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We develop a theoretical framework for the study of epidemiclike social contagion in large scale social systems.
We consider the most general setting in which different communication platforms or categories form multiplex
networks. Specifically, we propose a contact-based information spreading model, and show that the critical point
of the multiplex system associated with the active phase is determined by the layer whose contact probability
matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real
multiplex system. Finally, we also show that when the system through which information is disseminating is
inherently multiplex, working with the graph that results from the aggregation of the different layers is inaccurate.

DOI: 10.1103/PhysRevE.88.050801 PACS number(s): 89.75.Hc, 89.20.−a, 89.75.Kd

Social contagion processes such as the adoption of a belief,
the propagation of opinions and behaviors, and the massive
social movements that have recently unfolded worldwide [1–7]
are determined by many factors, among which are the structure
of the underlying topology and the dynamics of information
spreading [8]. The advent of new communication platforms
such as online social networks (OSNs) has made the study
of social contagion more challenging. Today, individuals are
increasingly exposed to many diverse sources of information,
all of which they value differently [9], giving rise to new
communication patterns that directly impact both the dynamics
of information spreading and the structure of the social net-
works [10–13]. Admittedly, the commonplace multichannel
information spreading that characterizes the way we exchange
information nowadays needs to be studied. One way to address
the latter is to consider that the process of contagion occurs
in a system made up of different layers, i.e., in a multiplex
network [14–23]. Although many studies have dealt with social
contagion and information spreading on social networks, they
all consider the case in which transmission occurs along the
contacts of a simplex, i.e., single-layer, system. Here we aim
at filling this existing gap.

The dynamics of these kinds of processes can be modeled
using different classes of approaches. Threshold models
[24–29] assume that individuals enroll in the process being
modeled if a given intrinsic propensity level, the threshold, is
surpassed. Although this class of models is useful to address
the emergence of collective behavior, they are generally
designed to simulate a single contagion process and therefore
individuals, once they are active, remain so forever. This is
not convenient in many situations that are characterized by
self-sustained activity patterns [6,7]. For instance, think of an
online social network in which tags are used to identify the
topic of the information being transmitted (such as hashtags
in Twitter): Individuals can use the same tag many times, but
they can also decide not to use it after a number of times, thus
being again susceptible to the contagion or, in the language of
threshold models, inactive. The latter features can be captured
if one uses epidemiclike models of social contagion [30–32].
In particular, the susceptible-infected-susceptible (SIS) model
[33], a classical approach to the study of disease spreading,
allows individuals to cyclically change their dynamical state

from susceptible (i.e., exposed to the tag) to infected (actively
participating in the spreading process) and back to susceptible.

In this Rapid Communication, we propose a contact-based
Markov chain approach [34] to study epidemiclike social
contagion in multiplex networks. We derive the conditions
under which the dynamics reaches a steady state with active
(infected) individuals coexisting with nonadopters. Our results
show that the dynamics of the multiplex system is character-
ized by a critical point that depends solely on the layer with the
largest eigenvalue of the contact probability matrix. We also
show how our modeling framework can be applied to different
scenarios and that working with the network resulting from
the projection of all layers (the aggregated network) is not
accurate.

Let us consider a multiplex system made up of N nodes
and M layers (see Fig. 1), and let the supracontact probability
matrix R̄ = {Rij } be

R̄ =
⊕

α

Rα +
( �γ

β

)T

C, (1)

where the Rα’s are the contact probability matrices of each
layer α and C is the interlayer coupling matrix whose elements
Cij = 1 if i and j represent the same actor in different layers.
Thus it is a matrix with nonzero entries only in the off-diagonal
blocks (see Fig. 1). Moreover, for a given layer α, Rα is defined
as in the single-layer scenario [34], i.e.,

(Rα)ij = 1 −
(

1 − (Aα)ij
kαi

)λαi

, (2)

with Aα the adjacency matrix of layer α and kαi
the degree of

node i in layer α. In addition, all vectors are column vectors
of the form �xT = (x1�1T

1 , . . . ,xM
�1T

m), and �1α are the vectors
of all 1’s whose size is equal to the number of nodes Nα in
layer α. Thus, R̄ is a block matrix with the Rα on the diagonal
blocks and

γli

βli

Cli lj on the off-diagonal block (li ,lj ). As in the
simplex network, in each layer, the parameter λαi determines
the number of contacts that are made, so that one may go from
a contact process (one contact per unit time) when λαi = 1
to a fully reactive process (all neighbors within the layer are
contacted) in the limit λαi → ∞ [35]. Moreover, the contagion
between the layers is characterized by the ratio γα

βα
, where βα is
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FIG. 1. (Color online) Schematic of a two-layer multiplex system
where the contagion dynamics takes place. There are actors that take
part in more than one layer (green nodes connected by the dotted
edges), whereas others are present only in one layer (red nodes). β1,2

is the contagion rate within the same layer whereas γ1,2 represents
the probability that the contagion occurs between layers. The right
panel shows a small network and its associated C and A = ⊕

α Aα .

the rate at which the contagion spreads in layer α. Finally, γα

has the same meaning as β but characterizes how contagion
spreads from other layers to layer α (see Fig. 1), i.e., it is the
rate at which a node in layer α gets infected if its counterparts
in other layers are infected.

With the above ingredients, it is easy to see that the discrete-
time evolution equation for the probability of contagion of a
node i of the multiplex system has the same functional form
as in the single-layer case [34], namely,

�p(t + 1) = [�1 − �p(t)] ∗ [�1 − �q(t)] + (�1 − �μ) ∗ �p(t)

+�μ ∗ [�1 − �q(t)] ∗ �p(t), (3)

where ∗ stands for elements’ wise multiplication of two vec-
tors, i.e., ( �p ∗ �q)i = piqi , and �μ is a vector whose components
are the rates at which adopters are again susceptible. Moreover,
qi(t) is the probability that node i will not be infected by any
neighbor,

qi(t) =
∏
j

[1 − βRijpj (t)]. (4)

Let us now assume that γα

βα
= γ

β
[36] and μα

βα
= μ

β
,∀α =

1, . . . ,M [37]. The phase diagram can be studied by solving
Eq. (3) at the stationary state,

�p = (1 − �q) + (1 − �μ) �p ∗ �q. (5)

This equation always has the trivial solution pi = 0, ∀i =
1, . . . ,N . Other nontrivial solutions are given by nonzero fixed
points of Eq. (5) and can be easily computed numerically by
iteration. Linearizing qi around 0, at first order we get[

R̄ − μ

β
I

]
p = 0, (6)

which has nontrivial solutions if and only if μ

β
is an eigenvalue

of R̄. Since we are looking for the onset of the macroscopic
social contagion, namely, the critical point, the lowest value of
β

μ
satisfying Eq. (6) is(

β

μ

)
c

= 1

�̄max
, (7)

where �̄max is the largest eigenvalue of the matrix R̄.

It is worth analyzing this result by means of a perturbative
analysis. Let �̄max � � + ε��, where � is the largest
eigenvalue of R = ⊕

α Rα and consider R̄ = R + εC, with
ε = γ

β
	 1. Since R is a block diagonal matrix, it has the same

set of eigenvalues of {Rα} and thus we can analyze the system
in terms of the largest eigenvalues of the contact matrices
Rα of the layers α. For simplicity, we take the calculation in
the case of two layers (i.e., α = 1,2), but generalization to
any number of layers is straightforward. The change in the
eigenvalue (eigenvector) can be estimated using a first order
approximation [38]

��max = �vT C�v
�vT �v , (8)

��v = C

�
�v, (9)

where �v is the eigenvector associated with the largest eigen-
value � of the unperturbed matrix R. Two cases are possible:
(i) �1 
 �2 (�2 
 �1 is completely equivalent), and (ii)
�1 � �2, where �1 (�2) is the largest eigenvalue of R1 (R2).
In the first case, the eigenvector associated with the largest
eigenvalue � = �1 is

�v =
( �v(1)

0

)
. (10)

Hence, �� = 0 and

��v =
(

0
ε
�

�v(1)

)
. (11)

Therefore, at first order approximation, we have that the
largest eigenvalue of R̄ is �̄max = maxα{�α}, and hence the
emergence of a macroscopic steady state for the dynamics is
determined by the layer with the largest eigenvalue. We call
that layer the dominant layer. Besides, the probability of a node
to catch the contagion at the critical point in a nondominant
layer is also specified by the probability of being infected in
the dominant one.

In case (ii), the eigenvector associated with the largest
eigenvalue � = �1 = �2 is

�v =
( �v(1)

�v(2)

)
, (12)

where �v(1) (�v(2)) is the eigenvector associated with �1 (�2).
Thus, at first order we have

�� = �v(1)C12�v(2) + �v(2)C21�v(1)

�vT
(1)�v(1) + �vT

(2)�v(2)
(13)

and

��v =
( ε

�
�v(2)

ε
�

�v(1)

)
. (14)

The previous expression indicates that in this scenario, the
critical point is smaller and that the correction depends on
the relation between the eigenvector centralities of the nodes
in both layers. To further analyze the dynamical features of
the contagion process, we numerically solve the system of
equations given by Eqs. (4) and (5) for the different scenarios
considered above. In the first case, when �1 
 �2, the
dynamics of the multiplex system is completely dominated by
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FIG. 2. (Color online) (a) Density of adopters (ρ) at the steady
state against the rescaled contagion probability β

μ
for a multiplex

system composed of two layers with N = 104 nodes each for different
values of the ratio η = γ

β
. The arrows represent the inverse of the

largest eigenvalues of the two layers, whereas the inset shows the
case in which both layers are completely disconnected. (b) The same
quantity of (a), for η = 2.0, is represented but computed at each layer.
The inset is a zoom around the critical point. See the text for further
details.

the layer with the largest eigenvalue of Rα . Thus, we expect that
the contagion threshold coincides with the one of the dominant
layer and no effect of the interlayer diffusion parameter ε = γ

β

near the threshold.
Figure 2(a) depicts the fraction of infectees, ρ = 1

N

∑
i pi ,

at the steady state against the rescaled contagion probability
β

μ
for a multiplex composed by two layers of N1 = N2 = 104

nodes (thus N = N1 + N2 = 2 × 104). Both layers have been
obtained using the uncorrelated configuration model with
degree distribution P (k) ∼ k−g with g = 2.3 for the first
layer and g = 3.0 for the second one. Furthermore, we have
assumed a fully reactive scenario in both layers of the system
[i.e., λ1 = λ2 → ∞ in Eq. (2)]. As seen in Fig. 2(a), where
arrows represent the inverse of the largest eigenvalues, the
contagion threshold is set by 1/�1. It is worth noticing that
the perturbative result still holds even for γ

β
= 1. This is due

to the fact that the number of links added to the multiplex
is small compared to the number of intralayer links and the
perturbation can still be considered small [38]. On the other
hand, the inset shows the results one would obtain if both
layers were disconnected. In this case, each one would have
their independent contagion thresholds determined by their
largest eigenvalues.
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FIG. 3. (Color online) Dependence of the largest eigenvalues of
the contact probability matrices, Rα’s, on λα for the system in Fig. 2.
As it can be seen, there might be a crossover signaling that the
dominant layer changes. This crossover occurs only if the activity of
the topologically dominant layer is small enough: In the example, it
should be smaller than λ1 = 32.

It is also of interest to inspect the phase diagrams of the two
layers separately. This is what is shown in Fig. 2(b), where
we represent the fraction of infectees at the steady state of
each layer. As already discussed, the dominant layer fixes
the contagion threshold of the multiplex network. However,
it also induces a shift of the critical point of the second layer
to smaller values. In other words, the multiplex nature of the
system leads to an earlier transition to an active phase also in
the nondominant layer, as its critical point is now smaller than
the expected value for the isolated system, i.e., ( β

μ
)c2 < 1

�2
.

Furthermore, a unique feature of the model directly linked
to the multiplex nature of the system is worth stressing. As
the largest eigenvalues involved in the calculations are those
associated with the matrices Rα , they depend not only on the
adjacency matrices Aα , but also on λαi

[see Eq. (2)]. This
dependency has an interesting effect, as shown in Fig. 3: As
the λα’s characterize the number of effective contacts per unit
time, a layer that does not prevail in the contagion dynamics
because it is not topologically dominant (in terms of its Aα) can
compensate for its lack of structural strength by increasing λα

so as to eventually become the one with the largest eigenvalue
of the multiplex network. The previous feature opens the door
to potential applications in which, by tuning the activity on
one layer, the latter can take over the rest of the system and set
its critical properties. Similarly, the above mechanism could
explain situations in which the system is in the critical region
despite the fact that by observing one layer one would expect
the contrary. In other words, to determine whether the system
is in a critical regime, one should have access to both the
topological and activity features of all layers. This is in line
with the findings in Ref. [39], however, our model shows
that once the dominant layer (if there is one) is detected, the
analysis of the system dynamics can be carried out only on
that layer.

We have also explored scenario (ii), �1 � �2, for which
the largest eigenvalue of the multiplex is given as �max =
max{1,2}{�1,�2} + O(ε). In particular, as one needs two
networks with similar (very similar in this case) largest
eigenvalues, we have used the same network in each layer
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and reshuffled the nodes from one layer to another to avoid
correlation between the degree and the neighborhood of a
node in the two layers. Also in this case (figure not shown),
numerical results confirm the theoretical expectation.

Next, we study the differences in the contagion process
when considering the contraction along the interlayer links
of the multiplex. This amounts to considering an aggregated
graph that corresponds to a simplex network in which all nodes
and their respective links in each layer have been grouped
together, and where the interlayer connections between the
same nodes are represented as self-loops. Since the largest
eigenvalue of the contraction is larger than that of the
multiplex, we expect the contagion threshold of the projected
network to be smaller than that of the multiplex system. In
addition, the number of infectees at the steady state should
also be smaller for the multiplex network, since the correction
to the probabilities of being infected, pi’s, is small in this
system. Figure 4 shows results of numerical calculations
for both systems. As it can be seen more clearly in the
inset, the contagion thresholds are different. More importantly,
the figure provides grounded evidence of why one cannot
reduce a system that is inherently multilevel to a projected
network—the observed level of prevalence significantly differs
from one system to the other. For instance, fixing the ratio β

μ

that characterizes the spreading process within one layer, one
can get estimates for the contagion incidence as high as twice
the actual value (that of the multiplex network).

In summary, we have proposed a contact-based framework
to study the dynamics of social contagion processes in
multiplex networks. Several results are worth highlighting.
First, we have shown that the contagion threshold of the
multiplex system is determined by the largest eigenvalue of
the contact probability matrices of the layers that made up
the system. Second, when a layer is dominant, the transition
to a global steady state is driven by the dynamics at that
layer. In this situation, the coupling between layers also affects
the critical properties of the nondominant layers by lowering
their contagion thresholds. Furthermore, we have convincingly
shown that disregarding the inherent multiplex nature of a
system by dealing with the corresponding aggregated graph
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FIG. 4. (Color online) Density of adopters (ρ) at the steady state
as a function of the rescaled contagion probability β

μ
for a multiplex

system composed of two layers with N = 104 nodes each (lines
with symbols) and the corresponding aggregated graph (dotted lines).
Different curves represent different values of the ratio η = γ

β
as

indicated. The inset is a zoom of the region around the contagion
threshold.

could lead to wrong conclusions. Our results could help
in understanding the spreading of information in multilevel
sociotechnical systems and how users’ behavior (via either
γα or λαi

) might modify the critical properties of contagion
processes. Finally, our analyses suggest that there are three
different ways in which the “competitiveness” (as far as
its potential for contagion is concerned) of a layer can be
enhanced: increasing the size of the layer, the connectivity of
its nodes, or their activity.
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