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Here we develop an epidemic model that accounts for long-range dispersal of pathogens between plants. 

This model generalizes the classical compartmental models–Susceptible-Infected-Susceptible (SIS) and 

Susceptible-Infected-Recovered (SIR)–to take into account those factors that are key to understand epi- 

demics in real plant populations. These ingredients are the spatial characteristics of the plots and fields 

in which plants are embedded and the effect of long-range dispersal of pathogens. The spatial character- 

istics are included through the use of random rectangular graphs which allow to consider the effects of 

the elongation of plots and fields, while the long-range dispersal is implemented by considering trans- 

formations, such as the Mellin and Laplace transforms, of a generalization of the adjacency matrix of 

the geometric graph. Our results point out that long-range dispersal favors the propagation of pathogens 

while the elongation of plant plots increases the epidemic threshold and decreases dramatically the num- 

ber of affected plants. Interestingly, our model is able of reproducing the existence of patchy regions of 

infected plants and the absence of a clear propagation front centered in the initial infected plants, as it 

is observed in real plant epidemics. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Understanding the spread of pathogens on plants has always

een an important challenge for agricultural and environmental

evelopment ( Campbell and Madden, 1990; Segarra et al., 2001 ).

oday, it is well-documented that the long-range dispersal of

athogenic fungi is responsible for the spread of several impor-

ant crop diseases at distances ranging from a few meters to thou-

ands of kilometers ( Brown and Hovmø ller, 2002 ). Many of these

ungi, such as those causing diseases like rust, powdery mildew,

nd downy mildew diseases, produce a massive numbers of spores

hich are then dispersed by wind from one plant to another.

uch kind of wind dispersal is an important surviving mecha-

ism for the spores, which can travel even at inter-continental

istances ( Brown and Hovmø ller, 2002 ). Another mechanism of

ong-range dispersal of pathogenic organisms is by means of vec-

ors ( Gillespie et al., 2012 ), ranged from small insets to humans,
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hich transport the inoculum of the pathogen from one plant to

nother. Both mechanisms are believed to be responsible for the

ispersal of diseases such as Dutch elm disease ( Swinton and Gilli-

an, 1996 ), citrus canker ( Gottwald et al., 2001 ), sudden oak death

 Rizzo et al., 2002 ) and rhizomania of sugar beet ( Stacey et al.,

004 ). The study of long-range dispersal in plants is not only of re-

arkable importance for understanding plant diseases but also for

ther plant-related processes ( Clark, 1998; Clark et al., 1999; Levin

t al., 2003; Nathan, 2006 ). For instance, most of the transport of

ollen between plants is carried out by wind or insect pollina-

ors. This biological process is vital for the survival of the species,

ut it is also important for understanding transgenic pollen disper-

al ( Vallaeys et al., 2017 ). Of similar importance is the spreading

f evolutionary novelties across populations. Recently, it has been

ecognized that rare-events of long-range jumps can lead to drastic

cceleration of these processes ( Hallatschek and Fisher, 2014 ). 

In order to model epidemic processes in plants the mod-

ler dispose of several theoretical tools ( Jeger, 1990; Kranz, 2012;

oslonka-Lefebvre et al., 2011; Van Maanen and Xu, 2003 ), not

ithout a few important challenges ( Cunniffe et al., 2016, 2015; Ri-

ey et al., 2015 ). The incorporation of long-range dispersal effects,

https://doi.org/10.1016/j.jtbi.2018.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.05.004&domain=pdf
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either as diffusive processes or by including long-range jumps, has

been the topic of many researches ( Allen and Ernest, 2002; Ay-

lor, 2003; Davis, 1987; Dybiec et al., 2009; Filipe and Maule, 2004;

Keeling et al., 2001; Kleczkowski and Grenfell, 1999; Kot et al.,

1996 ). Recently, Vallaeys et al. (2017) have stressed that the diffu-

sive process “often seriously underestimates dispersal distances ”, and

on the other hand, pure Lévy movements “often overestimates dis-

persal distances ”. Thus, methods that account for an equilibrated

balance between diffusive and long-range dispersal are still needed

for modeling epidemic processes in plants ( Vallaeys et al., 2017 ).

Another important challenge in modeling plant diseases is the ne-

cessity to consider the spatial characteristics of the plots or fields

in which the plants are embedded. As a consequence, those mod-

els that consider spatial features for characterizing the structure

of populations in heterogeneous landscapes have gained recent in-

terest ( Jeger et al., 2007 ). One approach is to consider spatial net-

works that treat interactions as a continuous variable that decays

with increasing distance. Another, which is interesting from the

perspective of the current work, is to distribute randomly and in-

dependently a set of points on the Euclidean plane to represent

the relative spatial location of individual host plants or habitat

patches ( Jeger et al., 2007 ). The second kind of models give rise

to random geometric graphs (RGGs) ( Bollobás, 1985; Dall and Chris-

tensen, 2002; Gilbert, 1959; Penrose, 2003 ), in which each node is

randomly assigned geometric coordinates and then two nodes are

connected if the (Euclidean) distance between them is smaller than

or equal to a certain threshold r . For instance, let us suppose that

a pathogen located in a plant i can jump and infect any susceptible

plant inside a certain radius centered on i . This implies that every

other node inside the disk of radius r centered at the infected node

i is connected to it. 

In this work we are interested in epidemic processes similar

to the transmission of viruses on plants, which are known to oc-

cur mainly transmitted by insect vectors of several families, with

Hemiptera being by far the most important group ( Fereres and

Moreno, 2009 ). For instance, homopterans (a subclass formed by

two suborders of Hemiptera) are vectors for about 55% of all

known plant viruses, with aphids transmitting approximately 275

virus species (more than 50% of plant viruses vectored by insects)

and whiteflies transmitting 114 virus species ( Jones, 2003; Nault,

1997 ). Aphids represent a vast group of insects covering about

4700 species, from which 450 species are involved in colonizing

food and fiber crop (see Fereres and Moreno (2009) and references

therein). In this way of vectored transmission of diseases on plants

a nontrivial aspect of the transmission are the behavioral events

related to the vectors. These are a series of successive events fol-

lowed by vectors that ends up in virus transmission on the plant.

In the case of aphids, it has been recognized that the following

events are important ( Powell et al., 2006 ): (i) pre-alignment be-

fore landing, (ii) plant contact and assessment of surface cues af-

ter landing, (iii) probing on superficial tissues, (iv) location and

insertion of styletes at the appropriate feeding site, (v) salivation

followed by committed sap ingestion. From the point of view of

modeling the epidemic spreading, the event of pre-alignment be-

fore landing is of vital importance. For instance, it is not true that

an insect simply hop from one plant to another but in some occa-

sions they can remain flying for long periods (2 h for whiteflies or

7 h for N. virescens females) until “attractive” plants are founds for

landing. Then, some insects hop from a plant to a close one, e.g.,

H. coagulata which tends to make short flights of no more than

5 m, and others can travel longer distance during their long flying

times. For an excellent review and discussion see ref. Fereres and

Moreno (2009) . It is also important to notice that although a plant
an be selected for landing by an insect due to its attractiveness, it

ay or may not be potential host for that insect, and that the dis-

rimination appears after landing and probing on different plants

 Kring, 1972 ). All these factors makes the hopping process of insect

ectors a nontrivial one and here we propose a way of capturing

ome of these nontrivialities into a model for epidemic spreading

n plants. 

The fact that plants are not mobile as humans and animals pro-

uces lower mixing levels in a given population. Consequently, the

hape of the plot or field in which the plants are distributed affects

ignificantly disease dynamics in these systems. In fact, there are

oth empirical and theoretical evidence that support this hypoth-

sis ( Bonnot et al., 2010; Ferrandino, 2005; Fleming et al., 1982;

undt and Brophy, 1988; Mundt et al., 1996; Paysour and Fry,

982; Waggoner, 1962; Xu and Ridout, 20 0 0 ). In general, it has

een suggested that square plots and fields favor higher spreading

f plant diseases than elongated ones of the same area ( Fleming

t al., 1982; Paysour and Fry, 1982; Waggoner, 1962 ). It is impor-

ant to remark that the area of the field also plays a fundamen-

al role, with larger plots and fields favoring more the spreading

f diseases ( Ferrandino, 2005; Mundt et al., 1996; Xu and Rid-

ut, 20 0 0 ). Also, the orientation of elongated fields may affect

he disease propagation with orientations perpendicular to preva-

ent winds suppressing epidemic progression ( Fleming et al., 1982;

aggoner, 1962 ). All in all, for plots and fields of the same area

nd orientation there is empirical and theoretical evidence that

longated shapes decreases the impact of epidemics on plant pop-

lations. It is worth noting that the theoretical models ( Ferrandino,

005; Mundt and Brophy, 1988; Xu and Ridout, 20 0 0 ) used in the

reviously mentioned studies do not use network theory as a tool

or the study of epidemic spreading. Recently, Estrada et al. have

eneralized the RGGs to consider rectangular areas ( Estrada and

hen, 2015; Estrada and Sheerin, 2015, 2016 ) and have used them

s plant fields to show analytically and computationally that the

ectangular elongation of these fields produces a significant delay

n the disease propagation on plants ( Estrada et al., 2016 ). 

In this work we develop a new model that combines three de-

irable ingredients for modeling plant diseases: (i) a network envi-

onment in which the proximity between plants determines their

onnectivity, (ii) the spatial embeddeness of plants in areas of dif-

erent shapes, (iii) inclusion of long-range jumps allowing distance-

ependent dispersal of pathogens. The model is based on a gener-

lization of classical epidemiological models, such as Susceptible-

nfected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR)

odels, in which the infection is propagated through the nodes

nd edges of a spatial network and in which long-range disper-

al of the disease is allowed. The spatial networks used here allow

o study the effect of elongation of plant crops and fields on the

ispersal of the pathogen. We first formulate mathematically this

odel and then use it for the analysis of epidemic spread on hy-

othetical plant plots. According to our current results the prop-

gation of pathogens through plants when long-range dispersal is

resent is characterized by the following general patterns: (i) much

aster propagation of disease than in normal diffusive regimes, (ii)

he elongation of plant plots/fields increases the infectivity needed

o trigger the epidemics; (iii) the elongation of the plots/fields de-

ays dramatically the number of affected plants; (iv) the number of

lants dead (removed) in a very elongated plot/field is much less

hen the dynamics is controlled by a Mellin transform than when

t is controlled by a Laplace one; (v) the dynamics is characterized

y the existence of patchy regions of infected plants and by the

bsence of a clear propagation front that separates infected from

oninfected plants. 
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Fig. 1. Schematic illustration of a random distribution of plants in a plot or field (a), a squared random geometric graph (b) and an elongated random rectangular graph (c). 
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. The model 

.1. Modeling scenario 

Here we consider plants represented by the nodes of a graph

 = ( V, E ) . The plants are assumed to be randomly and indepen-

ently distributed (see Fig. 1 (a)) on a given plot or field of rect-

ngular shape and unit area. Then, we model such scenario by a

andom rectangular graph (RRG). An RRG is defined by considering

 rectangle [0, a ] × [0, b ] where a, b ∈ R , a ≥ b. For the sake of sim-

licity we will consider unit rectangles of the form [ 0 , a ] × [0 , a −1 ] .

he construction of the RRG is as follow. We distribute randomly

nd independently n points on this rectangle. We then center at

ach point a disk of radius r , which hereafter we call the influ-

nce radius. In Fig. 1 (a) we illustrate a possible connection radius

or the plant in the center. It indicates that the pathogen can jump

o any plant which is at a distance shorter or equal than r . No-

ice that for the construction of RRG only one radius for each node

s used and it remains fixed for all the experiments. Let i be an

rbitrary plant in the rectangle and let D i be the disk of radius

 centered at i . Then, we connect every node inside the disk D i 

o the point i . By doing so for each of the n points we construct

he RRG. When a = 1 the rectangle [0 , a ] × [0 , a −1 ] is simply the

nit square [0, 1] 2 . This model is known as the random geomet-

ic graph (RGG) and has been widely studied in the mathematical

f

iterature. In Fig. 1 ((b) and (c)) we illustrate two RRGs with differ-

nt values of the rectangle side length a and the same number of

odes and edges. In Fig. 1 (b) when a = 1 the graph corresponds

o the classical random geometric graph in which the nodes are

mbedded into a unit square. The case illustrated in Fig. 1 (c) cor-

esponds to a = 2 and it represents a slightly elongated rectangle.

he adjacency matrix of the RRG is defined as the matrix A ∈ R 

n ×n 

hose entries are given by 

 ( i, j ) = 

{
1 i f ( i, j ) ∈ E, 

0 otherwise. 
(2.1) 

The degree of a node k i , is the number of nearest-neighbor con-

ections that the node i has. The consideration of the elongation of

he unit rectangles where the nodes of the graph reside is an im-

ortant modeling feature in the current work. There has been ex-

erimental evidences that the elongation of the plots and fields in

hich the plants are growing decreases the rate of epidemic prop-

gation and makes more difficult the infection to become an epi-

emic. However, it is obvious that the elongation of the rectangles

ith a fixed connection radius will make the graph disconnected

t certain point. In the general case of RRGs we have proved that

he average degree k̄ depends on the number of nodes n and a

unction f of the elongation of the rectangle: k̄ = (n − 1) f , where

 is given by (see ref. Estrada and Sheerin (2015) for details): 
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Fig. 2. Plot of the connectivity radius versus the rectangle elongation for the RRGs. The line dividing the two regions represents the connectivity radius values of radius and 

elongation for RRGs with n = 10 0 0 nodes. All the calculations are the result of averaging 20 random realizations of the RRG with the given parameters. 
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π r 2 − 4 
3 
(a + a −1 ) r 3 + 

1 
2 

r 4 , for 

− 4 
3 

ar 3 − r 2 a −2 + 

1 
6 

a −4 + ( 4 
3 

r 2 + 

2 
3 

a −2 ) 
√ 

a 2 r 2 − 1 for 

+2 r 2 arcsin ( 1 
ar 

) , 

−r 2 (a 2 + a −2 ) + 

1 
6 
(a 4 + a −4 ) − 1 

2 
r 4 for 

+( 4 
3 

r 2 a −1 + 

2 
3 

a ) 
√ 

r 2 − a 2 + ( 4 
3 

r 2 + 

2 
3 

a −2 ) 
√ 

a 2 r 2 − 1 

−2 r 2 ( arccos ( 1 
ar 

) − arcsin ( a 
r 
)) . 

Then, in the case of RRGs the probability of the graph being

connected depends on both the connection radius and the elonga-

tion of the rectangle. Explicitly, such probability P [ ���] is written in

the limit when the number of nodes is very large as 

lim 

n →∞ 

P [ (n − 1) f − log n ≤ α] = exp ( − exp ( −α) ) , (2.3)

where α is a parameter, which indicates that when α → + ∞ the

RRG is almost surely connected when n → ∞ , and almost surely

disconnected when α → −∞ . Because the parameter α is unknown

and it depends on the specific RRG considered, we have obtained

a lower bound for exp ( − exp ( −α) ) using (2.3) : 

exp ( − exp ( −( (n − 1) f − log n ) ) ) ≤ exp ( − exp ( −α) ) . (2.4)

Then, we can plot the values of the connectivity radius versus

the elongation of the rectangles (see Fig. 2 ). The curve joining the

points of this plot makes a separation between the RRGs which

are connected (upper triangular part) from those which are dis-

connected (lower triangular part). That is, the curve represents the

critical radii versus critical elongation, and it gives the critical re-

gion indicating the connectivity of the RRGs. In this work we use

values of r which guarantee that the graph is connected for the

studied values of the elongation parameter a . In addition, we check

W  
 ≤ b 

 ≤ a 

 ≤ √ 

a 2 + a −2 

(2.2)

ndividually that every graph is connected. Another important as-

ect related to the connectivity of RRGs is about network density,

.e., number of links per given size. The number of links varies with

he elongation of the rectangle, with larger elongation producing

ess links for a constant connection radius. In modeling plant dis-

ases we keep the connection radius constant as a consequence of

he fact that the radius of action of the pathogen is fixed. Then,

he decay of the edge density with the elongation is a natural re-

ult due to the fact that the elongation makes the propagation of

he pathogen more directional. That is, in a square the pathogen

as almost the same probability of hopping in any direction, but

n a very elongated plot it can only hops in the direction of the

arger axis, and such decrease in the direction of the hopping is

eflected in the decay of the number of edges in the graph. 

.2. Long-range interactions (LRI) epidemic models 

.2.1. Generalities 

Here we consider two epidemiological models for modeling the

isease propagation on plants, namely the SIS and SIR models.

hen studying plants a frequently found situation is a systemic or
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all-or-nothing’ diseases of crops or annual plants. In these cases,

he most convenient model to be used is the SIR one, in which

he plants are either susceptible, infected or die after the infec-

ion. However, in some situations hosts recover from the disease

nd become susceptible again as soon as they recover. This is the

ase for instance when plants recover by shedding and regrowing

iseased leaves. In this particular scenario the most appropriate

odel is the SIS, which has been used in such situations by sev-

ral authors ( Aguayo et al., 2014; Bauch, 2005; Bolker, 1999 ). In the

ase of vectored plant diseases, such as the ones mainly considered

ere, Jeger et al. (2011) have recommended the SIS model as the

ain theoretical framework for modeling the epidemic spreading.

e now describe the main mathematical formalism for these two

odels in which we will incorporate the LRIs. 

Let us now write the equations of the SIS model taking place

hrough the nodes and edges of the graph. Let S i be the probabil-

ty of individual i of being susceptible to the infection, and let x i be

he probability of individual i of being infective after having been

nfected by the disease. Then, if the birth and death rates of the

pidemics are β and μ, respectively, we have the following equa-

ions for the SIS model on the graph: 

˙ 
 i = −βS i 

∑ 

j 

A i j x j + μx i , (2.5)

˙ 
 i = βS i 

∑ 

j 

A i j x j − μx i . (2.6)

In a similar way, the SIR model is written as: 

˙ 
 i = −βS i 

∑ 

j 

A i j x j , (2.7)

˙ 
 i = βS i 

∑ 

j 

A i j x j − μx i , (2.8)

˙ 
 i = μx i , (2.9) 

here R i is the probability of individual i of being recovered from

nfection. 

.2.2. LRI on plant diseases 

In the previously defined model, an infective particle is consid-

red to jump from one plant i to another plant j if and only if

he two plants are connected in the corresponding spatial network.

hat is, in the case of the RRGs G = ( V, E ) considered here the

ransmission of the disease is only possible if ( i , j ) ∈ E . This scenario

orresponds to the case of an insect vector that hops only at short

istances without any pre-alignment behavior. That is, this corre-

ponds to an insect that does not discriminate among the different

lants around its actual position and simply hops to the nearest

eighbor one which is available. This situation is represented in

ig. 3 (a). 

A different scenario arises if we consider that the insect vector

as a pre-alignment behavior and also that it needs a plant contact

nd assessment of the surface cues after landing. In this case, the

nsect vector can flight from its current position to another plant,

hich looks attractive to it, and which is not necessarily close to

he current one. Also, it is possible that the nearest plants look

ttractive or appetitive to the insect, it lands on it, but after prob-

ng it decides not to colonize the plant. Then, it hops to another

earest neighbor and the process continues until it finds an appet-

tive plant. Indeed, Irwin et al. (2007) have identified the following

ategories of aphids according to their behavior: (a) transient non-

ectors, which land and probe but do not colonize the crop and

o not transmit the virus; (b) transient vectors, which land and

robe without colonizing the crop but transmit the virus; (c) col-

nizing non-vectors, which land, stay and reproduce on the crop
ut do not transmit the virus; (d) colonizing vectors, which land,

tay and reproduce on the crop and transmit the virus. Obviously,

e are interested here in those categories in which there is trans-

ission of the virus, but the category (a) is also important, as it

epresents a non-steady state of the vector, which can be exploring

ntil it finds the appropriate plant to become any of the other cat-

gories. In Fig. 3 (b)–(d) we represent scenarios in which an insect

ector can hop not to the nearest neighbor of its current position

ut to a second, third, fourth neighbor, and so forth. In the way

hey are represented here they intent to capture the idea that the

nsect can land in a nearest neighbor and probe it but being in cat-

gory (a) at each of the empty circles of the graphics. For instance,

n Fig. 3 (b) the insect hops to a nearest neighbor and probe on it

ut decides not to colonize and hops again to the second nearest

eighbor, probes it and decides to colonize it. Then, the resulting

rajectory is a two-edges hop in the network, where the transmis-

ion is effective only at the endpoints, because at the intermediate

nes the insect behaves as a transient non-vector. 

Then, in mathematical terms our model consists of the follow-

ng. We consider that the chances of the virus to be transported

rom an infected to a susceptible plant decays with the “distance”

t which these two plants are located in the field. This is a conse-

uence of the empirical observations that most of insects prefer to

olonize not so distant plants from its original position. By distance

e consider here the separation in terms of the number of steps

n the shortest path connecting both nodes in the network, due

o the possible multi-hopping nature of these exploratory hops of

ransient non-vectors. Resuming, in Fig. 3 an infected plant (rep-

esented in light green) can transmit the pathogen to any of its

earest neighbors with a probability σ 1 . In addition, the pathogen

an jump to a second nearest-neighbor with probability σ 2 < σ 1 .

imilarly, it can hop to a third, fourth, and so forth neighbor, such

hat the probabilities decay as: σd max 
< · · · < σ1 , where d max is the

iameter—the longest shortest path—of the network. 

.2.3. Mathematical formulation 

In order to implement mathematically the model of disease

ropagation in this new scenario we need to define the d -path ad-

acency matrices which account for the hop of the infective particle

eyond the nearest neighbors from its current position. Let d max 

e the graph diameter, i.e., the maximum shortest path distance in

he graph. 

efinition 1. Let d ≤ d max . The d -path adjacency matrix, denoted

y A d , of a connected graph of n nodes is the square, symmetric,

 × n matrix whose entries are: 

 d ( i, j ) = 

{
1 i f d i j = d, 

0 otherwise, 
(2.10) 

here d ij is the shortest path distance between the nodes i and j .

bviously A 1 = A. The d -path degree of the node i is given by 

 d ( i ) = 

(
1 

T A d 

)
i 

(2.11) 

here � 1 is an all-ones column vector. 

Let us now consider the following transformed d -path adja-

ency matrices: 

˜ 
 

τ = 

⎧ ⎨ 

⎩ 

∑ d max 

d=1 
d −s A d , 

A + 

∑ d max 

d=2 
exp ( −λd ) A d , 

for τ = Mell , s > 0 

for τ = Lapl , λ > 0 , 

(2.12) 

here τ indicates the type of transformation, i.e., Mellin or Laplace

ransforms. In the case of Laplacian operators transformed by the

ame type of transformation we have previously proved that the



6 J.H. Arias et al. / Journal of Theoretical Biology 453 (2018) 1–13 

Fig. 3. Schematic representation of the long-range dispersal of pathogens among plants embedded in a field or plot, such that the probabilities of jumping from one plant 

to another decay with the shortest-path distance among the plants. From (a) to (d) the hop of the pathogen occurs in one, two, three and four steps, respectively, such as 

it is transported from the first (infected) plant to the last (susceptible) plant but not to any of the intermediate ones (marked by empty circles). The probabilities in which 

such processes occur decays with the number of steps, such that: σ 4 < σ 3 < σ 2 < σ 1 . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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transformed operators are self-adjoint and bounded under certain

conditions ( Estrada et al., 2017, 2018 ). 

Let us define the generalized degree of a given node i as 

˜ k τ ( i ) = 

(
˜ A 

τ 1 

)
i 
. (2.13)

Now we plug the transformed d -path adjacency matrices into

the SIS and SIR models to get the generalized epidemic models

with long-range interactions. These equations are given below for

the case of the Mellin transformed d -path adjacency matrices in

the SIS model 

˙ S i = βS i 
∑ 

j 

( 

d max ∑ 

d=1 

d −s A d 

) 

i j 

x j + μx i , (2.14)

˙ x i = βS i 
∑ 

j 

( 

d max ∑ 

d=1 

d −s A d 

) 

i j 

x j − μx i . (2.15)

Then, when s → ∞ we recover the classical SIS or SIR models in

which there is no long-range hops of the infective particle. When

s → 0 the infective particle can hop to any node of the graph with

identical probability, which corresponds to the situation of an in-

fection diffusing on a complete graph K n . The situation is quite the

same with the Laplace transformed d -path adjacency matrices as

defined in (2.12) for the cases when λ→ ∞ and λ→ 0. Thus, in ev-

ery case we always recover the original classical epidemiological

models of graphs for large values of the parameters in the trans-

forms of the d -path adjacency matrices and we approach the diffu-

sion of the epidemic on a complete graph when these parameters

tend to zero. 
.3. Markovian formulation 

Eqs. (2.14) and (2.15) are only valid when the number of in-

ected individuals is small, e.g., close to the epidemic threshold.

ere, following the framework introduced in Gómez et al. (2010) ,

e formulate a Markovian evolutionary equation that, in princi-

le, is valid for any epidemic prevalence. We denote, as in the for-

er section, β as the probability that a susceptible node contracts

he disease when contacting an infected one, and μ the probabil-

ty that an infected node passes to Susceptible (SIS) or Recovered

SIR). Let p i ( t ) be the probability that a node i is infected at time t .

his way, under the framework of an SIS disease, the evolution of

his probability reads: 

p i (t + 1) = p i (t)(1 − μ) + (1 − p i (t)) q i (t) , (2.16)

here the first term on the r.h.s accounts for the probability that if

ode i is infected at time t it will not recover in the next time step

 + 1 . The second term in its turn, is the probability that, when

ode i is healthy at time t , it becomes infected at time t + 1 , being

he infection probability q i ( t ). This probability reads: 

 i (t) = 1 −
N ∏ 

j=1 

[
1 − β ˜ A 

τ
i j p j (t) 

]
(2.17)

here matrix ˜ A 

τ accounts for the interaction strength between

airs of nodes as defined in Eq (2.12) . The expression q i ( t ) is calcu-

ated as 1 minus the probability that the node i is not infected by

ny infectious contact. This last probability is the product over all

he possible contacts of node i , considering that a node j transmits

he disease to i with probability β ˜ A 

τ
i j 

p j . Note that if node j is not

onnected to i , ˜ A 

τ
i j 

= 0 , then the corresponding term in the product

s equal to 1, since j cannot infect i regardless of its state, p j ( t ). 
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Fig. 4. Illustration of a dispersal kernel with origin in the center of coordinates and 

a small region of area dA = dxdy for which the probability of finding the disperser 

is given by K L ( r ) dA , where K L ( r ) is the dispersal location kernel. 
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Eq (2.16) governs the evolution of a SIS epidemics. For an SIR

isease the Markovian equations reads as follows: 

p i (t + 1) = p i (t)(1 − μ) + (1 − p i (t) − ρi (t)) q i (t) , (2.18) 

i (t + 1) = ρi (t) + μp i (t) , (2.19) 

here ρ i ( t ) is the probability that node i is recovered at time t .

he expression for the infection probability q i ( t ) is identical to that

f Eq (2.17) . 

We should notice here that, as explained before, these equa-

ions hold for any disease incidence, while Eqs (2.14) and (2.15) are

nly valid when the disease prevalence is small. To explain this,

ake Eq (2.17) for q i ( t ) and consider that the prevalence is small,

 i 	 1 ∀ i , and for this reason let us denote p i = x i . Then, the

roduct in (2.17) transform into: 1 − ∑ N 
j=1 β ˜ A 

τ
i j 

x j . Introducing the

ew expression for q i ( t ) in Eq (2.18) , and passing from discrete

o continuous time, we recover a similar expression to that in

q (2.15) for the evolution of the infected state of node i . For more

etails the reader is referred to Gómez et al. (2011) . 

.4. LRI epidemics vs. dispersal kernel models 

Arguably, the most used models for the study of dispersal pro-

esses in ecology are based on “dispersal kernels”, a term which

merges from the mathematical studies of population spread. Dis-

ersal kernels are widely applied to the study of effective dis-

ersal in plant studies, such as seedlings and sapling, as well as

n effective pollen dispersal and the dispersal of active movers

 Nathan et al., 2012 ). In general, a dispersal kernel consists in a sin-

le point source designated as the origin of the dispersion embed-

ed into a continuous space. It is assumed that the population of

ispersers follows a given probability density function (PDF), which

s named the dispersal location kernel and denoted by K L ( r ). Then,

he probability of having a dispersal end point with given coor-

inates (typically in polar coordinates) in an infinitesimally small

rea dA = dxdy (see Fig. 4 ) is obtained from that PDF as K L ( r ) dA .

n general, it is assumed that the dispersal shows radial symmetry,

uch as the kernel integrates to 1 over the whole two dimensional

pace. Nathan et al. (2012) have reviewed 13 different types of dis-

ersal kernels, such as Gaussian, negative exponential, power-law,

ogistic, etc. The applications reported for these kernels include the

ispersal of pollen, seeds, beetles, moths, birds, mammals, butter-

ies, fish, propagules, and flies, with pollen and seedling having

he largest number of reports. Then, there is a fundamental differ-

nce between the use of dispersal kernels and the LRI epidemic

odel developed here. Dispersal kernels are appropriate for mod-

ling processes in which the spread is produced on a continuous

pace, such as the case of pollen, seeding or the radial distribu-

ion of insects mainly driven by wind. However, in the case of in-

ect vectors the situation is greatly different due to the behavioral

vents that precede the transmission of the viruses. For instance,

t is reported that the flight of whiteflies in the field is not en-

irely wind-oriented, possibly due to the fact that they are looking

or the most attractive and appetitive plants. The documented fact

hat even after landing aphids may or may not colonize and trans-

it the viruses to a plant also imposes certain differences with

he use of dispersal kernels. Indeed, in the LRI epidemic model we

ave a discrete space in which the plants are represented at spec-

fied positions of the space. We also assume that the propagator

f the disease hops from plant to plant as it is characteristics of

nsect vectors. 

In the particular case of insect vectors like aphids it should

e noticed that there are two main propagation mechanisms, ei-

her through “inadvertent” or “intentional” transport mechanisms 

 Fereres et al., 2017 ). The first corresponds to the case in which
phids are transported in an involuntary act, such as when they

re propelled by the force of impact, gravity, air current, of a

ombination of them. The intentional transport is a voluntary

ct which is prompted by the preprogrammed movement of the

phids–the most important one being migration–or by external

erturbations in which the aphids are driven by their sensed stim-

li to the environment. The class of inadverted transport is clearly

ell-described by dispersal kernels due to the spatial characteris-

ics of the processes involved. On the other hand, the intentional

isplacement is much better described by LRI on networks as de-

cribed here. Thus, we think that both models (dispersal kernels

nd LRI epidemic) are complimentary more than duplicative. It is

rue that if the density of the plant population is very high, cover-

ng mainly the whole 2D space, then both approaches are appro-

riate for describing the dispersal of pathogens across the plants.

t is also important to remark that the LRI epidemic model can

e enriched by using many of the different types of functions al-

eady used as dispersal kernels instead of the only two ones that

e have used here. Finally, it should be remarked that extensions

f the current approach by combining it with dispersal kernels will

ffer a gold opportunity to describe transport of insect vectors due

o inadverted and intentional mechanisms combined. 

. Results 

Let us now analyze what are the effects of considering long-

ange interactions in a population subjected to contagion processes

f SIR and SIS types. To this aim we build synthetic networks by

rst constructing a RRGs with a = 2 and r = 0 . 1 . With the adja-

ency matrix A 1 of the graph we calculate the different distance

atrices A d in order to construct both the Mellin and Laplace

ransformations of the graph corresponding to different values of

 , as introduced in Eq (2.12) . Once the networks are built and ma-

rices ˜ A 

τ computed, we conduct extensive numerical Monte Carlo

imulations of both the SIS and SIR dynamics and for different val-

es of the transformations parameters. In the simulations we start

eeding the infection in a small fraction, 0.01, of the nodes. Here
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Fig. 5. Comparison between the numerical solution of the Markovian formulation and the Monte-Carlo simulations for the SIS ((a) and (b)) and SIR ((c) and (d)) dynamics 

and for the Exponential ((a) and (c)) and Mellin transformations ((b) and (d)). Continuous lines represent the Markovian formulation while colored circles Monte-Carlo 

simulations. Different colors represent the different parameters of the transformations. Each point is the average over 500 Monte-Carlo simulations with different initial 

conditions. The original network is a RRG with n = 10 3 nodes, elongation a = 2 . 0 and connection radius r = 0 . 1 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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we always use discrete time step simulations. At each time-step,

each infected node contacts all the susceptible agents in the net-

work and the disease is propagated with probability A 

τ
i j 
λ –where

A 

τ
i j 

is the interaction strength between nodes i and j – and then, all

the nodes update their state synchronously. In the SIS we let the

system evolve for 5 · 10 4 time-steps to assure that the steady state

has been reached and then, wait for an additional 10 3 time-steps

to calculate the fraction of infected nodes I as the average of I ( t )

over this last period. In the SIR dynamics instead, we let the sys-

tem evolves until the epidemics ends and thus calculate the frac-

tion of recovered (dead or removed) nodes R . For each selection

of the transformation’s parameters and infectivity λ we perform

500 independent runs with different initial conditions. The final

values of I and R are obtained as the average over all the runs.

For the Markovian formulation of the two dynamics the epidemic

curve has been obtained iterating for the nodes in the system of

Eqs. (2.16) and (2.17) for the SIS and Eqs. (2.18) and (2.19) for

the SIR respectively. Using a RRG composed by n = 10 3 nodes and

elongation a = 2 . 0 ( r = 0 . 1 ) we compare the results of the Marko-

vian formulation and the numerical simulations for the four pos-

sible cases: SIS and SIR dynamics, Exponential and Mellin trans-

formations. For all the panels of Fig. 5 we have a good agreement

between the Markovian (continuous lines) and numerical Monte

Carlo simulations (circles). 

3.1. Influence of long-range dispersal 

As expected, in all the scenarios a decrease in infected and dead

plants is observed for higher values of the transformations param-

eters – i.e., lower interaction strength between distant nodes –

highlighting the role of physical distance between infected plants.

Another interesting result of our analysis is that the Mellin trans-

formation favors more the diffusion of the disease with respect

to the Laplace transformation (see Fig. 5 ). These differences are
ery important in practical terms. It is known that when disper-

al processes are described by exponentially decaying distributions

 Scherm, 1996 ), the probability of moving a given distance de-

reases with the separation of the places at least in proportion to

he exponential distribution. These models can be approximated by

iffusion models on an appropriate scale. In recent years, there has

een accumulated evidence on the existence of unusual, extreme

ispersal events, which are better modeled by power-law decay

ispersal than with exponential ones. The spatial consequences of

his kind of dispersal processes are analyzed in a further section of

his paper. 

A very important observation is that when the transformation

arameters λ or s tend asymptotically to zero, i.e., when the long-

ange dispersal is quite strong, the epidemic threshold goes to

ero. That is, as the long-range dispersal of the pathogen increases

he number of infected plants needed to trigger an epidemics is

ractically nil. The epidemic threshold ζ = ( βμ ) represents a thresh-

ld in the sense that when ζ < 1 the infection dies out and if ζ > 1

he disease becomes an epidemic. In those cases where ζ = 1 , the

isease remains in the population becoming endemic. The value of

his threshold strongly depends on the topology of the network.

n particular, for a given graph G = ( V, E ) , it has been shown that

 Chakrabarti et al., 2008; Gómez et al., 2010; Van Mieghem et al.,

009 ): 

= 

1 


 1 ( G ) 
, (3.1)

here 
 1 ( G ) is the largest eigenvalue of the adjacency matrix of

he network. Then, let τ = { λ, s } be the parameter of the transform

sed in the SIS or SIR model described in this work. We then have

he following result. 

emma 2. Let G = ( V, E ) be any graph with n nodes and with

ransformed d-path adjacency matrix ˜ A 

τ for τ = { λ, s } . Let ζ ( τ ) =
( λ ( G, τ ) ) 

−1 
be the epidemic threshold and λ ( G , τ ) be the largest
1 1 
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Fig. 6. The panels show (see color code) the stationary fraction of infected individuals in the Markovian dynamics of the SIS model as a function of the infection probability 

β and the exponents, s (Mellin) and λ (Laplace), of the transformations at work. The recovery probability has been set to μ = 0 . 5 and the size of the network is n = 10 3 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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igenvalue of ˜ A 

τ . Then, 

lim 

 →∞ 

lim 

τ→ 0 
ζ ( τ ) = 0 . (3.2) 

roof. We have that lim 

τ→ 0 

˜ A 

τ = J − I, where J is an all-ones matrix

nd I is the corresponding identity matrix. Then, lim 

τ→ 0 
λ1 ( G, τ ) =

1 ( J − I ) = n − 1 , where n is the number of nodes. Thus, for suf-

ciently large graphs, i.e., n → ∞ we have that lim 

n →∞ 

1 / ( n − 1 ) = 0 ,

hich proves the result. �

In other words, for sufficiently large graphs and with very

trong long-range dispersal of the pathogen, the number of in-

ected individuals needed to trigger an epidemics is negligible. In

ddition to the Montecarlo simulations we have solved the Marko-

ian equations for the SIS model. In Fig. 5 we show the good

greement between the Markovian approach and the results of the

onte Carlo simulations. The main advantage of the Markovian ap-

roach is that we do not need to perform many computational

ealizations. Instead, we only solve the equations once for each λ
alue. The two panels of Fig. 6 show (in color code) the fraction of

nfected individuals for the SIS model, as a function of the infection

robability β and the exponents of the respective transformations

 (Mellin) and λ (Laplace). The number of infected individuals is

alculated here as I = 

∑ N 
j=1 p j in the stationary state. The results

learly show that as exponents s and λ approach to zero (note the

ogarithmic scale in the axes of both figures) the critical infectiv-

ty βc (i.e. the value of β for which ζ = 1) gets smaller. Obviously,

s these exponents become very small we reach a saturation for

he epidemic threshold around a small value βc ∼ 10 −3 due to the

nite size of the networks n = 10 3 . 

.2. Influence of plot/field elongation 

One of the most important characteristics of the current model

s that we can study the influence of the elongation of plots and

elds over the propagation of a disease on plants. That is, using the

andom rectangular graphs instead of the classical “RGG” we can

longate the rectangle keeping the area of the plot/field constant.

e investigate the effects of this rectangle elongation by studying

he epidemic dynamics on rectangles with length to width ratios

anging from 1 to 100. In Fig. 7 we illustrate the results of apply-

ng the Laplace transform to the SIR model using different values

f the transform parameter λ and for different elongations of the
ectangle. As can be seen, for any value of the Laplace transform

arameter λ there is a significant influence of the rectangle elon-

ation of the spread of the disease. The main effect observed is a

ecay in the speed of propagation of the disease as a function of β
s observed by the smaller percentage of dead plants R when the

ectangle has a width/length ratio of 100 than when it has a ratio

f 1. The effect of larger λ is observed across the panels as a result

f the delay in reaching the saturation of the epidemic as a func-

ion of β . In Fig. 8 we illustrate the results obtained for the elon-

ation of rectangles with width/length ratios from 1 to 100 when

he dynamics is controlled by a Mellin transform of the SIR model.

n general, the results are qualitatively similar to those obtained by

he Laplace transform, but there are significant quantitatively dif-

erences which deserve to be considered in detail. Let us first con-

ider the effect of the infectivity β . It can be seen that the Mellin

ransformed dynamics reaches the saturation for smaller values of

he infectivity β than the Laplace transformed dynamics. For in-

tance, even when the Mellin parameter is relatively large, e.g.,

 = 4 , the saturation is reached for relatively small values of β (see

anel (d) of Fig. 8 ). However, this is not observed for the Laplace

ransform where even for relatively small values of λ the satura-

ion is obtained for relatively large values of the infectivity (see

anels (c) and (d) of Fig. 7 ). This is a consequence of the follow-

ng. In the Mellin transform we have a power-law dependence of

he pathogen jumps which make that it can reach regions very far

rom its original position in the plot/field. Such hops are not so

ramatic in the case of the Laplace transformed one, where the

umps are controlled by an exponential law. 

Now, the most remarkable, and surprising, effect of elongation

s observed when we consider its effects on the percentage of plant

ead for a given infectivity value. In the case of the Laplace trans-

orm when the long-range dispersal is very strong, e.g., λ = 0 . 5 the

longation of the rectangle from a = 1 to a = 10 drops the percent-

ge of deaths by 25%. However, in the case of the Mellin trans-

ormed dynamics when the long-range dispersal is quite strong,

.g., s = 1 , the percentage of deaths is dropped by 50% when the

ectangle is elongated from a = 1 to a = 10 . This result is at first

nexpected and somehow counter-intuitive because the effects of

he long-range dispersal produced by the Mellin transformed dy-

amics are stronger than those produced by the Laplace trans-

orm. Thus, we should expect that the percentage of deaths in the

ellin transformed dynamics for any rectangle should be larger

han those produced by the Laplace transformed. However, we
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Fig. 7. Effect of elongation a on the final fraction of recovered nodes in the SIR dynamics for 4 different values of the exponential transformation: λ = 0 . 5 (panel a), λ = 1 . 0 

(panel b), λ = 1 . 5 (panel c) and λ = 2 . 0 (panel d). Each point is the average over 500 Monte-Carlo simulations with different initial conditions. The original network is an 

RRG with n = 10 3 nodes, elongation a = 1 , . . . , 10 and connection radius r = 0 . 1 . 

Fig. 8. Effect of elongation a on the final fraction of recovered nodes in the SIR dynamics for 4 different values of the Mellin transformation: s = 1 . 0 (panel a), s = 2 . 0 (panel 

b), s = 3 . 0 (panel c) and s = 4 . 0 (panel d). Each point is the average over 500 Monte-Carlo simulations with different initial conditions. The original network is an RRG with 

n = 10 3 nodes, elongation a = 1 , . . . , 10 and connection radius r = 0 . 1 . We have set here μ = 0 . 5 since we are not trying to characterize any particular disease. For μ = 1 , for 

instance, the recovery is too fast to see the spatial propagation and, conversely, in the case μ = 0 the dynamics would be an SI dynamics. We decided to lie between these 

two limiting cases. 
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Fig. 9. Abundance (% cover) of (left panel) C. grandiflora and (right panel) Z. mauritiana in Dalrymple Shire, northern Queensland, Australia (reproduced from ( Grice et al., 

20 0 0 )). The star indicates the site of first introduction. Notice the patchy areas of “infection” and the lack of a clear front wave from the site of first introduction to the 

uninfected region. Reproduced with permission from Grice et al. (20 0 0) . 
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nodes as those found in real scenarios. 
ould notice that we are comparing two transformations (Laplace

ith λ = 0 . 5 and Mellin with s = 1 ) without taking any point in

ommon such as, e.g., the total strength of the interactions (that

ould be measured as the sum over the entries of the transformed

djacency matrix given two values of λ and s ). The main causes

f this effect observed here are not totally clear. However, we

uess that they should revolve around the fact that the Mellin

ransformed dynamics produces a much faster propagation of the

athogen across vast regions of the plot/field (see further analysis

n the next section). Then, due to the eventual death of the plants

n those isolated regions there are not infected plants to continue

he propagation and the epidemics eventually dies. The existence

f such patches of infection are made clear in the next section of

his work. 

In closing, we have that the elongation of the plots/fields pro-

uces the following effects: (i) the level of infectivity β needed to

rigger the epidemics is larger for more elongated rectangles than

or the square; (ii) the number of deaths is larger in the square

han in the most elongated rectangles; and (iii) the number of

eaths is significantly smaller when the dynamics is controlled by

he Mellin transform than with the Laplace transform. 

.3. Spatial patterns 

An important experimental observation about the dispersal of

iseases in plants is the existence of unusual, extreme disper-

al events, which follow power-law decay dispersal. The most

mportant consequence of these kinds of dispersal processes of

athogens is the generation of spatial patterns without well-

efined epidemic fronts ( Shaw, 1995 ), which generate clusters of

ifferent sizes ( Filipe and Maule, 2004 ). This is a fundamental dif-

erence with the Gaussian-like diffusive processes in which waves

eparating infected from uninfected territory exist, such that the

rst propagate smoothly and at constant speed ( Anderson et al.,

986; Van den Bosch et al., 1988; Mollison, 1977 ). As a matter

f example we reproduce here a Figure from ( Grice et al., 20 0 0 )
n which the abundance of C. grandiflora –an invasive species, act-

ng here as the pathogen–in Dalrymple Shire, northern Queens-

and, Australia displays a clear patchy pattern ( Fig 9 ), character-

stic of this type of power-law dispersal in the continuous space.

he question is then, whether such patchy patterns are also ob-

erved in the discrete space in which the LRI epidemic model

s developed. Our model clearly reproduces such kind of patchy

ispersal of the pathogen in which there is not a clear wave

eparating infected from uninfected territory. In Fig. 10 we dis-

lay the dispersal patterns of a pathogen in a rectangular plot of

ength/width ratio 4 showing the infection times τ i for μ = 0 . 5

nd β = 0 . 18 when starting the simulation from a single infected

ode which is placed in the top left part of the field. Three cases

re shown: (top): the original (not transformed) network; (cen-

ral): The Mellin-transformed network with s = 3 ; and (bottom):

he Laplace-transformed network with λ = 1 . The values of the

ransformation and β have been chosen since the two transformed

etworks yield similar number of deaths at the end of the simu-

ation. From the first plot it is clear that for β = 0 . 18 , the origi-

al network is supercritical and the infection pattern is well de-

cribed as a cascade of infections very well correlated with the

patial distribution of nodes. The second plot (Mellin) shows that

he transformed network yields a completely different behavior.

irst, a large number of deaths for the same β value in a shorter

ime (30 time steps). This is due to the long-range initial infec-

ions (see circles) that appear far away from the first infection

eed. The third plot (Laplace) shows that despite the same num-

er of infections are achieved, the mechanisms behind them are

uite different. First, there are not significant long-range infections

nd, second, the time needed is much longer than for the Mellin-

ransformed network. From these plots we can hypothesize that

he patchy behavior is easier to achieve from the Mellin mecha-

ism than for the Laplace one. Indeed, for smaller (although su-

ercritical) β values, most of the realizations of the SIR dynamics

n Mellin-transformed networks yield patchy distributions of dead
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Fig. 10. Time of infection of individual nodes in a RRG with a = 2 , n = 10 0 0 , using the non-transformed model (top panel), Mellin-transformed (central panel) and Laplace- 

transformed (bottom panel) SIR model with β = 0 . 105 and μ = 0 . 5 . Here we used r = 0 . 05 to create a sparser networks that allow to visualize better the patchy regions. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Conclusions 

We have developed a model here that accounts for long-range

dispersal of pathogens in disease propagation in networked sys-

tems. The model is a generalization of the classical SIS and SIR

equations on networks by using a transformed adjacency opera-

tor. The current model also incorporates spatial characteristics of

the plots and fields in which the plants are embedded. These spa-

tial characteristics are included through the use of random rect-

angular graphs which allow to consider the effects of the elon-

gation of plots and fields on epidemic spreading dynamics. Us-

ing this generalized model we have studied the propagation of

epidemics on plants emulating a few realistic scenarios of plant

diseases. We have found that under the influence of long-range

dispersal there is much faster propagation of a disease than in

normal diffusive regimes. We also observed that the elongation

of plant plots/fields increases the infectivity needed to trigger

the epidemics and that such elongation of the plots/fields de-

creases dramatically the number of plants dead. That is, the num-

ber of plants dead in a very elongated plot/field is much less

when the dynamics is controlled by a Mellin transform than when

it is controlled by the Laplace one, and they both are signifi-

cantly smaller than when the disease is propagated without long-

range dispersal effects. Last but not least, we also observed that

the dynamics in the Mellin-transformed networks is character-

ized by the existence of patchy regions of infected plants and by

the absence of a clear propagation front that separates infected

from noninfected plants. All in all, we consider that the current

model represents an important step forward for modeling epi-

demic propagation on plants allowing the variation of a few pa-

rameters that simulate realistic scenarios. The model can also be

adapted to other scenarios of propagation and dispersal in spa-

tially embedded regions, such as seed dispersal, and propagation of
wildfires. 
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