
Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 331

331

12
Generation of uniform Û(0, 1) random numbers

12.1
Pseudorandom numbers

In this appendix we explain how it is possible to generate ˆ

U(0, 1) independent random
numbers, i.e. random numbers uniformly distributed in the (0, 1) interval that can be
e�ciently used in any stochastic algorithm, Monte-Carlo or Langevin. We can not,
and will not, cover all the vast bibliography in this topic. Our aim is to introduce the
reader to the major problems one encounters for the generation of uniform random
numbers and the basic families of algorithms that have been proposed, so that the
routines that will be used do not appear to us as “magic black boxes” which provide
random numbers in an unknown and uncontrollable way.

The first thing we need to realize is that the algorithms for the generation of ran-
dom numbers are implemented in a computer where real numbers are not stored with
an infinite precision, but the number of decimal places is finite and set from the be-
ginning. Therefore, most random number generators provide them in the form of a
fraction u = m/M , where m is an integer number uniformly distributed in the in-
terval [0,M � 1]

1). The greater M , the better the approximation of the generated
numbers to the true distribution ˆ

U(0, 1).
Once a large value of M has been chosen, the question to answer is: how can

we generate integer numbers uniformly distributed in the interval [0,M � 1]? A
legitimate way could be the following: make M identical balls numbered 0 to M � 1

and place them in a bag. Shake the bag, pick one of the balls and read the number,
say m

0

, on the ball. Replace the ball in the bag, shake the bag again, pick one of the
balls and read the number, say m

1

, on the ball. Replace the ball, shake the bag again
. . . and repeat as many times as random numbers you need.

First of all, it is not clear that this procedure would produce a set of truly uniform
random numbers. Some of the balls might be slightly heavier that the others and
have a di�erent probability of being chosen, once replaced. If the shaking is not
good enough, the ball might stay near the top of the bag and have a larger chance

1) In some cases, and in order to avoid some singularities that can appear when computing functions such
as the logarithm, it is better to write the uniform random number as (m + 0.5)/M . However, this is
not very important in the majority of applications.

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 332

332

to be chosen again, etc. We could certainly improve the procedure. For instance,
chose M = 2

b, a power of 2 and work in base 2 (a base loved by computers). Then
we could manage simply with two balls labeled 0 and 1. For the generation of each
number mi, we would extract b balls and construct that number bit by bit. In any
event, even if the procedure were absolutely fair, it is clear that it is not e�cient.
Recall that we might need a large number (of the order of millions or billions) of
random numbers for our numerical work and it would be completely unpractical to
obtain them this way. It is best to design some numerical algorithm to generate the
values m

0

,m
1

,m
2

, Now, a numerical algorithm is, by definition, deterministic.
It produces the same result every time we run it. How can then be random the obtained
sequence of numbers? The answer is subtle: the sequence will not be random, but it
will look random. Now there is a thin line between “to look” and “to be” and we ask
whether “to look” is enough for the applications. Since the numbers we will generate
“are” not random, but “look” random, they are sometimes called, for the sake of rigor,
“pseudorandom” numbers.

Let us first explain the first historical algorithm designed to generate pseudorandom
numbers. It is due to von Neumann. It takes M = 10000 and sets an initial value
m

0

2 (0, 9999) at will. This first choice could be deterministic (for instance, my birth
year) or truly stochastic (the last four digits of the time in seconds since the computer
has been up). Once the first value, the so-called “seed”, has been set, it is squared,
m2

0

, the last two digits are discarded and the new last four digits constitute the next
value m

1

. The process is repeated to obtain m
2

,m
3

, Let us see an example
taking m

0

= 5232 as seed:

m
0

= 5232 ! m2

0

= 27373824 ! m
1

= 3738

m
1

= 3738 ! m2

1

= 13972644 ! m
2

= 9726

m
2

= 9726 ! m2

2

= 94595076 ! m
3

= 5950

The sequence follows the algorithm

mi+1

= [m2

i /100] mod 10000, (12.1)

being [x] the integer part of x. In the previous example, this would yield the sequence
of random numbers: u

0

= 0.5232, u
1

= 0.3738, u
2

= 0.9726, u
3

= 0.5950, etc.
The question is whether this sequence “looks” random. i.e. If we give this sequence
to a good statistician, will he be able to tell us that the sequence is not really random?
Given a long list of numbers (u

0

, u
1

, u
2

, . . .), what would the statistician do to de-
termine whether it is random or not? He would apply a series of tests to check for
randomness. Very sophisticated tests do exist and it is not our intention to describe
them in any detail. We just state two basic tests:

1 Moments. Check that huni i = (n+ 1)

�1. In particular, huii = 1/2, hu2i i = 1/3.
2 Correlations. Check that huiuji = 0.25 if i 6= j.

But there are many other tests that should be satisfied by true random numbers. It
is not di�cult to find a test that the von Neumann generator does not satisfy. For a
simple reason: von Neumann generator is necessarily cyclic. i.e. if there exists an

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 333

333

integer number L such that mL = m
0

, then the series repeats itself mi+L = mi.
At most, the period L is equal to 10000 (the maximum possible number of values
for mi), but it can be much less than that. Obviously, no truly random sequence is
cyclic. Another problem is that if the number 0 is hit at some time, mK = 0, then
mi = 0, 8i � K. It is not necessary to be a good statistician to realize that a series of
zeros does not look very much random. If a modern simulation that uses millions or
billions of random numbers, these problems are certainly to appear sooner than later
and von Neumann algorithm, although very important conceptually, is useless from
the practical point of view.

But even if von Neumann algorithm does not satisfy the minimal needs for mod-
ern simulations, it certainly sets the basic settings of what are called congruential
generators. All we need to do is to replace M by a much larger number and devise
an algorithm replacing Eq.(12.1). Before tackling this question, let us enumerate the
properties we would like a good pseudorandom number generator to have.

1.- Good statistical properties This has been said before. The generator must
pass a series of statistical tests. However, we must realize that there are always some
tests that the generator will fail at. The question is if these tests are important to the
particular application we are using the numbers for. For example, most generators
have a period L after which they repeat themselves. This period L has to be much
larger that the length of the sequence of random numbers required. A rule of thumb
says that we can not use more than L1/2 numbers in our simulation before the good
statistical properties are lost.

2.- E�ciency. A modern simulation requires billions of numbers. Besides the
generation of the random numbers, many other operations have to be made. The
generation of random numbers can not be a bottle-neck for the simulation.

3.- Reproducibility. This property might look paradoxical at first sight. How can
we demand that a random number sequence should be reproducible? Note, however,
that we are dealing with complicated numerical algorithms that have to be fully con-
trollable from beginning to end. Imagine that you rush to your thesis supervisor and
tell him that your simulation has yielded a beautiful result (a critical exponent that
verifies some hyperscaling theory) but that you can not reproduce that result!! You
will be in trouble. Furthermore, when we are debugging a program we do not want
to have any uncontrolled source of variability in the results of the program.

12.2
Congruential generators

They are based on a recurrence relation of the form

mi+1

= F (m
0

,m
1

, . . . ,mi) mod M, (12.1)

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 334

334

and a suitable large number M . Due to the modulus2) operation, all numbers satisfy
mi 2 [0,M � 1]. One might think that complicated nonlinear relations would be
necessary to produce a “chaotic” sequence that looks random. However, it comes to
a small surprise that the simplest one-step memory linear relation

mi+1

= ami + c mod M (12.2)

su�ces to yield random numbers with good statistical properties if the numbers a, c
and M are chosen conveniently. Notice, though, that any one-step recurrence rela-
tion of the form mi+1

= F (mi) mod M will have a period L at most equal to M .
Furthermore, the probability that two consecutive numbers are identical is equal to
zero (otherwise the sequence repeats itself infinitely). This would not be the case if
the numbers mi were really random since then the probability that mi+1

= mi is
equal to 1/M . Of course, if M is large, this is a small number and it might not be
important that it is instead equal to zero for our generator.

In order to stress the deterministic character of (12.2), let us write down the explicit
solution of this recurrence relation

mi =

⇣
m

0

� c
1� a

⌘
ai +

c
1� a

mod (M). (12.3)

A first criterion to determine whether a congruential generator defined by the set of
numbers (a, c,M) has good properties is to make sure that its period L is very large.
How large can it be? If c 6= 0 then L can be as large as M . However, if c = 0, we want
to avoid the value mi = 0 as it would lead to mj = 0 if j � i. This implies that L
could be at most equal toM�1. In a somehow old-fashioned terminology, a generator
with c 6= 0 is called a “mixed” congruential generator, whereas one with c = 0

is called a “multiplicative” congruential generator. We only discuss the conditions
under which a mixed congruential generator has the maximum period M and refer
the reader to more specialized bibliography if he is really interested.

One can prove a theorem that says that a mixed congruential generator reaches the
maximal period L = M if and only if:

(i) c and M are relatively prime numbers (their greatest common divisor is 1).
(ii) a = 1 mod g, for each prime divisor g of M .
(iii) a = 1 mod 4, if M is multiple of 4.

It is very useful in a computer to use a number M of the form M = 2

b. This
is so because computers work with binary numbers, and the congruence modulus
a power of 2 is then very easy to obtain. Just think in human (base 10) terms:
12891243712340234 mod 10

6 is 340234, the last six digits. In the same way for
a computer it is easy to determine that 11010101111111000111 mod 2

6

= 000111

or, in base 10 notation, 876487 mod 64 = 7. In this case of M = 2

b, the conditions
for a maximum period are simply that c must be odd and that a = 1 mod 4.

Once these general properties have been established, people have searched for (in
many cases using trial and error techniques) triplets of numbers (a, c,M) that yield

2) A modulus is also called a congruence, hence the name

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 335

335

good statistical properties. There are no theorems now and mostly we believe what
other people tell us about the quality of a generator. With this in mind, three sets of
allegedly “good” numbers are:

M = 2

35, a = 129, c = 1,

M = 2

32, a = 69069, c = 1,

M = 2

32, a = 1812433253, c = 1.

Although it seems that the third row of values is superior in the sense that the produced
numbers have better statistical properties, the second row has been extensively used.
The “deep” reason seems to be that a = 69069 is an easy number to remember! Most
“free” random number generators (those coming built in with the machine operating
system or main compilers) are congruential with (a, c,M) = (69069, 1, 232).

The use of M = 2

32 has another advantage since most integer arithmetics is per-
formed with 32 bits accuracy. The maximum integer number that can be written with
32 bits is 2

32 � 1 and any integer multiplication whose result is larger that 232 � 1

results in an overflow. Indeed we do not care about the overflow, since we are per-
forming arithmetics modulus 232 and simply neglecting the overflowed bits gives the
correct answer. However, compilers can get annoying if they find an overflow and
it necessary to tell the computer not to worry about the overflow whenever it is pro-
duced (this is usually achieved with some option during compilation, for example
-check=nooverflow or something similar). In this way, the modulus operation
is performed automatically. The only thing to worry about is that in a 32 bit rep-
resentation, a number which has the first bit, the most significant bit, equal to 1 is
considered to be a negative number. In fact, integer numbers in 32 bit arithmetics
run from �2

31 to 2

31 � 1 while we consider them to run between 0 and 2

32 � 1. All
we need to take into account, then, is that if the computer tells us that the random
number ui = mi/M is negative, indeed it should be (mi +M)/M = 1 + ui.

With all this in mind, let us give a simple computer program for the function
ran_u(m) that generates pseudorandom numbers uniformly distributed in the (0, 1)
interval.

function ran_u()
integer, save :: m=1234567
parameter (rm=2.0**(-32),ia=1812433253,ic=1)

m=m*ia+ic
ran_u=rm*m
if (ran_u < 0.0) ran_u=1.0+ran_u

end function ran_u

It uses the particular value m=1234567 as the seed. If we want a di�erent sequence
of numbers, we can change the value for the seed. For this program to work, we have
to be sure that the integer arithmetics is performed with 32 bits precision and that the
program does not detect overflows. We can avoid these conditions if we use double
precision arithmetics, such as:

double precision function ran_u()

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 336

336

double precision ia,ic,ma,rm
double precision, save :: m=1234567.0d0
parameter (ma=2.0d0**32,rm=2.0d0**(-32))
parameter (ia=1812433253.0d0, ic=1.0d0)

m=mod(m*ia+ic,ma)
ran_u=rm*m

end function ran_u

but this is usually slower that the previous implementation. Do not forget to define in
this case ran_u as double precision in the calling program.

12.3
A theorem by Marsaglia

We have already mentioned that numerical deterministic algorithms will not produce
true random numbers and that there will always be some test that our generator will
not pass. Here comes an interesting test that a simple congruential random generator
does not pass. Let us take the recurrence relation (12.2) with M = 2

8, a = 25, c = 1.
We generate random numbers (u

0

, u
1

, u
2

, . . .) and organize them in pairs (ui, ui+1

).
Each pair is then plotted in a 2-dimensional plane. The result is in figure 12.1, left
panel. If the numbers ui were truly independent of each other, the points would look
uniformly distributed in the plane, while it is clear that there is an underlying pattern.
The first reaction is that we should blame our choice of the numbers (a, c,M) which
was not good enough. Indeed, if we repeat the plot using the numbers (69069, 1, 232)
the result looks much better, see the right panel of figure 12.1. Is there a priori way
of choosing of choosing the triplet (a, c,M) such that these correlations between
consecutive numbers do not exist?

A surprising and negative answer was given by Marsaglia in a very interesting
article[60] with the suggestive title Random Numbers Fall Mainly in the Planes. In
short, Marsaglia has shown that all congruential generators will have subtle cor-
relations. These correlations show up when we organize the sequence of random
numbers (u

0

, u
1

, u
2

, . . .) in groups of d to generate points in a d-dimensional space
z
1

= (u
0

, u
1

, . . . , ud�1

), z
2

= (ud, ud+1

, . . . , u
2d�1

), etc. The theorem proves that
there exists a dimension d for which all points z

1

, z
2

, . . . fall on a hyperplane of di-
mension d�1. This is rather annoying and shows that congruential generators fail to
pass a particular test for independence. The accepted compromise is to use a genera-
tor which has a large dimension d for the Marsaglia planes. Only then can we maybe
accept that the presence of these correlations between the numbers will not hopefully
be of any significance for our calculation.

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 337

337

Figure 12.1 Plots of pairs of random numbers (u
i

, u
i+1) obtained by using the

congruential algorithm (12.2) with (a, c,M) = (25, 1, 28) (left panel) and
(a, c,M) = (69069, 1, 232), right panel. Note the clear presence of the Marsaglia planes in
this d = 2 plot in the left panel

12.4
Feedback Shift Register generators

The “Feedback Shift Register” (FSR) random number generators use similar ideas
to the congruential generators but organize the resulting numbers in a di�erent way.
The idea is to use a congruential generator modulus 2 (so it only produces 0 and 1) but
to increase the memory of the recurrence relation. If we denote by zi to the di�erent
bits, the recurrence relation is:

zi = c
1

zi�1

+ c
2

zi�2

+ ...+ cpzi�p mod 2, (12.1)

where ck = 0, 1 for k = 1, . . . , p, is a given set of binary constants and we need
to set the initial values (z

0

, z
1

, . . . , zp�1

). The actual random numbers are obtained
first by constructing b-bits integers by joining the bits m

0

= z
0

z
1

· · · zb�1

, m
1

=

zbzb+1

· · · z
2b�1

, etc. The real numbers are, as before, ui = mi/2
b.

It is clear from the recurrence relation that the numbers zi necessarily repeat after
a maximum period of L = 2

p and hence the maximum available number of distinct
random numbers is 2p�b. How can we obtain a maximum period? A theorem tells us
that an almost maximal period of 2p � 1 is obtained in the recurrence relation (12.1)
if and only if the polynomial

f(z) = 1 + c
1

z + c
2

z2 + ...+ cpz
p (12.2)

can not be factorized as f(z) = f
1

(z)f
2

(z) (all operations are modulus 2). Techni-
cally, it is said that f(z) is primitive in GF(2), the Gaulois field. It turns out that good
statistical properties can be obtained by using the simplest primitive polynomials,
those of the form

f(z) = 1 + zq + zp (12.3)

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 338

338

with suitable values for p and q. The recurrence relation becomes

zi = zi�p + zi�q mod (2). (12.4)

If, instead of binary arithmetics we use binary logical operations, this relation is
equivalent to:

zi = zi�p ⌦ zi�q, (12.5)

where ⌦ is the exclusive or logical operation (let us recall its table: 0⌦0 = 0, 0⌦1 =

1, 0 ⌦ 1 = 1, 1 ⌦ 1 = 0). The exclusive or operation is included in many compilers
and it has the advantage that it is really fast.

A possible way to implement the algorithm is to work directly at the level of the
mi integers. First, set p initial values m

0

,m
1

, · · · ,mp�1

, being mi integers with the
desired accuracy (for instance, b = 31 bits, so we avoid the presence of negative num-
bers). This is implemented using another random generator. Then use the recurrence
relation mi = mi�p⌦mi�q which is understood by the compiler as the operation ⌦
is performed at the level of each bit of the integer numbers. Finally set ui = mi/2

b.
Once the maximum period has been ensured, which pairs (p, q) will give good sta-

tistical properties? A first suggested choice was p = 250, q = 103. The resulting
generator is called R250. Its period is 2

250 ⇡ 1.8 ⇥ 10

75 su�ciently large for any
application. It was very popular for a time until it was shown in [61] that some spuri-
ous correlations showed up when computing the equilibrium properties of the Ising
model in regular lattices, probably due to the existence of Marsaglia planes of not
large enough dimension. Other values that have been suggested as producing good
statistical properties are p = 1279, q = 418.

12.5
RCARRY and lagged Fibonacci generators

The family of general lagged Fibonacci generators use the relation:

mi = (mi�p �mi�q) mod M, (12.1)

where � denotes either a sum, a subtraction, a multiplication or an exclusive or (per-
formed bit by bit, in this case we recover the FSR generators). When using a sum
or a subtraction there is a mixing of bits and, allegedly, the statistical properties are
better.

James[62], based on the ideas of Marsaglia et al. [63], has proposed the so–called
RCARRY generator. It starts from a lagged Fibonacci sequence with a subtraction
but adding an additional subtraction if mi is a negative number. The algorithm is:

mi = mi�r �mi�s � ci mod (M),

where r > s and the remainder is ci = 1 if mi 0 (before the modulus operation)
and ci = 0 otherwise. The subtraction mixes the di�erent bits of the integer number
mi and the use of the remainder ci is meant to destroy most of the correlations in

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 339

339

the sequence of random numbers. For the initialization of the algorithm one needs
to give a sequence of r integer number mi, i = 1, ..., r. A convenient choice is
M = 2

24, r = 24, s = 10. The period of the generator is 48 times less than the
number of di�erent states that can be represented using 24 numbers with 24 bits, or
(2

24

)

24 ⇡ 10

173.

12.6
Final advice

The reader might be optimistic by nature and conclude that there are some good
random numbers that are better than others. Or he might be pessimistic and conclude
that all random numbers generators are bad, some of them are worse than others. The
truth is that a pseudorandom number generator that uses a deterministic algorithm
will never pass all tests that check the goodness of the generator. The most important
point, in our opinion, is not to rely blindly on the random number generator provided
by “we don’t know who” and use only the generators considered to be “good” in the
literature. But be aware that even those good generators might have problems. If a
weird result is found in your simulations it might be worthwhile to check that it does
not have its origin in the random number generator, for instance, by repeating the
simulation with a di�erent generator.

Master in Physics of Complex Systems: Stochastic Numerical Methods, Raúl Toral, Pere Colet: —
Chap. 12 — 2014/10/20 — 15:16 — page 340

340

Exercises

1) Program von Neumann’s algorithm. Generate 1000 numbers using this algorithm
and compute the average values hxi, hx2i and the correlation hxixi+1

i. Do results
depend on the seed m

0

?
2) Use the random number provided by your favorite compiler or library and check

whether the period is larger than 2

32 ⇡ 4.3⇥10

9. Generate 106 numbers using this
algorithm and compute the average values hxi, hx2i and the correlation hxixi+1

i.
If the generator requires a seed, do results depend on the seed m

0

?
3) Repeat the previous problem using l’Ecuyer’s algorithm RANECU which uses a =

40692, m = 2147483399, c = 0 (purely multiplicative).
4) Same with algorithm R250.
5) Compute numerically the dimension of Marsaglia’s planes for R250 and the con-

gruential algorithm with M = 2

32, a = 69069, c = 1.
6) A famous problem states that the probability that the second degree equation ax2+

bx+c = 0 has real roots is 5

36

+

ln(2)

6

⇡ 0.254 if a, b, c have been chosen randomly
and uniformly in the interval (0, 1). Use your favorite random number generator
to check this result. Do not forget to include the errors of the estimator of this
probability.

