spatial networks that treat
interactions as a continuous variable that decays with increas-
ing distance or by distributing randomly and independently a
set of vertices on the Euclidean plane to represent the relative
spatial location of individual hosts or habitat patches. The
second kind of model is based on random geometric graphs
(RGGs) [9–12], in which each node is randomly assigned

geometric coordinates and then two nodes are connected if
the (Euclidean) distance between them is smaller than or
equal to a certain threshold r . Random geometric graphs
have found applications to model populations which are
geographically constrained in a certain region [13–18], which
offer many valuable features over other types of random
graphs [19,20]. Brooks et al. [21] have used RGGs to model
the interactions between the anther smut fungus and fire pink
using temporal data that spans 7 years of field studies. They
have concluded that the use of spatially explicit network
models can yield important insights into how heterogeneous
structure promotes the persistence of species in natural
landscapes.

When studying the propagation of diseases in plants there
is an important factor that needs to be taken into account.
It is obvious that plants are not as mobile as humans and
animals; thus they reach lower levels of mixing in a given
population due to mobility. The immediate consequence of
this lack of mobility is the fact that the shape of the plot
or field in which the plants are distributed may significantly
affect disease dynamics. In fact, there is both empirical and
theoretical evidence that supports this hypothesis [22–30]. In
general, it has been suggested that square plots and fields
favored higher spreading of plant diseases than elongated ones
of the same area [22–25]. We should make here some remarks
about the shape of plots in different scenarios. First, we should
mention the experimental plots for different crops. In those
cases, the size and shape of the plots are controlled typically to
estimate crop yields. Thus, they are typically of almost perfect
square or rectangular shapes (see, for instance, Ref. [24]). The
second scenario is when crops are cultivated in country fields.
In these cases the sizes and shapes of the fields depends on
the geographical conditions of the region. However, in general
these fields can be grossly approximated as rectanglelike or
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squarelike on the basis that they are more or less elongated.
Such shapes are also thought to facilitate the mechanized work
on the fields more than irregular shapes. Finally, there is a
third scenario in which plants are growing naturally in a given
environment. In these cases it is obvious that the distribution
could be quite irregular and acquiring many different shapes.
However, when studying the influence of the shape of these
natural fields on the propagation of an epidemic it is typical
to approximate their shapes to rectangular or square ones,
as it is well illustrated for the case study of the spatial and
spatiotemporal pattern analysis of coconut lethal yellowing in
Mozambique [26].

It is important to remark that the area of the field also
plays a fundamental role, with larger plots and fields favoring
more the spreading of diseases [27,29,30]. Also, the orientation
of elongated fields may affect the disease propagation with
orientations perpendicular to prevalent winds suppressing
epidemic progression [23,25]. All in all, for plots and fields
of the same area and orientation there is empirical and
theoretical evidence that elongated shapes decrease the impact
of epidemics on plant populations. It is worth noting that the
theoretical models [28–30] used in the previously mentioned
studies do not use network theory as a tool for the study of
epidemic spreading.

In this work we consider a generalization of the RGG known
as the random rectangular graph (RRG) model which has been
recently introduced [31]. In this case, the nodes are uniformly
and independently distributed on a unit rectangle of given side
lengths. Thus, we simulate plots and fields of the same size
in which we can analyze the effect of elongation on epidemic
spreading on plants. When both sides are of the same length
we recover the RGG which accounts for squared shapes. It
is worth mentioning that previous models have considered
the variation of the shape for the region where the nodes are
distributed in the RGG. In some of these works more general
boundaries, such as right prisms and fractal regions have
been considered in particular for analyzing the connectivity
of the resulting RGGs [32–34]. In this work we consider a
susceptible-infected-susceptible (SIS) model on the RRGs to
describe the propagation of a disease on a plant population
on a field of varied rectangular shapes. We obtain analytical
and simulation results that support the empirical observations
and theoretical evidence about the fact that (ceteris paribus)
elongated plots and fields decrease significantly the propa-
gation of diseases on plants. In particular, our results show
that the epidemic threshold is significantly displaced to the
right with the elongation of the rectangle, which indicates
that the number of infected plants necessary to produce
an epidemic grows with the rectangle elongation. Finally,
we stress that in classical, noninteracting systems—either
homogeneous or heterogeneous—the resemblance of SIS and
susceptible-infected-recovered (SIR) epidemiological models
translates into a strong mathematical symmetry between
them that leads to identical expressions for the epidemic
thresholds under mean-field approaches (i.e., when neglecting
the effects of dynamical correlations). We therefore anticipate
that our results will be also valid in a SIR framework,
which as a matter of fact could be more relevant for plant
diseases.

II. RANDOM RECTANGULAR GRAPHS

Here we consider a population, e.g., plants, represented
by the nodes of a graph for which the edges represent
the interaction between the individuals in the population.
Then, our representation consists of simple graphs G = (V,E)
defined by a set of n nodes V and a set of m edges
E = {(u,v)|u,v ∈ V } between the nodes. These graphs are
unweighted and undirected, with no self-loops (edges from a
node to itself) and no multiple edges. The matrix A = (Aij ),
called the adjacency matrix of the graph, has the following
entries:

Aij =
{

1 if (i,j ) ∈ E,

0 otherwise,
∀i,j ∈ V.

Once the structure of a network is defined, the adjacency
matrix is not changed during the process of disease propagation
to be modeled on the nodes and edges of that network. That
is, the network topology is static and not changing with
time. The degree ki of the node i is the number of edges
incident to it, equivalently ki = ∑

j Aij . Let G = (V,E) be a
simple connected graph and let λ1 > λ2 � · · · � λn be the
eigenvalues of its adjacency matrix. The eigenvalue λ1 is
known as the principal eigenvalue of the adjacency matrix,
also as the Perron-Frobenius eigenvalue. Below we show that
λ1 is key to determining the conditions of invasion.

When modeling epidemic disease propagation on plants,
Brooks et al. [21] have considered the plants as the nodes
of an RGG, in which the n nodes are points uniformly
and independently distributed in the unit square [0,1]2 [9].
Then, two points are connected by an edge if their Euclidean
distance is at most r , which is a given fixed number known
as the connection radius. This connection radius indicates the
maximum distance at which a disease can be transmitted from
one plant to its nearest neighbors (see Ref. [21]).

Here we use an extension of the RGG to consider a
rectangle, [0,a] × [0,b], where a,b ∈ R and a � b. Due to
the accumulated evidence that reveals the importance of the
plot or field size on disease propagation, we keep the area of
the rectangle fixed in order to analyze only the influence of the
rectangle elongation on the disease spreading. Consequently,
we consider unit rectangles of the form [0,a] × [0,a−1]. The
rest of the construction of an RRG is similar to that of an
RGG. That is, we distribute uniformly and independently n

points in the unit rectangle [0,a] × [0,a−1] and then connect
two points by an edge if their Euclidean distance is at most r .
Obviously, when a = 1 the rectangle [0,a] × [0,a−1] is simply
the unit square [0,1]2, which means that the RRG becomes
the classical RGG [31].

In Fig. 1 we illustrate two RRGs with different values of
the rectangle side length a and the same number of nodes and
edges. In the first case when a = 1 the graph corresponds to
the classical random geometric graph in which the nodes are
embedded into a unit square. The second case corresponds to
a = 2 and it represents a slightly elongated rectangle.

A. About the connectivity of RRGs

An important question when studying RGGs in general is
related to the connectivity of the resulting graphs. That is, for
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FIG. 1. Illustration of an RRG created with 250 nodes embedded into a unit square, with a = 1 (a), and a unit rectangle, with a = 2 (b). In
both cases the nodes are connected if they are at a Euclidean distance smaller than or equal to r = 0.15.

which values of the connection radius is an RGG with n nodes
connected with high probability? In the case of the square,
Penrose [35] proved that for the two-dimensional case

lim
n→∞ P [k̄ − log n � α] = exp[− exp(−α)], (1)

where P [· · · ] represents the probability that
[· · · ] takes place and k̄ is the average degree.

This means that for α → +∞ the RGG is almost surely
connected when n → ∞ and almost surely disconnected when
α → −∞.

In the case of the RRG where the value of k̄ depends on the
relation between the two sides of the rectangle we can write
Eq. (1) for the unit rectangle as [31]

lim
n→∞ P [(n − 1)f − log n � α] = exp[− exp(−α)], (2)

where f is given by

f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 � r � a−1, πr2 − 4
3 (a + a−1)r3 + 1

2 r4,

a−1 � r � a, − 4
3ar3 − r2a−2 + 1

6a−4 + (
4
3 r2 + 2

3a−2
)√

a2r2 − 1

+2r2 arcsin
(

1
ar

)
,

a � r �
√

a2 + a−2, −r2(a2 + a−2) + 1
6 (a4 + a−4) − 1

2 r4

+(
4
3 r2a−1 + 2

3a
)√

r2 − a2 + (
4
3 r2 + 2

3a−2
)√

a2r2 − 1

−2r2
[
arccos

(
1
ar

) − arcsin
(

a
r

)]
.

(3)

The significance of the function f is clearer when we
consider [31] that the expected average degree in an RRG
is given by

k̄ = (n − 1)f. (4)

Because the parameter α is unknown and it depends on the
specific RRG considered, we have obtained a lower bound for

exp [− exp (−α)] using (2)

exp ( −exp{−[(n − 1)f − log n]}) � exp[− exp(−α)]. (5)

In Fig. 2(a) we illustrate the variation of the connectivity of
RRGs with the change of the connection radius for different
values of the rectangle elongation obtained by computational
realizations of the RRGs. As can be seen the probability that
the RRG is connected changes as a sigmoid function with the
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FIG. 2. (a) Change of the connectivity of RRGs with the change of the connection radius for different values of the rectangle elongation.
(b) Illustration of the way in which the critical radius for an RRG is obtained. Also the upper bound (5) (red dotted line) is illustrated. (c) Plot
of the connection radius versus the rectangle elongation for the RRGs. The line dividing the two regions represents the critical values of the
radius and elongation. All RRGs studied here have n = 1000 nodes and all the calculations are the result of averaging 20 random realizations
of the RRG with the given parameters.

increase of the connection radius in a similar way as in the
case of the RGGs. However, as the elongation of the rectangle
increases (increase of a) it is more difficult for the graph to be
connected, and the critical radius guaranteeing that the graph
is connected increases significantly with a. In Fig. 2(b) we
illustrate the way in which we determine these critical radii.
For a given value of a we find the minimum value of r for
which P (connected) = 1. Although we use in all cases the
values obtained from the simulations, we can see that the
theoretical bound for P (connected) (5) produces very similar
results.

We then plot the values of the connectivity radius versus
the elongation of the rectangles [see Fig. 2(c)]. The curve
joining the points of this plot makes a separation between the

RRGs which are connected (upper triangular part) from those
which are disconnected (lower triangular part). That is, the
curve represents the critical radii versus critical elongation,
and it gives the critical region indicating the connectivity of
the RRGs. It can be read in two different ways. You can fix
a value of a and then determine which is the critical radius
for which the network will be disconnected. For instance, for
a rectangle with longer side a = 15 it is necessary to use a
radius larger than 0.17 to make the RRGs connected. More
interesting for this work is the other way around. That is, we
have a fixed radius of connection, which may represent the
radius of spreading of a disease among plants. Then, you can
find what elongation of the rectangle disconnects the network.
For instance, if the connection radius is fixed to r = 0.35 every
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RRG is connected for a < 30. Then, we emphasize here that
we always work in the region of connected RRGs in this work.
That is, any analysis carried out in this paper is based on graphs
for which the connectivity of the graph is 100% guaranteed as
we work in the upper triangular part of this plot. In addition,
we check computationally that every RRG generated in this
work is connected.

III. EPIDEMICS ON NETWORKS

The spreading of an infectious disease on networks can be
modeled representing individuals as nodes and the contacts
between them as edges. In this context individuals are
categorized in different compartments according to their health
state [36]: susceptible (S) for individuals that can be infected
by the disease, infected (I) for infectious individuals that can
spread the pathogen, or recovered (R) for individuals that have
already passed the disease and are immune to it.

Two fundamental models for disease spreading are the
so-called SIS and SIR models [36,37]. The SIS model is
intended to model recurrent diseases that do not provide
immunity, i.e., most sexually transmitted diseases, where
individuals can get the infection multiple times during their
lifetime. Instead, in the SIR model, once an individual gets
cured of the disease she enters the recovered compartment
and cannot be infected again, that is, she acquires immunity.
Both SIS and SIR dynamics are governed by two parameters,
namely, the per contact infection rate β and the recovery
rate μ. Let, si , xi , and ri be the probabilities that the node
i is susceptible, infected, or has recovered from infection,
respectively. The equations governing a SIS process are the
following:

ṡi = −βsi

∑
j

Aij xj + μxi, (6)

ẋi = βsi

∑
j

Aij xj − μxi, (7)

while those governing a SIR one are

ṡi = −βsi

∑
j

Aij xj , (8)

ẋi = βsi

∑
j

Aij xj − μxi, (9)

ṙi = μxi. (10)

In these models, β represents the rate for a susceptible
individual to catch the disease once in contact with an infected
one through a link of the network, whereas the recovery rate μ

characterizes the rate at which an infected individual recovers
from the disease. Note that the spreading of the disease depends
on the network of contacts (an isolated individual cannot catch
the disease), while the recovery phase is independent of the
substrate network (an isolated infected individual will recover
after some time).

The ratio β/μ drives the spreading of the disease. Depend-
ing on its infectious power two distinct phases are possible: an
absorbing one where the spreading is not efficient enough to
reach a large fraction of the system and the disease is absorbed
and an active phase where the epidemic reaches a macroscopic

fraction of the network. The transition from the absorbing to
the active phase strictly resembles a nonequilibrium second-
order phase transition in statistical physics [38,39]. The critical
value of this transition ( β

μ
)
c
= τ is defined as the epidemic

threshold. This term is also known as the basic reproduction
number and it represents a threshold in the sense that when
τ < 1 the infection dies out and if τ > 1 the disease becomes
an epidemic. In those cases where τ = 1, the disease remains in
the population becoming endemic. The value of this threshold
strongly depends on the topology of the network. In particular,
for a given graph G = (V,E), it has been shown that [40–42]

τ = 1

λ1(G)
, (11)

where λ1(G) is the largest eigenvalue of the adjacency
matrix of the network. In the case of RGGs, Preciado and
Jadbabaie [43] have made an exhaustive spectral analysis of
virus spreading using the spectral moments of the adjacency
matrix. They have found that for the RGG in a d-dimensional
cube, the spectral radius is bounded as λ1(G) < cdnrd , where
cd is a constant characteristic of the RGG in the d-dimensional
cube. In two-dimensional space this means that λ1(G) <

c2nr2. Then, because in these graphs the average degree is
nr2, the previous expression basically tells us that the spectral
radius is bounded by the average degree of the RGG.

IV. EPIDEMIC THRESHOLD IN RRGS

In this section we concentrate more on the phenomenology
of the process than on deriving analytical results about the
dependence of the epidemic threshold with the topological
parameters of the RRGs. Thus, we obtain some sort of
mean-field approach that captures the behavior of the disease
parameters with the topological ones. We start by considering
the following well-known bounds for the largest eigenvalue of
the adjacency matrix of a simple graph λ1(G) = λ1,

k̄ � λ1 � kmax, (12)

where kmax and k̄ are the maximum and the average degree,
respectively. Then, it is straightforward to realize that

τ � 1

k̄
. (13)

Then, by substituting Eq. (4) in Eq. (13) we have the
following bound for the epidemic threshold of an RRG:

τ � 1

(n − 1)f
. (14)

This result generalizes the one obtained by Preciado and
Jadbabaie [43] for the RGG to the case where we have a
rectangle of any elongation and where we consider explicitly
the border effects of the rectangle (respectively, the square in
RGG).

Let us now consider what happens to the epidemic threshold
when we elongate the rectangle without disconnecting the
RRG. That is, what is the behavior of the epidemic threshold
when a → ac. In the following we prove that, when a → ac, f
decreases. Consequently, the spectral radius of the adjacency
matrix λ1 also decreases when a → ac, which implies that
the epidemic threshold grows monotonically. Our strategy
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FIG. 3. Scatter plots of the spectral radius versus the average degree for RRGs with a = 1 (a), a = 30 (b) and a = 1,2.5,5,7.7,15,20,25,30
(c) for different values of the connection radius.

here is to prove that the increase of the rectangle elongation
produces a decay of the average degree of the RRGs. Strictly
speaking, proving that the average degree decreases with the
elongation of the rectangle is not proof that the spectral
radius also decreases. Although such proof is analytically
possible, it is out of our intention of working more on the
phenomenology of the process in this work. However, it
is possible to indirectly infer such a relation between the
elongation and the spectral radius as follows. First, it is well
known in spectral graph theory that the average degree is a tight
bound to the spectral radius of graphs in general. In particular,
we are interested here in showing whether the average degree
and the spectral radius of RRGs show the same behavior when
the rectangle is elongated. In Fig. 3 we illustrate the plot of the
spectral radius versus the average degree for RRGs with a = 1
[panel (a)], a = 30 [panel (b)], and a = 1, 2.5, 5, 7.7, 15, 20,
25, and 30 [panel (c)] for different values of the connection
radius. As can be seen in all cases, and particularly in the last
one, the trends of the spectral radius and the average degree
are exactly the same and indeed they are very highly linearly
correlated. Thus, our conclusion here is that proving that the
average degree has a certain behavior when the rectangle is
elongated can be directly extrapolated to the behavior of the
spectral radius with the elongation of the rectangle.

Then, in order to prove this result we first consider what
happens to the function f when a → ac. Let 0 < r � a−1.
Then, the first derivative of f1 = f (0 � r � a−1) is given by

∂f1

∂a
= −4

3
r3(1 − a−2), (15)

and since

(1 − a−2) � 0,

this is bounded by

∂f1

∂a
� 0.

Let a−1 � r � a. Then, the first derivative of f2 =
f (a−1 � r � a) is given by

∂f2

∂a
= −4r3

3
+ 2r2

a3
− 2

3a5
+ 4(a4r4 − 2a2r2 + 1)

3a3
√

a2r2 − 1
, (16)

which is bounded as

∂f2

∂a
� h < 0, (17)

where

h = lim
r→a

∂f2

∂a
= 2

a
− 4a3

3
− 2

3a3
+ 4(a8 − 2a4 + 1)

3a3
√

a4 − 1
. (18)

Let a � r �
√

a2 + a−2. Then, the first derivative of
f3 = f (a � r �

√
a2 + a−2) is given by

∂f3

∂a
= 2r2

(
1

a3
− a

)
+ 2

3

(
a3 − 1

a5

)
+ 4(a4r4 − 2a2r2 + 1)

3a3
√

a2r2 − 1

− 4(a4 − 2a2r2 + r4)

3a2
√

r2 − a2
, (19)

which is bounded as

∂f2

∂a
� g < 0, (20)

where

g = lim
r→t

∂f3

∂a
= 0, (21)

and t = √
a2 + a−2. Then, because all the derivatives are

negative, we have proven the result. Strictly speaking the
fact that 1/(n − 1)f increases with increasing a does not
necessarily imply that τ will exhibit a similar trend for every
a. However, as we see in the next section there is a very good
linear correlation between the values of τ obtained from the
simulations and the lower bound 1/(n − 1)f , which indicates
that both quantities follow the same trend and consequently
that the previous assertion relating the behavior of the epidemic
threshold when a → ac is general. We discuss this in more
detail in the next section.

In Fig. 4 we illustrate the plot of the spectral radius of the
adjacency matrix of RRGs as a function of both the rectangle
size length a and the connection radius r . As expected the lower
triangular part of the plot corresponds to the disconnected
RRGs, which are never used in this work. However, in the
upper triangular part of the plot we observe a large variation
of the spectral radius λ1 of an RRG with both parameters
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of RRGs with n = 1000 nodes as a function of the rectangle size
length a and the connection radius r . The bottom-right part of the
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the critical radius, r < rc [see plot (c) in Fig. 2], and consequently
are disconnected. All the calculations are the result of averaging 20
random generations of the RRG with the given parameters.

of the model. For a fixed connection radius the values of λ1

decay with the elongation of the rectangle as expected from the
previous analytical results. Notice that λ1 can change as much
as from 380 to 35 for a constant radius r = 0.4 when changing
the rectangle size from a = 1 to a = 30. This, of course, is the
main cause of the change of the epidemic threshold predicted
by the bound (13) obtained at the beginning of this section.

V. EPIDEMICS IN RRGs: SIMULATIONS

In this section we conduct extensive numerical simulations
of the SIS dynamics for different values of the elongation a and
a fixed radius r with the goal of checking the goodness of the
bound defined in Eq. (13) and to illustrate how the elongation
of the rectangle in the RRG model changes the epidemic
dynamics. In the simulations we start seeding the infection
in a small fraction, ρ0 = 0.01, of the nodes and let the SIS
dynamics evolve for 5 × 104 time steps. At this point, we let the
simulations run for an additional 103 time steps and calculate
the fraction of infected nodes ρ as the average of ρ(t) over
this period. For each selection of the parameters we performed
250 independent runs with different initial conditions. The
final value of ρ is obtained as the average over all the runs.

Figure 5 shows the fraction of infected nodes in the
stationary state against the infection rate β for different values
of a = 1, 10, 20, and 30. The values shown by arrows are the
analytical ones obtained using Eq. (14).

To have a more detailed picture of the behavior of the
epidemic threshold, in Fig. 6(a) we compare the theoretical
bound with the epidemic threshold obtained via the numerical
simulations. As we have stressed in the previous section this
comparison is very important for understanding whether the
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a = 30
a = 20
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a = 1

τ10= 0.0146
τ20= 0.029

τ30= 0.045
τ1= 0.0036

FIG. 5. (a) Fraction of infected nodes at the stationary state ρ as
a function of the infection rate β for different values of a = 1, 10,
20, and 30. a = 1 represents the first case (0 � r � a−1) of Eq. (3)
while a = 10, 20, and 30 fall in the second case (a−1 � r � a). Other
parameters are n = 103 nodes, r = 0.35, and μ = 1.0. Each point is
an average over 250 independent runs. The values shown by arrows
are the analytical ones obtained using Eq. (14).

epidemic threshold and the bound 1/(n − 1)f follow the same
trend with the elongation of the rectangle. Our comparison
covers two of the three cases of Eq. (3): 0 � r � a−1 and
a−1 � r � a, respectively. As can be seen in this figure the
lower bound (14) is very tight, and more importantly the
bound and the “observed” epidemic threshold display the same
behavior when the rectangle elongation changes. Indeed, our
analysis of the difference between the observed value of the
epidemic threshold and the lower bound obtained by Eq. (13)
shows that for all the RRGs having 1 � a � 35 such relative
difference is 2.93% and in no case it is larger than 10%. Also
we observe no trend in the relative difference related to the
elongation of the rectangle. That is, the relative difference is
neither increasing nor decreasing with the elongation of the
rectangle.

Finally, in Fig. 6(b) we also tested the third case of Eq. (3),
a � r �

√
a2 + a−2 for a = 3 and r = 3.01. In all cases,

as expected, the theoretical and the simulation results show
that the increase of the elongation of the rectangle produces
an increase of the epidemic threshold. In other words, the
elongation of the rectangle retards the disease progression
through the nodes embedded in the rectangle.

In the case of disease propagating on plants, these results—
both analytical and simulations—coincide with the field
observations and simulations using stochastic models [22–30]
which suggest that square plots and fields favored higher
spreading of plant diseases than elongated ones of the same
area [22–25].

Our analytical and simulation results point to the fact that,
under the same conditions, the propagation of an epidemic on
a rectangular plot or field is much harder than on a square one
because a larger number of infected individuals is needed for
the disease to become epidemic. Here we have kept the size of
the plot or field constant by considering unit rectangles in our
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FIG. 6. (a) Comparison between the theoretical bound and the epidemic threshold obtained via numerical simulations. Lines represent
the theoretical prediction of Eq. (13) while points represent the numerical threshold. The inset shows a zoom for the first case of Eq. (3),
0 � r � a−1, (solid line) and the second case, a−1 � r � a (dashed line). Other parameters are n = 103 nodes, r = 0.35, and μ = 1.0. Each
point is average over 250 independent runs. (b) Fraction of infected nodes at the steady state ρ as a function of the infection rate β for
a � r �

√
a2 + a−2. In the simulations a = 3 and r = 3.01. Other parameters are n = 103 nodes and μ = 1.0. Each point is average over 250

independent runs.

analysis. However, it is important to consider that other factors,
such as the orientation of the plot or field, play fundamental
roles in the propagation of a disease on plants. For instance, if
the rectangular plots are placed perpendicular to the direction
of the prevalent winds the disease will not propagate as a
consequence of this factor.

VI. CONCLUSIONS

We have studied the propagation of diseases on a recently
proposed RRG model, deriving analytically a lower bound of
the epidemic threshold for a SIS or SIR model running on
these networks. This model is appropriate for the simulation
of disease spreading on plants allocated on plots and field of
varied shapes. RRGs account for the spatial distribution of
nodes allowing the variation of the shape of the unit square
commonly used in RGGs. We have shown here by using
analytical results and extensive numerical simulations of the
SIS dynamics for different values of the elongation a and a
fixed radius r that the elongation of the plots or fields in which
the nodes (plants) are distributed makes the network more
resilient to the propagation of epidemics. This is due to the

fact that the epidemic threshold increases with the elongation
of the rectangle. These results agree with a large accumulation
of empirical evidence about the role of elongation of plots
and fields on the propagation of diseases on plants. This
model represents a new way to analyze disease propagation on
plants or similar scenarios, by combining the heterogeneities
introduced at individual levels by networks with the influence
produced by the shape variation of the plots and fields where
the plants are growing.

ACKNOWLEDGMENTS

E.E. thanks the Royal Society of London for a Wolfson
Research Merit Award. S.M. and Y.M. thank partial support
by by MINECO and FEDER funds (grant FIS2014-55867-P);
Comunidad de Aragón (Spain) through a grant to the group
FENOL; and the EC Proactive project MULTIPLEX (contract
no. 317532). S.M. is also supported by MINECO through
the Juan de la Cierva Program. M.S. is supported by Weir
Advanced Research Centre, University of Strathclyde and
EPRSC, UK.

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U.
Hwang, Complex networks: Structure and dynamics, Phys. Rep.
424, 175 (2006).

[2] M. Boguña, R. Pastor-Satorras, and A. Vespignani, Absence
of Epidemic Threshold in Scale-Free Networks with Degree
Correlations, Phys. Rev. Lett. 90, 028701 (2003).

[3] C. Castellano, and R. Pastor-Satorras, Thresholds for Epidemic
Spreading in Networks, Phys. Rev. Lett. 105, 218701 (2010).

[4] M. J. Jeger, M. Pautasso, O. Holdenrieder, and M. W.
Shaw, Modelling disease spread and control in networks:

Implications for plant sciences, New Phytol. 174, 279
(2007).
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[7] F. M. Neri, F. J. Pérez-Reche, S. N. Taraskin, and C. A.
Gilligan, Heterogeneity in susceptible–infected–removed (SIR)
epidemics on lattices, J. R. Soc., Interface 8, 201 (2011).
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