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5
Applications to Statistical Mechanics systems

5.1
Introduction

One of the most important applications of the Monte Carlo sampling techniques ap-
pears in the field of Statistical Mechanics, which deals with systems with a large
number of degrees of freedom N . A system is described by a set of coordinates
X = (x1, . . . , xN ). These variables xi are typically positions, or angles, but more
complicated examples of generalized coordinates exist in the literature. Each co-
ordinate xi has an associated conjugate momentum pi and the whole set of X and
P = (p1, . . . , pN ) variables is required to fully specify the state of the system. We
will denote by Γ = (X, P ) the combined set of 2N coordinate and momentum vari-
ables and a point in the Γ “phase space” is a “microscopic configuration”. It is
essential to remember that the simplest macroscopic system will be described by an
enormously large number of variables N . A measure of how large this number can
be in typical situations is Avogadro’s number NA = 6.022 × 1023, the number of
molecules in a mol, usually a few grams, of substance.

A very important function is the HamiltonianH(X, P ) = H(x1, . . . , xN , p1, . . . , pN ).
It is important in many senses. First of all, it determines, via Hamilton’s equations

dxi

dt
=

∂H
∂pi

, (5.1)

dpi

dt
= −

∂H
∂xi

, i = 1, . . . , N, (5.2)

the time evolution xi(t), pi(t), i = 1, . . . , N . All we need to do is to solve this set of
2N differential equations given some initial condition at, say, time t = 0. Of course,
a tremendous (and impossible) task in most cases.

Second, and more importantly to us, is that the Hamiltonian can also be used to
determine the probability density function of observing at thermal equilibrium some
set of values for the coordinates and momenta Γ = (X, P ), i.e. the probability of a
microscopic configuration. Boltzmann and Gibbs were the ones to show that such a
pdf is given by what is nowadays called the Boltzmann factor, e−βH, in the following
manner

f(Γ) = Z
−1e−βH, (5.3)
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where

Z =

Z
dΓ e−βH (5.4)

is the normalization factor and β = 1/kT is the inverse of the temperature rescaled
by Boltzmann’s constant k. Just not to hide anything, we can write this normalization
factor in full

Z =

Z
dx1 . . . dxN dp1 . . . dpN e−βH(x1,...,xN ,p1,...,pN ). (5.5)

In fact, this normalization factor by itself is very important, so important that it has
a name, “the partition function”. The reason of its importance is that the probability
of a configuration is something difficult to determine experimentally, while typical
measures concern the so-called thermodynamic potentials: Helmholtz free energy
F , internal energy U , enthalpy H , or the equation of state giving the pressure P as as
function of volume V and temperature, or the specific heat at constant volume CV ,
or the isothermal compressibility κT , etc. The framework of Statistical Mechanics
tells us that all these quantities can be derived from the only knowledge of the par-
tition function as a function of the volume V , the number of particles N1) and the
temperature T . For example, Helmholtz’s free energy is given by

F (N, V, T ) = −kT logZ, (5.6)

the internal energy is

U =

„
∂F/T
∂(1/T )

«

V,N
, (5.7)

and the specific heat at constant volume,

CV =

„
∂U
∂T

«

V,N
. (5.8)

The entropy can be computed from S = (U − F )/T or directly:

S = −

„
∂F
∂T

«

V,N
(5.9)

and so on. This “recipe” of Statistical Mechanics is extremely difficult to carry on
in practice as the integrals involved in the definition of the partition function (5.5)
can only be performed for a limited number of simple examples: the gas of non-
interacting particles, a system of independent harmonic oscillators, etc. and a limit-
ed number of not so simple examples: Gaussian free model and the Ising model for
ferromagnetism being the most noticeable ones. Furthermore, the framework of Sta-
tistical Mechanics shows that some interesting macroscopic observable phenomena
only occur in the limit of the number of degrees of freedom N tending to infinite,
which makes the calculation of the partition function usually even harder.

1) The number of particles N is not the same as the number of degrees of freedom N , as each particle can
have, in general, more than one degree of freedom.
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An alternative approach is to work not with the partition function directly, but with
the pdf of the configurations, f(Γ). In this approach, some observables are defined
in terms of averages with respect to this pdf. The average of any function of the
microscopic variables G(Γ) is defined in the usual way:

�G� =

Z
dΓG(Γ)f(Γ). (5.10)

There are many examples. The internal energy can be computed as the average value
of the Hamiltonian,

U = �H�. (5.11)

The specific heat, CV =
“

∂U
∂T

”

N,V
, can also be obtained using higher-order mo-

ments of the Hamiltonian:

CV = kβ2
h
�H

2
� − �H�

2
i

(5.12)

and so on. Unfortunately, not all relevant magnitudes can be computed this way. For
instance, the entropy S can not be interpreted as the average value of some known
function G2).

Many problems of Statistical Mechanics in equilibrium can then be reduced to the
calculation of averages using the pdf (5.3). This probabilistic description (which lies
at the core of Statistical Mechanics) is, in some cases, independent on whether the
dynamical variables themselves satisfy or not Hamilton’s equations. For instance, in
problems of magnetism, a very successful approach consists in considering that the
variables xi represent microscopic magnetic moments which interact amongst them-
selves. In the simplest version, known as Ising model, these microscopic variables
can take only two possible values xi ≡ µsi, being µ the unit of magnetic moment
and si = ±1 a rescaled variable (the Ising or spin variable). There are no momenta-
like variables pi associated to these magnetic moment variables and there are no
Hamilton’s equations. It does not even make sense to compute the time derivative of
a non-continuous variable si that can only take two possible values. Still, the micro-
scopic variables si interact via the so-called “Hamiltonian” function H(s1, . . . , sN )

and the probability of observing a particular configuration S = (s1, . . . , sN ) is
f(S) = Z

−1e−βH. The partition function now is not the integral over all values
of si but, as si can take only two values si = ±1, it is computed as a sum:

Z =
X

s1=±1

· · ·

X

sN=±1

e−βH. (5.13)

The Hamiltonian H takes into account the magnetic interactions, and it is typically
simplified in order to consider only the interactions that occur between these Ising

2) It is indeed possible to derive the formula S = −
R

dΓf(Γ) log[f(Γ)] + C, being C a constant.
Though formally this could be thought of as the average S = −�log f� + C, the truth is that in order
to perform this average, we must know the pdf f(Γ), including the normalization constant Z , which is
usually impossible. If we knew the partition function, we would not need any further integrals in order
to compute the entropy, we’d simply use (5.6)-(5.9).
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variables si which are close in space, neglecting the magnetic interactions with vari-
ables which are farther apart than some minimum cut-off distance. We will see
specific examples later.

Once we have reduced the problem of equilibrium Statistical Mechanics to the
calculation of averages, it is clear which should be an efficient numerical approach:
replace the true average (5.10) by a sample average

�G� = µ[G]±
σ[G]
√

M
(2τG + 1), (5.14)

with

µ[G] =
1
M

MX

k=1

G(Γk), (5.15)

σ2[G] =
1
M

MX

k=1

G(Γk)2 − (µ[G])2, (5.16)

being Γk, k = 1, . . . , M the set of generated configurations and τG the associated
autocorrelation time of G obtained from the autocorrelation function ρG(i). The key
point is now the generation of characteristic configurations Γk distributed according
to f(Γ) in a problem with many variables. But this is precisely what we have claimed
that Monte Carlo algorithms are good at! We now rephrase the dynamical methods
of last chapter within the framework of Statistical Mechanics problems.

In the dynamical methods we proposed a change from configuration Γ to configu-
ration Γ� taken from a pdf g(Γ�|Γ). This proposal was then accepted with probability
h(Γ�|Γ). In order to ensure that the stationary distribution is f(Γ), it is sufficient to
demand that these conditional functions satisfy the detailed balance condition:

g(Γ�|Γ)h(Γ�|Γ)f(Γ) = g(Γ|Γ�)h(Γ|Γ�)f(Γ�), (5.17)

with now f(Γ) given by (5.3). A solution to this functional equation is given by the
Metropolis algorithm, in which a proposal probability g(Γ�|Γ) is first selected and
then the acceptance probability is

h(Γ�|Γ) = min
ˆ
1, q(Γ�|Γ)

˜
, (5.18)

where

q(Γ�|Γ) =
g(Γ|Γ�)f(Γ�)
g(Γ�|Γ)f(Γ)

. (5.19)

Most algorithms3) assume that g(Γ�|Γ) is a symmetric function, g(Γ�|Γ) = g(Γ|Γ�).
In this case, and after replacing the expression for f(Γ) we obtain

q(Γ�|Γ) =
Z
−1e−βH(Γ�)

Z−1e−βH(Γ)
= e−β∆H, (5.20)

3) But not all. A notable exception is the Hybrid Monte Carlo algorithm explained in chapter 10.
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with ∆H = H(Γ�) − H(Γ) the change in energy involved in the proposal Γ → Γ�.
Note that the partition function Z disappears from the expression for q(Γ�|Γ). The
acceptance probability becomes,

h(Γ�|Γ) = min(1, e−β∆H). (5.21)

This is the original proposal of the celebrated paper by Metropolis et al[7]. It has
an intuitive physical interpretation. The characteristic configurations at equilibrium
are those that minimize Helmholtz’s free energy F = U − TS, a balance between
the internal energy U (which tends to a minimum) and entropy S (which tends to
a maximum). As ∆H ≤ 0 implies h(Γ�|Γ) = 1, this balance is achieved by (i)
accepting all proposals Γ → Γ� in which the energy is reduced, and (ii) accepting
those proposals in which energy increases ∆H > 0 with a probability e−β∆H. As
β = 1/kT , when T → 0 the probability of accepting a proposal that increases the
energy tends to 0. On the contrary, when T → ∞ it is β → 0, the acceptance
probability tends to 1, and every proposal is accepted independently on the energy
cost.

Another solution to the detailed balance condition is that of Glauber

h(Γ�|Γ) =
q(Γ�|Γ)

1 + q(Γ�|Γ)
, (5.22)

or, using (5.20),

h(Γ�|Γ) =
1

1 + eβ∆H
, (5.23)

but other choices for the acceptance probability h are still possible, as discussed in
section 4.4.

5.2
Average acceptance probability

We now rewrite result (4.91) in order to derive the average acceptance probability
in the case that the pdf is the exponential of a Hamiltonian: fx̂(Γ) = Z

−1e−βH(Γ),
and assuming a symmetric proposal g(Γ|Γ�) = g(Γ�|Γ):
D
e−β∆H

E

st
= 1, (5.24)

being ∆H = H(Γ�)−H(Γ) the change of energy involved in the proposal Γ → Γ�.
If we use now Jensen’s inequality �e−z

� ≥ e−�z�, valid for any random variable z,
with z = β∆H, we derive that in the steady state the average value of the proposed
changes of energy is always greater than zero, �∆H� > 0.

Although it is possible to be more general, we present here a simplified treatment
which assumes that the distribution of proposed changes of energy z = β∆H can
be well approximated by a Gaussian distribution of average µ and variance σ2. As
it is known that, for a Gaussian distribution, it is �e−z

� = e−µ+σ2/2 and we have
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proved that �e−z
� = 1, we derive that this Gaussian assumption is consistent if we

take σ2 = 2µ. Let us now compute the average value of the Metropolis acceptance
probability h(Γ�|Γ) = min[1, e−β∆H]. Under the assumption that z = β∆H follows
a Gaussian distribution we obtain for the average value:

�h(Γ�|Γ)�st =

Z ∞

−∞

dz min[1, e−z ]
1

σ
√

2π
e−

(z−µ)2

2σ2 . (5.25)

Performing the integral and replacing σ2 = 2µ we obtain the simple result
�h(Γ�|Γ)�st = erfc

“√
µ

2

”
or

�h(Γ�|Γ)�st = erfc

 p
β�∆H�

2

!
, (5.26)

being erfc(z) = 1− erf(z) the complementary error function. It is worth noting that

in the limit of large �∆H�, we can use erfc(z) −→

z→∞
e−z2

z
√

π
4) to obtain the asymptotic

result:

�h(Γ�|Γ)�st −→
2e−

β�∆H�

4
p

πβ�∆H�
. (5.27)

valid for ∆H → ∞ and showing that the average acceptance probability �h(Γ�|Γ)�

goes to zero exponentially with the average (positive) energy change �∆H�. As H
is usually an extensive quantity proportional to the number of degrees of freedom
N , it is important to devise proposals in which the change of energy ∆H can be
kept small, of O(1) instead of O(N), otherwise the small average acceptance proba-
bility will yield a very large correlation time and the corresponding large statistical
errors will make the estimator useless. The standard trick to keep a reasonable ac-
ceptance probability is to propose new configurations Γ� in which only a few degrees
of freedom have been modified from configuration Γ. Collective updates in which
all degrees of freedom change at once but still the acceptance probability is non van-
ishingly small are much more difficult to devise. We will devote chapter 10 and
appendix D to explain some collective update algorithms, and restrict ourselves in
the rest of the chapter to algorithms in which the proposal involves the change of a
few (maybe only one) variable.

Let us know explain some applications of the Monte Carlo algorithms to the study
of particular systems of interest in Statistical Mechanics.

5.3
Interacting particles

The first case we will consider is that of interacting particles without internal degrees
of freedom. This means that all we need to specify the state are the spatial locations

4) The limiting expression has an error smaller than 10−6 for z > 3.
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�ri of the i = 1, . . . ,N particles, as well as the associated momenta �pi = m�vi,
being m the mass of the particle (assumed identical) and �vi, the velocity. In general
�ri = (xi, yi, zi) and �pi = (px

i , py
i , pz

i ) are three-dimensional vectors, although other
spatial dimensions can be considered in specific cases. We can think of the particles
as perfect spheres (or rods in one dimension and disks in two dimensions) moving
around while interacting with other particles.

The Hamiltonian consists of two terms, corresponding to the kinetic, T , and po-
tential, V , energy. In the potential energy, we must consider interactions between all
possible pairs of particles (i, j), which, for convention, we order using i < j. As
the particles have no internal degrees of freedom, the potential interaction v(�ri, �rj)

between particles i and j depends only on the locations of the particle (we assume it
does not depend on their velocities). The Hamiltonian is, then,

H(�r1, . . . , �rN; �p1, . . . , �pN) = T (�p1, . . . , �pN) + V(�r1, . . . , �rN), (5.28)

with

T =
NX

i=1

�pi
2

2m
, (5.29)

V =
X

i<j

v(�ri, �rj). (5.30)

We see that the pdf e−βH can be split naturally as:

e−βH =

"
NY

i=1

e−β
�pi

2

2m

#
× e−β

P
i<j v(�ri,�rj) (5.31)

=

"
NY

i=1

e−
(px

i )2

2m/β e−
(p

y
i )2

2m/β e−
(pz

i )2

2m/β

#
× e−β

P
i<j v(�ri,�rj) (5.32)

which indicates that, from the statistical point of view, each one of the momenta
coordinates (px

i , py
i , pz

i ) are independently distributed with a Gaussian distribution
of zero mean and variance m/β = kTm. This independence allows us to obtain
analytically some averages of interest. For instance, the average value of the kinetic
energy is
*

NX

i=1

�pi
2

2m

+
= 3NkT, (5.33)

as each of the 3N Gaussian variables contributes a factor kTm (energy equipartition
theorem). On the other hand, averages of functions G(�r1, . . . , �rN) which depend on
the coordinates are much more difficult to perform analytically due to the interaction
terms. Here is where the numerical methods are useful. The formal expression is

�G(�r1, . . . , �rN)� = C−1
Z

d�r1 . . . d�rNG(�r1, . . . , �rN)e−βV(�r1,...,�rN), (5.34)

or an average with respect to the pdf

f(�r1, . . . , �rN) = C−1e−βV(�r1,...,�rN), (5.35)
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being C =
R

d�r1 . . . d�rNe−βV(�r1,...,�rN), the normalization constant.
To perform these averages numerically, we generate configurations of positions

X ≡ (�r1, . . . , �rN) distributed according to this pdf and approximate the average
(5.34) by the sample average, including an estimation of the error. In order to gener-
ate the configurations, we can use, for example, a Metropolis algorithm, in which we
propose a change from X → X � according to some distribution g(X �

|X). We have
much freedom in choosing the new configuration X �, but we must do so such that
the resulting acceptance probability h(X �

|X) is not vanishingly small. As explained
before, we choose a proposal X � that differs from X in just a few variables. For
instance, we can choose, most naturally, to change the position �ri → �r �i of a single
particle, randomly chosen amongst the N particles. In this way, and similarly to
(4.71), g(X �

|X) is constructed from g(�r �i|�ri) which depends only on the coordinates
of the randomly chosen particle i. We can choose, for instance (but we stress that
we have a lot of freedom in this proposal step), to change every cartesian coordinate
(xi, yi, zi) → (x�i, y

�
i, z

�
i) such that x�i, y�i and z�i are drawn from a uniform distri-

bution in the intervals (xi − ∆, xi + ∆), (yi − ∆, yi + ∆) and (zi − ∆, zi + ∆),
respectively. As this proposal is symmetrical g(X �

|X) = g(X|X �), the detailed
balance condition is

h(X �
|X)e−βV(X) = h(X|X �)e−βV(X�), (5.36)

in terms of the potential energy V only. We can take, for instance, Metropolis solu-
tion

h(X �
|X) = min

h
1, e−β∆V

i
(5.37)

being ∆V = V(X �) − V(X), the change in the potential energy induced by the
proposed change X → X �. As only the position �ri is modified, the change is:

∆V =
X

j �=i

ˆ
v(�r �i, �rj)− v(�ri, �rj)

˜
. (5.38)

Usually, the potential interaction depends on the separation distance rij = |�ri − �rj |

between particle i and j, v(�ri, �rj) = v(rij). This is the case, for example, of the
celebrated Lennard-Jones potential

v(r) = v0

»“r0

r

”12
−

“r0

r

”6
–

, (5.39)

being v0 and r0 parameters of the potential.
Note that, in this case, and for a large number of particles N, the calculation of the

sum (5.38) can be very expensive from the computational point of view as a sum of N
terms must be calculated every time a single position is proposed to change. This is
another reason why collective updates proposals, in which all variables (�r1, . . . , �rN)

are proposed to change simultaneously are more effective. A particular type of col-
lective updating, suitable for this kind of systems and known as Hybrid Monte Carlo,
will be explained in chapter 10.
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In some cases, the potential interaction v(�ri, �rj) is such that it vanishes whenever
the separation distance |�ri − �rj | is larger than a cut-off R. This is typically imple-
mented in the Lennard-Jones potential as:

v(r) =

8
<

:
v0

h` r0
r

´12
−
` r0

r

´6i
, r ≤ R,

0, r > R.
(5.40)

In this case, the sum (5.38) has a much smaller number of terms,

∆V =
X

j,|�r �

i−�rj |<R,|�ri−�rj |<R

ˆ
v(�r �i, �rj)− v(�ri, �rj)

˜
. (5.41)

However, some non-trivial bookkeeping is necessary in order to keep track of which
particles j are at a distance less than the cutoff from the particle i whose position is
proposed to change to �r �i.

The main features of the Lennard-Jones potential are the presence of a repulsion
term (r−12) at short distances and an attraction term (r−6) decreasing to zero at
long distances. These features can be captured by simpler models. For instance, the
potential

v(r) =

8
>><

>>:

∞, r ≤ 2σ,

−v0, 2σ < r ≤ R,

0, r > R,

(5.42)

signifying that the attraction between particles only occurs if they are closer than a
distance R and that the repulsion energy is infinite if particles try to get closer than
a distance 2σ, modeling the so-called hard-core repulsion. This can be imagined
as each particle being a sphere of radius σ, such that the energetic cost of bringing
two particles closer than a distance of one diameter, 2σ, is infinite. When only the
repulsion term is taken into consideration, i.e. when the potential is:

v(r) =

(
∞, r ≤ 2σ,

0, r > 2σ,
(5.43)

we talk about a system of hard-spheres. In this particular case, the energy change
∆V is either zero, if the new position �r �i is such that the particle does not overlap
with any other, or infinite, in case there is one particle j with which it overlaps. The
acceptance probability is, hence,

h(X �
|X) = min

h
1, e−β∆V

i
=

(
0 if exists j such that |�r �i − �rj | < 2σ,

1, otherwise.
(5.44)

In other words, movements are accepted if and only if they do not lead to overlaps
between particles. Again, the program can be make much more efficient by making
an a priori list containing the particles with which particle i can overlap after it is
moved. Since the maximum change in the modulus of the position is

√
3∆, the list

must include all particles which are at a distance shorter than 2σ+
√

3∆ from particle
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i. Simple as it might look, the system of hard spheres has been extensively studied
both from the theoretical and numerical points of view. Very efficient codes have
been developed to this end, and we refer the interested reader to the more specialized
literature in this subject.

5.4
Ising model

We have already introduced the Ising model. Although it has been used in very
different contexts (from phase separation in binary metal alloys to segregation in
urban communities), its most direct application (and the one it was originally intro-
duced for) is that of magnetic materials. Imagine a substance displaying the para-
ferromagnetic transition. This is to say, one magnet that at high temperatures (above
the so-called Curie temperature) loses its spontaneous magnetization5). We can sim-
plify the complicated structure of the magnetic solid by a perfect, regular lattice and
assume that in every site i of this lattice lies a microscopic magnet, capable of taking
two possible values xi = µsi = ±µ for the magnetic moment. Here si is called the
“spin”-variable (a name reflecting the fact that the magnetism has its origin in the
individual atomic spins). The value si = +1 means that the magnet points upwards
in an arbitrary, Z, direction, while a value si = −µ indicating that the magnet points
downwards in the opposite direction. A microscopic configuration S = (s1, . . . , sN )

is a set of values for the N spin variables.
The last ingredient is an energy function, a Hamiltonian6) reflecting the magnetic

interaction between the spins. In the ferromagnetic materials, the interaction is such
that it favors two spins to point in the same direction. This is reflected in a potential
interaction between spins at sites i and j equal to −Jijsisj , with Jij , the coupling
constant between sites i and j, a positive parameter. Hence, if si and sj are both
parallel, i.e. both take the value +1 or the value −1, then the interaction energy is
−Jij , while if they are antiparallel, one of them +1 and the other −1, the interaction
energy is +Jij , higher (for Jij > 0) than in the case of parallel alignments. The
interaction energy Jij decays with the distance between sites i and j. An important
simplification of the model is to assume that the interaction is very short ranged and
only occurs for those spins which are sufficiently close in the regular lattice7). What
is meant by “sufficiently close” depends on the type of lattice, but usually one adopts
the point of view that only those spins which lie apart the minimum distance dictated
by the lattice are capable to interact between them. Those spins are then said to be
“nearest neighbors” in the lattice. In figure 5.1 we plot some common lattices and
the underlying structure of nearest neighbors.

5) We might not be very familiar with this situation, as the most common magnet, iron, loses its magneti-
zation at around 770 C, certainly not an everyday temperature

6) We stress again that there are no Hamilton’s equations associated to this function.
7) Another simplification of the model goes in the opposite direction and assumes a fully-connected lattice

in which all spins interact with all others with the same energy. This is the so-called mean-field version
of the Ising model. It is less realistic, but its main advantage is that it can be solved analytically.
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Figure 5.1 In the square-lattice, panel (a), node i has four nearest-neighbors: i1, i2, i3, i4; in

the triangular lattice, panel (b), node i has six nearest-neighbors: i1, i2, i3, i4, i5, i6; in the

linear chain, panel (c), node i has two nearest-neighbors: i1, i2.

The Hamiltonian, finally, takes into account the possible existence of a magnetic
field H with which spins tend to align. This is reflected by a term −Hsi which
takes its minimum value whenever the sign of H and si coincide. With all these
considerations in mind, the Hamiltonian of the Ising model is:

H(s1, . . . , sN ) = −J
X

�i,j�

sisj −H
X

i

si, (5.45)

where the notation �i, j� indicates precisely all the pairs of sites i, j which are nearest
neighbors in the chosen network.

In the absence of a magnetic field, H = 0, The basic phenomenology of the Ising
model is that the tendency to align parallel dominates at low temperatures and there
is a vast majority of spins pointing in the same direction, a situation identified with
macroscopic order. Whether this direction is up, si = +1, or down, si = −1, de-
pends on many things (for example, the initial conditions). The choosing of one of
the two, otherwise equivalent, directions is an example of “symmetry breaking”. At
temperatures above a critical value Tc, the disordering role dominates and approxi-
mately half of the spins point upwards and half downwards. The symmetry has been
restored. This competition between an ordering agent (the coupling constant) and a
disordering one (the temperature) and the resulting transition between order and dis-
order is arguably the simplest example of a “phase transition”, the phases being the
ordered state at low temperature (the ferromagnetic phase) and the disordered state at
high temperatures (the paramagnetic phase). This competition between ordering and
disordering agents and the resulting phase transition phenomenology can be found
in many situations, not just of physical interest, and the Ising model is then used
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as a paradigmatic case study. An example far from the topic of magnetic materials
occurs in the field of opinion formation, where positive and negative opinions over
a given topic can coexist with approximately half of the population supporting one
or the other, or one of them can dominate. Whatever the interpretation, it is usual to
keep the magnetic notation and talk about a “paramagnetic” and a “ferromagnetic”
phase, or “spin interaction”, even if the interpretation of the model is far from the
original domain of magnetism for which it was designed.

Which averages of functions G of the spin variables (s1, . . . , sN ) are useful to
compute in the Ising model? Without doubt the most important one is the magneti-
zation per particle, defined as:

m =

˛̨
˛̨
˛
1
N

NX

i=1

si

˛̨
˛̨
˛ , (5.46)

and its ensemble average, m,

m = �m� . (5.47)

Averages of any function G(S) are performed using the Boltzmann factor e−βH, or

�G� =

P
s1=±1 · · ·

P
sN=±1 G(s1, . . . , sN )e−βH

P
s1=±1 · · ·

P
sN=±1 e−βH

. (5.48)

Other important quantities are the magnetic susceptibility χT =
∂m(T, H)

∂H

˛̨
˛̨
H=0

,

which can be related to fluctuations of the order parameter:

χT =
N
kT

σ2[m] =
N
kT

h
�m2
� − �m�2

i
, (5.49)

the internal energy per particle, u = U/N ,

u =
�H�

N
, (5.50)

the specific heat per particle, c = C/N . It can be related to the fluctuations of energy,

c =
σ2[H]

kT 2N
=

1

kT 2N

h
�H

2
� − �H�

2
i
, (5.51)

and many others. Relations of this kind between a response function, χT , c, and
microscopic fluctuations, σ2[m], σ2[H], were first obtained by Einstein and go under
the general name of fluctuation-dissipation relations.

The magnetization measures the degree of order: if all spins point in the same
direction (either +1 or −1) then it takes the maximum value m = 1. If the spins
point randomly in both directions, then the sum

PN
i=1 si is close to 0 and, after

dividing by N , we get that the magnetization goes to zero as the system size N in-
creases. It is clear from its definition, that the magnetization depends on both the
temperature T and the magnetic field H , m(T, H). The value at zero magnetic field,
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m(T, 0) ≡ m0(T ), is called the spontaneous magnetization. Again, the notation is
the one used in magnetic systems: a piece of iron in a magnetic field will display
some magnetization and, if the magnetic field is turned off, the magnetization will
remain different from zero only below the critical temperature. The detailed calcu-
lation for the Ising model shows that this behavior is reproduced depending on the
type of lattice. For one-dimensional lattices in which spins have only two nearest
neighbors, the case considered by Ising himself, the spontaneous magnetization is
always zero, independently of temperature. However, the generic behavior for lat-
tices in two or more dimensions, is the existence of a critical temperature, below
which the spontaneous magnetization is indeed different from zero. From the ana-
lytical point of view, only a limited set of lattices can be studied, including a variety
of two-dimensional lattices and the fully-connected lattice in which every spin is
connected to every other spin. It is worth mentioning here the work by Onsager who
in an authentic mathematical tour de force, was able to compute the free energy and
the related thermodynamic potential in the case of zero magnetic field for the regular
square lattice. He was also able to find the spontaneous magnetization. Despite the
tremendous difficulty of the calculation, the spontaneous magnetization is given by
a deceptively simple expression:

m0(T ) =

8
<

:
0, T > Tc
“
1− [sinh(2J/kT )]−4

”1/8
, T ≤ Tc.

(5.52)

with a value of the critical temperature kTc/J = 2/ log(1 +
√

2) ≈ 2.2691853 . . . .
The alternative to the complicated analytical calculations is the use of the Monte

Carlo method. There, we replace the true average by the sample average

m =
1
M

MX

k=1

mk, (5.53)

being mk the value of the magnetization computed in k = 1, . . . , M spin config-
urations S1, . . . , SM . Remember that each configuration S is a set of values for
the N spin variables S = (s1, . . . , sN ). The configurations Sk must be generated
according to the probability

f(S) = Z
−1e−βH(S). (5.54)

Metropolis algorithm

Let us consider first the Metropolis algorithm to generate the configurations Sk. The
basic ingredient is the proposal probability g(S�|S). We should not be surprised
now of the general strategy: the proposed configuration S� differs from S only in
the value of a single spin variable. Therefore, we select a site, say i, and propose
a change si → s�i. It should be clear that the only possible proposal is s�i = −si,
i.e. to propose s�i = +1 if si = −1 and propose s�i = −1 if si = +1. Which is the
change in the Hamiltonian ∆H = H(S�)−H(S) associated with this proposal? As
N − 1 spins remain unchanged, the only variation in the Hamiltonian comes from
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the terms of the sum in (5.45) in which the selected spin si appears. Let us denote
by si1 , . . . , siD the set of neighbors of si. Therefore, the change is:

∆H =

0

@−J
DX

µ=1

s�isiµ −Hs�i

1

A−

0

@−J
DX

µ=1

sisiµ −Hsi

1

A , (5.55)

or, using s�i = −si,

∆H =

0

@2J
DX

µ=1

siµ + 2H

1

A si. (5.56)

The acceptance probability can be chosen as h(S�|S) = min
h
1, e−β∆H

i
, the

Metropolis choice, or h(S�|S) =
“
1 + e−β∆H

”−1
, Glauber choice, or other conve-

nient expression.
Let us now give some details of the programming in the case of a regular 2-d

square lattice. Most of what we will say can be straightforwardly extended to other
lattices, regular or random. The first thing we need to do is to store the configuration
(s1, . . . , sN ). Since the variables are ±1, it is possible to use very sophisticated
storage methods where each variable occupies only one bit of memory (a bit equal
to 0 corresponds to si = −1 and a bit equal to 1 to si = +1). However, we start
by a simple storage method in which spin si is stored in location s(i) of an array of
integers. We then define integer s(N) as the array where we store the variables.
Since we are in the square lattice, the number of sites is N = L2, and we could as
well store the variables in a two indexes array, such as integer s(L,L). Both
notations are equivalent, see figure 5.2. However, the use of a single index brings
many simplifications to the program structure and we will keep this way of storing
the variables. It is convenient to keep in mind that if we use cartesian coordinates
(ix, iy), ix, iy = 1, . . . , L the single index i = 1, . . . , N is given by i = (iy − 1) ×

L + ix, as the reader can check.
In the square lattice, spin si has D = 4 neighbors than we name si1 , si2 , si3 , si4 .

These neighbors are located, respectively, at the right, top, left and bottom sites
of i, see figure 5.1. It is convenient, instead of computing every time the indexes
i1, i2, i3, i4 that correspond to site i, to store those values on arrays, such that they
can be easily (and quickly) accessed when needed. We use the array integer
n1(N) such that the value n1(i) is equal to i1, the right neighbor of site i. Sim-
ilarly, the arrays integer n2(N), n3(N), n4(N) store the locations of the
up, i2, left, i3, and down, i4, neighbors of site i. A special interest deserve the spins
at the borders of the square lattice. One might simply consider that the spins at these
borders do not have as many neighbors as the others. A more commonly used choice
is that of periodic boundary conditions or pbc, for short. This means that the right
neighbor of a site which is located at the right edge of the square is located in the
same row at the left edge. And similarly for other directions. Figure 5.3 sketches the
nearest-neighbor connectivity in the square lattice. It is as if the right and left edges,
and the top and the bottom ones, are connected. The reader might try to imagine
how this would look like. The resulting closed structure has the topology of a torus.



IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 5 — 2013/10/22 — 19:49 — page 141

141

Figure 5.2 The nodes of a square lattice can be stored using two indexes (ix, iy), left panel, or

a single one i, right panel. The figure exemplifies these two possibilities in the case of a linear

side L = 6.

In order to generate the right values for those arrays, we use the subroutine
neighbors. It uses conveniently the equivalence between the one-index i and
the two-indexes (ix, iy) notation to find the four neighbors of a site. This routine
implements the pbc. For example, the right neighbor of site (ix = L, iy) is not
(L + 1, iy) but (1, iy), etc. We urge the reader to have a look at this routine now to
understand how it works:

subroutine neighbors(n1,n2,n3,n4,L)
dimension n1(L*L),n2(L*L),n3(L*L),n4(L*L)
do ix=1,L
do iy=1,L

i=(iy-1)*L+ix
ix1=ix+1
if (ix1.eq.L+1) ix1=1
n1(i)=(iy-1)*L+ix1

iy2=iy+1
if (iy2.eq.L+1) iy2=1
n2(i)=(iy2-1)*L+ix

ix3=ix-1
if (ix3.eq.0) ix3=L
n3(i)=(iy-1)*L+ix3

iy4=iy-1
if (iy4.eq.0) iy4=L
n4(i)=(iy4-1)*L+ix

enddo
enddo

end subroutine neighbors

Next thing to consider is the calculation of the acceptance factor. We note that the
possible change of energy, as given by (5.56) in the case a magnetic field H = 0 can
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Figure 5.3 The nearest-neighbor connectivity in a square lattice using periodic boundary

conditions and the resulting torus topology. For example, the nearest neighbors of site i = 12
are i1 = 7, i2 = 18, i3 = 11, i4 = 6, while the nearest neighbors of site i = 31 are i1 = 32,

i2 = 1, i3 = 36, i4 = 25.

take only 5 possible values, namely:

−β∆H = −2βJsi

4X

µ=1

siµ = −2KBi = −2K

8
>>>>><

>>>>>:

−4

−2

0

2

4

(5.57)

where we have defined K = βJ and Bi = si
P4

µ=1 siµ , being a sum of four num-
bers, each one being ±1, can only take the values −4,−2, 0, 2, 4, as indicated. Sim-
ilarly, the Boltzmann-Gibbs factor

e−β∆H = e−2KBi (5.58)

can only take 5 possible values. We decide to store the acceptance probabilities in
the array h(-4:4). This is defined as

h(j) = min[1, e−2Kj ], j = −4,−2, 0, 2, 4 (5.59)

To accept, we compare h(j)with a random number u in the usual way. If u <h(j)
we accept the proposal. Otherwise it is discarded and we must make a new proposal
by selecting randomly another of the spin variables.

All the preliminary steps are now defined. The program, after creating the arrays
of neighbors and setting the initial condition randomly assigning values si = +1
and si = −1 with probability 1/2, then performs the proposal/acceptance steps.
These are divided in two blocks: first we perform M0 ∗ N thermalization steps, which
is equivalent to M0 Monte Carlo steps (remember that one MCS is equal to N ba-
sic proposal/acceptance steps); next, we begin the M measurements. Before each
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measurement we perform mc*N updates, or mcMCS. In this simple implementa-
tion we measure three things: the magnetization �m� (stored in rm), its fluctuations
�m2� − �m�2 (stored in rm2), and the correlation function ρm(t = mc MCS), or the
correlation between two consecutive values of the magnetization, (stored in c). Fi-
nally, the program runs for different values of temperature. In a setup like this, it
is convenient to start first at at high value of the temperature (T = 4 in the listing
below), where the thermalization times are smaller. When lowering the temperature,
we do not generate again the initial condition, but use instead the final configuration
at the previous, higher, temperature. We now provide a full listing and ask the reader
to go through all steps carefully.

program Ising_2D_Metropolis
parameter (L=80,N=L*L)
implicit double precision(a-h,o-z)
integer s(N),n1(N),n2(N),n3(N),n4(N)
dimension h(-4:4)
data M,M0,mc /8192,1000,1/
call neighbors(n1,n2,n3,n4,L)
do i=1,N !Initial condition

if (ran_u().lt.0.5d0) then
s(i)=+1

else
s(i)=-1

endif
enddo
do 999 T=4.0,0.1,-0.1 ! Loop over temperatures
do j=-4,4,2 ! Create the array with the

h(j)=min(1.0,exp(-2*j/T)) ! Boltzmann-Gibbs factors
enddo
do ij=1,M0*N ! Thermalizing steps

i=i_ran(N)
ib=s(i)*(s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i)))
if (ran_u().lt.h(ib)) s(i)=-s(i)

enddo
c=0.0 ! Initialize averages
rm=0.0
rm2=0.0
rm1=real(abs(sum(s)))/N
do im=1,M ! Updating steps
do ij=1,mc*N
i=i_ran(N)
ib=s(i)*(s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i)))
if (ran_u().lt.h(ib)) s(i)=-s(i)

enddo
rm0=real(abs(sum(s)))/N ! Begin measures
write(88,*) rm0
rm=rm+rm0
rm2=rm2+rm0*rm0
c=c+rm0*rm1
rm1=rm0

enddo
!Final averages

rm=rm/M
rm2=rm2/M-rm*rm
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c=(c/M-rm*rm)/rm2
if (c.ne.1.0) tau=1.0/(1.0-c)
error=sqrt(rm2*(2*tau+1)/M)
write(66,’(f10.6,1p5e16.6)’) T,rm,rm2,error,mc*tau,c

999 continue
end program Ising_2D_Metropolis

The kernel of the program are the three lines

i=i_ran(N)
ib=s(i)*(s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i)))
if (ran_u().lt.h(ib)) s(i)=-s(i)

The first line selects randomly the spin to be updated. The second line computes
the necessary index of the acceptance probability. The third line, does the actual
updating. In fact, if h(ib)≥ 1, something that occurs if ib≤ 0, there is no need to
compare the acceptance probability with a random number, as the proposal is always
accepted. This can be implemented by modifying the last line to:

if (ib.le.0) then
s(i)=-s(i)
else if (ran_u().lt.h(ib)) s(i)=-s(i)
endif

which reduces the number of calls to the random number generator routine, but in-
creases the complexity of the program. If we would like to implement other updating
probabilities, such as Glauber, all we would need to do is to change

do j=-4,4,2
h(j)=1.0d/(1.0+exp(-2*j/T))

enddo

Another widely used modification is to run sequentially through the sites to update
instead of selecting them sequentially. This can be done by choosing the spins in the
order s1, s2, s3, . . . , sN . This requires only a simple modification of the program.
Namely, replace the lines around i=i_ran(N) by:

do ij=1,mc
do i=1,N

ib=s(i)*(s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i)))
if (ran_u().lt.h(ib)) s(i)=-s(i)

enddo
enddo

Another procedure is to divide the lattice in two sub-lattices such that the sites on
each lattice do not have neighbors in the same lattice. If the side L is an odd number,
this is easily implemented as:

do ij=1,mc
do i=1,N,2

ib=s(i)*(s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i)))
if (ran_u().lt.h(ib)) s(i)=-s(i)

enddo
do i=2,N,2
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ib=s(i)*(s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i)))
if (ran_u().lt.h(ib)) s(i)=-s(i)

enddo
enddo

Finally, note that the program stores in unit 88 each one of the values of the
magnetization. This is necessary, for example, to compute accurately the correlation
time τm of this quantity using another program, like the one explained in Appendix
14. The program given here uses instead, as a rough estimate for the correlation
time, the value τm = 1

1−ρm(1) derived in (??).

Figure 5.4 Representative configurations of the Ising model at T = 4 (top-left), T = Tc

(top-right), T = 2 (bottom-left), T = 1 (bottom-right), for a system of N = 4002 sites. A spin

up, si = +1, is indicated by a dark dot, while a spin down, si = −1, is represented by a white

dot. Observe that at T = Tc the structure is fractal, meaning that there are many blocks of up

spins in a background of down spins, and vice versa, recursively.

In figure 5.4 we plot some representative configurations obtained after running
this basic Ising model program. We can see the order-disorder phenomenology:
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at temperatures larger than the critical temperature Tc, the system is disordered and
there is, on a local average, approximately the same number of up and down spins. At
low temperatures, one of the two spin options dominates. At T ≈ Tc, there is still the
same average number of up and down spins, but they begin to organize themselves
in a fractal-like, self-similar structure, the precursor of the phase transition.

The Kawasaki interpretation of the Ising model

We mentioned already that the Ising model can be used in very different contexts.
An interesting interpretation as a model for binary alloy separation was introduced
by Kawakasi. In his model, a variable taking a value si = +1 indicates that on
node i there is one atom, A, of a particular metal (e.g. aluminum), while si = −1

indicates the presence of another type of atom B (e.g. zinc). The Hamiltonian is
still given by (5.45) but now the magnetic field H is interpreted as the difference in
chemical potential between the two types of atoms. The novelty with respect to the
usual interpretation as a ferromagnet, is that atoms A and B can not transmute. This
means that the number of A atoms and the number of B atoms are both constant.
The averages have to be performed with respect to the same pdf than before, f =

Z
−1e−βH, but only when the total number of A atoms is a prefixed number NA

(and consequently the number of B atoms is NB = N −NA.
How do we implement such a constrain in our proposal probability g(S�|S)?

Kawasaki’s proposal is to allow for changes S → S� in which two neighbor atoms
exchange positions. This certainly keeps constant both the number of A and B
atoms, they simply move around. This also wants to mimic the real diffusion pro-
cess that occurs in an alloy as it is cooled down from a high temperature phase.
So, in the proposal step, select a pair of neighbor sites i, j, check than si = −sj

(otherwise, it does not matter whether we accept the change or not) and propose the
change (si, sj) → (s�i, s

�
j) with s�i = sj = −si, s

�
j = si = −sj . It is clear that this is

a symmetric proposal g(S�|S) = g(S|S�). In order to choose the pair of neighbors
sites, we first choose i randomly between 1 and N . Then, in the square lattice, it
suffices to select j with equal probability as the neighbor to the right or the neighbor
up. Imagine we have selected j as the neighbor to the right, i.e. sj = si1 . Then, the
only terms of the Hamiltonian that will change after exchanging si and sj will be
si(si2 + si3 + si4) + sj(sj1 + sj2 + sj4) (it will help to understand this if the reader
plots the lattice and the involved spins). The change in energy will be:

∆H = −J
`
s�i(si2 + si3 + si4) + s�j(sj1 + sj2 + sj4)

´

+J
`
si(si2 + si3 + si4) + sj(sj1 + sj2 + sj4)

´
, (5.60)

or, using that s�j = −s�i = −sj = si,

∆H = 2Jsi
`
si2 + si3 + si4 − sj1 − sj2 − sj4

´
. (5.61)

If the site j would have been the one located up of site i, then the charge energy
would be similar but involving a different set of sites, namely:

∆H = 2Jsi
`
si1 + si3 + si4 − sj1 − sj2 − sj3

´
. (5.62)
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In any of the two events, one can write −β∆H = −2KBi, being Bi a number
extracted from the set (−6,−4,−2, 0, 2, 4, 6). The only changes to the above pro-
gram is to change the dimension of array h from integer h(-4:4) to integer
h(-6:6) and not forget to change dimension h(-6:6) and write

do j=-6,6,2
h(j)=min(1.0,exp(-2*j/T))

enddo

The updating part is

1 i=i_ran(N)
if (ran_u().lt.0.5d0) then
j=n1(i)
if (s(i).eq.s(j)) goto 1
ib=s(i)*(s(n2(i))+s(n3(i))+s(n4(i))-s(n1(j))-s(n2(j))-s(n4(j)))

else
j=n2(i)
if (s(i).eq.s(j)) goto 1
ib=s(i)*(s(n1(i))+s(n3(i))+s(n4(i))-s(n1(j))-s(n2(j))-s(n3(j)))
endif
if (ran_u().lt.h(ib)) then

s(i)=-s(i)
s(j)=-s(j)

endif

Of course, now it does not make sense to compute the average of the magneti-
zation, as this is a constant (it is the number of A atoms minus the number of B
atoms). A typical quantity to measure instead is the number of links that join two
nearest neighbor sites in which the variables take different values, a sort of contact
area between the metals of the two alloys.

One of the most important drawbacks of this algorithm is that it might occur too
often that the two selected sites hold the same type of atoms, and then this trial has to
be repeated. A possibility is to make a list of all possible pairs of neighboring sites
that hold different values for the spin variables and then choose a pair only from
this list. This possibility speeds up the program but it does require some amount of
programming8)

Considered as a real model for a binary alloy, the Kawasaki model is able to re-
produce some well known facts known to metallurgists. First, the process leads to
phase separation (with each alloy occupying mainly a localized spatial area) only
below a critical temperature, Tc. For temperatures larger than Tc the two metals are
well mixed, while for a temperature smaller than Tc, the system splits in two phas-
es, each one of them rich in one of the metals. The second interesting feature of
Kawasaki model is that the time evolution of the phase separation process occurring
at temperatures below Tc depends strongly on the initial relative proportion of each
metal. If this proportion is close to 50%, then the process proceeds by what is called
“spinodal decomposition” in which filament-like structures linking all the atoms of

8) This modification constitutes the n-fold way proposed by Bortz, Kalos and Lebowitz. It will be met
again in a different context when we discuss the numerical integration of master equations in chapter 9.
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one metal begin to form and then coarsen and grow. When one of the metals is more
abundant than the other, then the metal which is in the minority starts by forming
small droplets embedded in the majority metal. These droplets then begin to coa-
lescence and form larger droplets, until only one big one (and maybe several very
minor droplets) can be seen. This evolution process can be observed in figure 5.5.

Figure 5.5 Representative configurations of the Kawasaki version of the Ising model at

T = 0.95 starting from an initial condition with exactly half of the spins in the +1 state (left

panel), and starting with 1/3 of the spins in the +1 state (right panels). In both cases, time runs

from top to bottom panels. In the left panels we see the spinodal decomposition evolution

mechanism, while in the right we observe the nucleation and growth of droplets of one phase.
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Heat bath algorithm

The Ising model (we now return to the magnetic version in which the number of
spins of one or the other type does not need to be conserved) offers an interesting
and relatively simple application of the heat-bath method. Remember that in this
method, the acceptance probability is always equal to one, but only after the proposal
probability has been carefully chosen (it is not arbitrary anymore) in order to ensure
that the detailed balance condition is satisfied. So, we want to propose the change
from configuration S = (s1, . . . , si, . . . , sN ) to S� = (s1, . . . , s�i, . . . , sN ) in which
the only change is in one spin located at, say, site i. According to (4.77) the proposal
probability g(S�|S) ≡ g(s�i) is given by the conditional probability:

g(s�i) = f(s�i|s1, . . . , si−1, si+1, . . . , sN )

=
f(s1, . . . , si−1, s�i, si+1, . . . , sN )

f(s1, . . . , si−1, si+1, . . . , sN )
(5.63)

This might look as a very complicated expression (and maybe it is so), but we must
take into account that we are proposing a new value only for s�i, while all other
variables remain unchanged. All we have to do, then, is to look for the dependence
on s�i of the previous expression, all other variables take simply fixed numbers, in
other words, they are constants. If we look at the numerator of the last formula and
use f = e−βH we realize that the only place where s�i appears is in the term in H

in which it is multiplied to its neighbors, namely
P

µ s�isiµ , being siµ the set of D

neighbors of si (D = 4 neighbors in the square lattice), therefore, we have:

g(s�i) = C−1eβJs�i
P

µ siµ ≡ C−1eais
�

i (5.64)

where we have defined ai = βJ
P

µ siµ and C is the normalization constant, hiding
all the nasty dependence in the rest of the spin variables. The nice part is that,
whatever complicated the expression for C is if we write it in full, we have a much
simpler method to compute its actual value. Simply realize that s�i can only take the
values s�i = ±1 and hence the probabilities of these two values must add up to one,
g(s�i = +1) + g(s�i = −1) = 1 which leads immediately to C = eai + e−ai , or:

g(s�i = +1) =
eai

eai + e−ai
=

1

1 + e−2ai
, (5.65)

g(s�i = −1) =
e−ai

eai + e−ai
=

e−2ai

1 + e−2ai
. (5.66)

The rest is simple, generate a random number u uniformly distributed in (0, 1).
If u < g(s�i = +1) set s�i = 1, otherwise set s�i = −1. This new value is always
accepted. Again we can use the fact that the sum

P
µ siµ can only take values from

a limited set, namely (−4,−2, 0, 2, 4) in the square lattice, which allows us to com-
pute and store the possible values of g(s�i). Consequently, we define dimension
g(-4:4) and fill up the elements of this array with the corresponding values of
g(s�i = +1), namely

do j=-4,4,2
g(j)=1./(1.+exp(-2.*j/T)

enddo
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and then the updating steps are

do ij=1,mc*N
i=i_ran(N)
ia=s(n1(i))+s(n2(i))+s(n3(i))+s(n4(i))
if (ran_u().lt.g(ia)) then
s(i)=+1

else
s(i)=-1

endif
enddo

5.5
Heisenberg model

This is also a lattice model, but the variable associated to lattice site i is a D-
dimensional vector �si of modulus one |�si| = 1. The Hamiltonian is similar to that of
the Ising model but it involves a scalar product:

H = −J
X

�i,j�

�si · �sj −
�H ·

X

i

�si, (5.67)

being �H the external magnetic field. It is important not to mislead the spatial dimen-
sion d of the lattice with the dimension D of the spins on the lattice. We now explain
a heat-bath method in order to generate configurations X = (�s1, . . . , �sN ) distributed
according to the Boltzmann weight f(S) = Z

−1e−βH. We restrict ourselves to the
D=3 case, but appropriate extensions are possible to other dimensions. We do not go
through all the details which are very similar to the Ising model case. What we have
to do now is to propose a value of a vector �si

� chosen from the distribution

g(�si
�) = C−1eβ(J

P
µ �siµ+ �H)·�si

�

≡ C−1e�ai·�si
�

(5.68)

where C is a normalization constant and we have defined �ai = β(J
P

µ �siµ + �H).
In the heat-bath method, we need to generate a value of �si

� extracted from the dis-
tribution g(�si

�) assuming that the “local field” �ai (which contains information about
the other spins) is a constant.

Now, a three-dimensional vector of modulus 1 can be defined by giving the two
orientation angles �si

� = (φi, θi) with φi ∈ (0, 2π) and θi ∈ (0, π). The two angles
(φi, θi) can be taken with respect to any orientation and it makes sense, according
to the expression above, to consider them with respect to the orientation given by
the local field �ai. Furthermore, it is convenient to work with a new variable defined
as ξi = cos(θi) which takes values in the interval ξi ∈ (−1, 1), such that the scalar
product becomes �ai · �si

� = aiξi. It is possible to find the constant C from the
normalization condition:
Z +1

−1
dξi

Z 2π

0
dφig(φi, ξi) =

Z +1

−1
dξi

Z 2π

0
dφiC

−1eaiξi = 1, (5.69)
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or

C = 2π
eai − e−ai

ai
, (5.70)

yielding a proposal pdf wich can be split as g(φi, ξi) = g(φi)× g(ξi), with g(φi) =

1/2π a uniform distribution in the interval (0, 2π) and

g(ξi) =
ai

eai − e−ai
eaiξi , ξi ∈ (−1, 1). (5.71)

The angle φi is simply generated by φi = 2πui, being ui a Û(0, 1), a random number
distributed uniformly in the interval(0, 1). Concerning g(ξi) it can be implemented
using the general inversion method, or solving

vi =

Z ξi

−1
dξ�ig(ξ�i) (5.72)

being vi an independent Û(0, 1) number. Solving this equation we obtain:

ξi =
1
ai

ln
“
1 + (e2ai

− 1)vi

”
− 1. (5.73)

Once φi and ξi have been obtained, it is a matter of algebra to find the expression
of �si

� relative to whatever fixed coordinate system. Typically, the external field �H

serves to define the Z direction.

5.6
Lattice Φ4 Model

As a final example of the application of the Monte Carlo methods in statistical
physics, we consider the so-called lattice Φ4 model. The model is the lattice ver-
sion of a field model. By a field model we mean that in every point of space �r there
is defined a real variable, Φ(�r). In the lattice version, there are only variables Φi de-
fined in the sites i = 1, . . . , N of a lattice. At variance with the Ising or Heisenberg
models, where some restriction applied to the site variable (either a binary variable
or a vector of modulus 1), in this model each variable can take any real value.

In the field version, the Hamiltonian is a functional of the field, namely:

H({Φ(�r)}) =

Z
d�r

»
−B
2

Φ(�r)2 +
U
4

Φ(�r)4 +
K
2
|�∇Φ(�r)|2 −H(�r)Φ(�r)

–
, (5.74)

being B, U and K parameters of the model and H(�r) an external field, usually
assumed to be constant H(�r) = H . This field model has been used in many different
contexts, in such different topics as quantum field theory or in the study of phase
transitions of interest here. One can think, for instance, on a fluid and then the
field Φ(�r) is the density field. Of course, due to the atomic nature of matter, it is
difficult to define a density field at every point of space as this would be a highly
discontinuous function. One can then parcel the space in cells forming a lattice and
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define in each lattice site i the variable Φi as the average density in the cell associated
to the site. The continuous, field model, interpretation is preferred in the analytical
calculations despite some problems that appear at very small spatial scales (reflecting
precisely the discontinuity of matter at the atomic scale). It has been extensively
used in renormalization group studies in momentum space. The lattice version is the
preferred one for numerical calculations and provides as well a regularization of the
Hamiltonian of the continuous model.

For the lattice version, we consider a d-dimensional (hyper-cubic) regular lattice
Λ, consisting of N = Ld points. Every point i = 1, . . . , N of this lattice has d

coordinates: i = (j1, . . . , jd). The set of 2d neighbors have coordinates

i1 = (j1 + 1, . . . , jd),

. . . . . . . . . . . . . . . . . . . . .

id = (j1, . . . , jd + 1),

id+1 = (j1 − 1, . . . , jd),

. . . . . . . . . . . . . . . . . . . . .

i2d = (j1, . . . , jd − 1).

Periodic boundary conditions are assumed on this lattice. On every site of the lattice
there is a scalar variable Φi. The set of all variables is [Φ] ≡ (Φ1, . . . , ΦN ). We also
introduce a Hamiltonian function H given by:

H([Φ]) =
NX

i=1

ad
0

2

4−B
2

Φ2
i +

U
4

Φ4
i +

K
2

dX

µ=1

„
Φiµ − Φi

a0

«2

−HΦi

3

5 , (5.75)

where the parameter a0 (the lattice spacing) has been introduced to stress the fact that
the continuous, field, version can be recovered (if needed) taking the limit a0 → 0

and L → ∞. Note the replacement in (5.75) of the integral of (5.74) by a sum
and the spatial derivative of the gradient by a difference. If we are not interested in
the continuous version we can simply set a0 = 1 as it only implies a rescaling of
parameters B, U , K and H . In the applications to the studies of phase transitions,
the parameter B depends on temperature B(T ). The first two and the last terms of
the sum appearing in the Hamiltonian are local terms (depending only on the field at
location i) and can be thought of as local potential terms V (Φi):

V (Φi) =
−B
2

Φ2
i +

U
4

Φ4
i −HΦi. (5.76)

The third term in the Hamiltonian (5.75), the one multiplied by K, is called the
interaction term as it contains cross terms between fields in nearest-neighbor sites in
the regular lattice. Expanding the square and noticing that:

NX

i=1

dX

µ=1

Φ2
iµ

= d
NX

i=1

Φ2
i , (5.77)

it is possible to rewrite the Hamiltonian (after setting a0 = 1) as:

H([Φ]) =
NX

i=1

2

4−B + 2dK
2

Φ2
i +

U
4

Φ4
i −K

dX

µ=1

ΦiµΦi −HΦi

3

5 . (5.78)



IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 5 — 2013/10/22 — 19:49 — page 153

153

Note that the interaction terms contain all the products of nearest-neighbor variables,
leading to a form which is not so different from that of the Ising model:

H([Φ]) =
NX

i=1

»
−B + 2dK

2
Φ2

i +
U
4

Φ4
i −HΦi

–
−K

X

�i,j�

ΦiΦj . (5.79)

From a statistical mechanics analysis of this model, the importance of the Hamil-
tonian lies in that it dictates the pdf of the set of variables Φ ≡ (Φ1, . . . , ΦN ) as

f(Φ) = Z
−1e−βH(Φ), (5.80)

being Z the partition function, computed as the multiple integral of the Boltzmann
factor for all the field values:

Z =

Z ∞

−∞

dΦ1 . . .

Z ∞

−∞

dΦNe−βH([Φ])
≡

Z
dΦe−βH([Φ]). (5.81)

For this integral to exist, i.e. for the Φ4 model to be consistent, it is required that the
parameter U verifies U > 0.

As usual, the magnitudes of interest are computed as averages of field functions,
G(Φ), with the probability density function f(Φ):

�G(Φ)� = Z
−1
Z

dΦG(Φ)e−βH(Φ). (5.82)

Example of quantities of interest are the magnetization, m defined as:

m =

*˛̨
˛̨
˛
1
N

NX

i=1

Φi

˛̨
˛̨
˛

+
, (5.83)

and, particularly, its value at H = 0, the spontaneous magnetization m0. Another
quantities of interest are the internal energy, U :

U = �H(Φ)� , (5.84)

as well as the magnetic susceptibility, χT and the specific heat, defined as the fluc-
tuations of the magnetization and the internal energy, using the same definitions
(5.49)-(5.51) than in the Ising model.

Before explaining the specificity of the numerical methods of the Monte Carlo
type to compute the above averages, we shall briefly review some qualitative aspects
as given by a simple approximate theory, known as mean-field approximation and
first introduced by Landau. The basic idea is to assume that the different variables Φi

adopt a common value Φ0, the mean field. The common value Φ0 is chosen, logical-
ly, as the one that maximizes the pdf (5.80) or, equivalently, as the one that minimizes
the Hamiltonian H. After setting Φi = Φ0, ∀i in (5.75) the term proportional to K

vanishes and all the terms in the sum are identical, leading to H = NV (Φ0). Hence,
the minima of H are those of the local potential V (Φ0). Let us consider first the case
of no external field, H = 0. In this case, the local potential changes qualitative when
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the parameter B changes sign. If B < 0 the local potential has only one minimum
at Φ0 = 0. On the other hand, when B > 0 there are two minima of equal depth
located at Φ0 = ±

p
B/U . As the magnetization is defined as the average of the

absolute value of the field, it follows the prediction of the mean-field theory for the
spontaneous magnetization:

m0 =

8
<

:
0, B < 0,q

B
U , B ≥ 0,

(5.85)

As said before, the parameter B is assumed to be a decreasing function of tempera-
ture, such as B(T ) = B0(T0 − T ), for example. The condition B(T0) = 0 defines
the critical temperature T0. The magnetization is then zero for temperatures above
T0 and non-zero below T0. This is the basic phenomenology of phase transitions and
allow us to interpret m as the order parameter.

The basic picture given by the mean-field approximation is qualitatively correct9),
but not the details. It is still true that the magnetization is zero below some crit-
ical temperature Tc, but this is not determined by the condition B(Tc) = 0 and,
instead,we find Bc = B(Tc) �= 0. This can be summarized as:

m0 =

(
0, B < Bc,

m0(B) �= 0, B ≥ Bc,
(5.86)

being Bc dependent on the other parameters of the theory, U and K. The function
m(B) can be expanded near B � Bc as m(B) = m0(B−Bc)

β , being m0 a constant,
and β the critical exponent. The determination of critical exponents is one of the
main points of interest in the modern theory of phase transitions. It is proven that
the different phase transitions can be classified in different “universality classes”,
each class characterized, amongst other things, by a common value of the critical
exponents. In particular, it is known that the Ising and the Φ4 models at the same
spatial dimension belong to the same universality class.

Monte Carlo methods

After this short introduction to the phenomenology of the Φ4 model, let us now
explain the implementation of Monte Carlo methods for the numerical calculation
of averages such as the magnetization m of the internal energy U . It is convenient to
start first with a simplification of parameters. Let us redefine:

φi = (βK)1/2Φi, (5.87)

b =
B
K
− 2d, (5.88)

u =
U

βK2 , (5.89)

h = H

„
β
K

«1/2

, (5.90)

9) To be precise, it is correct if the spatial dimension d is larger than 1.
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a rescaling chosen such that

βH(φ) =
NX

i=1

2

4−b− 2d
2

φ2
i +

u
4

φ4
i +

1
2

dX

µ=1

`
φiµ − φi

´2
− hφi

3

5 , (5.91)

or, expanding the squares as we did before:

βH(φ) =
NX

i=1

»
−b
2

φ2
i +

u
4

φ4
i − hφi

–
−

X

�i,j�

φiφj . (5.92)

The pdf for the new rescaled variables is:

f(φ) = Z−1e−βH(φ), (5.93)

with Z the normalization constant. In this reparametrization, we are left with only 3
parameters: b, u and h.

In order to generate representative configurations φ = (φ1, . . . , φN ) distributed
according to this pdf, we can use a simple10) Metropolis algorithm. Propose a new
configuration in which only one variable, say φi, is proposed to change φi → φ�i
and all other variables remain unchanged. A simple choice is to take φ�i uniformly
from the interval (φi − ∆, φi + ∆), being ∆ a parameter to be chosen to optimize
the method. The proposal φ�i is accepted with a probability

h(φ�|φ) = min(1, e−βH). (5.94)

In computing the change in the Hamiltonian implied by the proposed change, we do
not need to use the full expression (5.92), but rather notice that most of the terms dis-
appear when subtracting the old and the new values, such that the change is simply:

β∆H =
b
2
(φ�

2
i − φ2

i ) +
u
4

(φ�
4
i − φ4

i )− (φ�i − φi)

0

@h +
2dX

µ=1

φiµ

1

A . (5.95)

Alternatively, one could devise a heat-bath method. First, we select a site i and
want to propose a value φi for the variable at that site. This is done with a proposal
g(φi) which is proportional to e−βH but where all other variables φj , j �= i are con-
sidered to be constants. All we need to consider when writing down g(φi) are those
terms in the Hamiltonian where φi appears explicitly. After these considerations, we
have:

g(φi) = C−1e−
u
4 φ4

i + b
2 φ2

i +biφi (5.96)

with bi =
“
h +

P2d
µ=1 φiµ

”
, and C is the normalization constant:

C =

Z ∞

−∞

dφi e−
u
4 φ4

i + b
2 φ2

i +biφi . (5.97)

10) We hope that, by now, the reader finds “simple” this kind of techniques.
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We can use now any method to sample the one-variable pdf g(φi). As the constant
C might be cumbersome to obtain in some cases, it is convenient to use a rejection
method to sample g(φi). For instance, we could split

g(φ) ∝
1

σ
√

2π
e−(φ−µ)2/2σ2

× e−
u
4 φ4

(5.98)

with σ2 = −1/b, a procedure only valid for b < 0 (or B < 2dK in the original
parameters of the model) and µ = bi/b. Then, we could use a rejection method,
consisting in proposing a value of φi according to a Gaussian distribution of mean
µ and variance σ2 and then accept that proposed value with a probability e−

u
4 φ4

i ∈

(0, 1). This could be programmed with the following lines:

1 phi=sigma*ran_g()+mu
if (ran_u().gt.exp(-0.25*u*phi**4) goto 1

Remember that in the heat-bath method, the proposals are always accepted.
Many other choices for the proposal and acceptance probabilities are, of course,

possible. A characteristic feature of the Φ4 model, present as well in many other
models, is that it is possible to split the Hamiltonian into local and interaction terms.
We have already explained that local terms depend only on one of the variables,
while interaction terms depend on several variables. This is precisely what we had
done in (5.92) that we rewrite as

H =
NX

i=1

v(φi) +HI (5.99)

with

βv(φi) = −
b
2
φ2

i +
u
4

φ4
i − hφi, (5.100)

βHI = −

X

�i,j�

φiφj . (5.101)

We now use an approach in which the proposal depends only on the local term,
while the acceptance probability will take care of the interaction terms. Specifically,
we use a proposal g(φ�|φ) which depends only on one variable selected randomly.
Once this variable, say φi, has been chosen, we use a proposal proportional to the
Boltzmann factor of the local term, namely

g(φi) = C−1e−βv(φi), (5.102)

being C a normalization constant. Replacing this proposal in the detailed balance
condition (5.17), we obtain

e−βv(φ�i)h(φ�|φ)e−βv(φi)e−βHI(φ) = e−βv(φi)h(φ|φ�)e−βv(φ�i)e−βHI(φ�)(5.103)

or

h(φ�|φ)e−βHI(φ) = h(φ|φ�)e−βHI(φ�). (5.104)
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We have seen these functional equations before. They have the same form that the
general detailed balance condition under the symmetric proposal (when the proposal
functions g disappear from the equation). The novelty now is that only the interaction
part of the Hamiltonian appears in both sides of this equation. Possible solutions are
the Metropolis solution:

h(φ�|φ) = min(1, e−β∆HI ), (5.105)

the Glauber solution

h(φ�|φ) =
e−β∆HI

1 + e−β∆HI
, (5.106)

etc.
Again, when computing ∆HI it is important to realize that this difference only

depends on a reduced number of variables. For example, for the Φ4 model we would
propose a value φ�i sampled from the distribution

g(φ�i) = C−1e
b
2 φ2

i−
u
4 φ4

i +hφi . (5.107)

Instead of using a rejection method as we proposed to sample (5.96), we can sample
this new g(φ�i) using, for example, a numerical inversion algorithm, as, at variance
with (5.96), the parameters of (5.107), b, u, h, do not vary after each step. The
change in the interaction Hamiltonian needed for the acceptance step is then:

∆HI = (φ�i − φi)
dX

µ=1

φiµ (5.108)

In general, a procedure similar to this one can be used when the Hamiltonian can
be split in a sum of local terms plus an interaction term. One can choose the new
value of the variable, independently of the old value, according to the distribution
dictated by the local term. This proposal is then accepted with the Metropolis prob-
ability using only the interaction term.

5.7
Data analysis: Problems around the critical region

Once we have developed our Monte Carlo code, the next logical step is to run it and
to obtain some results of interest. However, this process is not exempt of danger as
we will see using as an example the Ising model in the square lattice. In figure 5.6
we plot the spontaneous (at zero magnetic field) magnetization of the Ising model as
obtained from our program for three different system sizes: L = 20, 40, 80, as well
as the exact solution given by Onsager, (5.52).

From this figure we notice two clear things: (1) for a considerable range of tem-
peratures, the numerical plots are well outside the theoretical result and (2) the error
bars are not constant for all values of the temperature, but they are considerable larger
near the critical region. The first discrepancy is due to finite-size effects. Concerning
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Figure 5.6 Spontaneous magnetization m0 of the Ising model in the square lattice as a

function of temperature T for different values of the system side L = 20, 40, 80 from top to

bottom in the right hand side of the figure. The dots have been obtained using the Metropolis

algorithm described in the main text. The dashed line is Onsager’s exact solution, as given by

Eq. (5.52). We have set units such that k = J = 1.

the magnitude of the error bars, we recall that the error in the sample average of the
magnetization m is given by (5.14) that we rewrite here:

�[m] =
σ[m]
√

M

√
2τm + 1 (5.109)

being M the number of points contributing to the sample average, σ2[m] = �m2
� −

�m�2 the variance of m and τm the correlation time associated to the normalized cor-
relation function ρm. Certainly the errors decrease by increasing the number of mea-
surements, M , and we can ask which one of the two factors, σ[m] or τm, is responsible
for the observed error increase around the critical region. The not so encouraging
answer is that both factors contribute. Around the critical region one observes: (i) an
increase of fluctuations σ[m] and (ii) an increase of the correlation time τm due to the
so-called critical slowing down. Finite size effects, increase of fluctuations and criti-
cal slowing down and thermalization are the major points of concern in many Monte
Carlo simulations.We now discuss these points separately First of all, we must say
that these problems are not specific of the Ising model. They can also be observed in
the numerical simulations of the Φ4 model, see figure 5.7 and of every other system
that we simulate near a phase transition.

Finite-size effects Finite-size effects appear as the discontinuities and mathemat-
ical singularities of a true phase transition requires of the thermodynamic limit N →

∞. For example, Onsager’s solution (5.52) implies a discontinuity of the deriva-
tive of m0(T ) at T = Tc. In fact, the theory of phase transitions predicts that the
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Figure 5.7 Spontaneous magnetization of the Φ4 model in the square lattice as a function of

the parameter b for u = 1 and different values of the system side L = 20, 40, 80 (from bottom

to top lines). The data have been generated using the heat-bath Monte Carlo method

explained in the main text.

asymptotic behavior near the critical point is:

m0(T ) ∼ |1− T/Tc|
β , for T ≤ Tc, (5.110)

with a value of the “critical exponent” β = 1/8 for the 2d Ising model. Similarly, it
predicts that the magnetic susceptibility (5.49) diverges at the critical point as:

χT (T ) ∼ |1− T/Tc|
−γ (5.111)

with a value of the critical exponent γ = 7/4, for the 2-d Ising model, implying, for-
mally, that the magnetic susceptibility diverges at T = Tc, and, according to (5.49),
that the variance of the order parameter greatly increases near Tc. These are exam-
ples of the typical non-analytical behavior that occurs at the critical point. Strictly
speaking, however, a non-analytical behavior can not appear in a finite system11).
What it is observed in the simulations, though, is a big increase of the susceptibility
in the neighborhood of the critical region, see figure 5.8. As the system size N in-
creases, the maximum in the susceptibility grows higher and its location approaches
the true critical temperature Tc of the infinite system.

It can be understood intuitively why finite size effects will be more important near
a second order phase transition. In this situation the correlation length, which mea-
sures the linear range over which spins at different sites of the lattice are correlated,
diverges (in an infinite system) with a power-law singularity:

ξ(T ) ∼ |1− T/Tc|
−ν , (5.112)

11) Think in terms of our simulation. It is impossible that χ
T

is equal to ∞ anywhere as the fluctuations
of the order parameter are bounded, m < 1, and we never divide by 0.
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Figure 5.8 Magnetic susceptibility χT for the 2-d square Ising model computed from (5.49)

using the Metropolis algorithm for system sides L = 40, 80, 120, 160, 200. The maximum

value increases for increasing L.

being ν = 1 for the 2d Ising model. For a finite system, the correlations can not
extend longer than the system side and we must have ξ ∼ L. The theory of finite
size tells us exactly how (and why!) the averages of interest behave. The basic idea
is that now the magnetization becomes a homogeneous function of ξ and the system
side L, m(ξ, L) = ξxm̃(ξ/L). The unknown exponent x is obtained by demanding
that in the infinite system, and close enough to the critical point, one recovers the
known behavior given by (5.110). This implies that the function m̃(z) takes a finite
limit when z → 0 and then:

m0(T ) = lim
L→∞

m(T, L) = ξxm̃(0) ∼
h
|1− T/Tc|

−ν
ix
∼ |1−T/Tc|

−xν .(5.113)

Compared to (5.110) one concludes β = −xν and then the prediction for the mag-
netization near the critical point for a finite system is:

m0(T, L) = ξ−β/νm̃(ξ/L) = L−β/νm̄[(1− T/Tc)L
1/ν ]. (5.114)

The typical way of checking this scaling behavior is to plot m0(T, L)Lβ/ν vs the
rescaled variable (1 − T/Tc)L

1/ν , see figure 5.9. One can use as well the corre-
sponding scaling relations for the specific heat and the susceptibility:

c(T, L) = Lα/ν c̄[(1− T/Tc)L
1/ν ], (5.115)

χT (T, L) = Lγ/ν χ̄[(1− T/Tc)L
1/ν ]. (5.116)

The scaling relation for χT has been checked in figure 5.10. We have to say that the
quality of the scaling observed in these figures 5.9-5.10 is not representative of many
simulations in other systems. When plotting the figures with the rescaled data we
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have used the known values for the critical temperature Tc and the critical exponents
ν, β and γ for the 2-d Ising model. If, as it is usually the case, the critical temperature
and the critical exponents are not known, but its knowledge are the ultimate goal of
our simulation, this procedure implies a three-parameter fit which is rather difficult
to do in practice. The fitting has another important problem, namely, that the scaling
relations, such as (5.114), (5.115), (5.116) and others are only valid asymptotically
for large L and close enough to Tc. What is meant by “large L” and “sufficiently
close to Tc” is something that can not be asserted before we do the simulations. If
we add on top of all that the large errors that occur near the critical region, it is not
strange that some disputes appear continuously about the correct values of critical
exponents for different models of interest in the literature.
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Figure 5.9 Check of the scaling relation with system size of the magnetization. Data for

L = 40, 80, 120, 160, 200 have been collapsed onto the same curve using the rescaling of

axes as indicated.

Of particular interest for the analysis of the data is the finite-size scaling behavior
of the fourth-order cumulant defined as the ratio of moments of the magnetization m
defined:

U4(T, L) ≡ 1−
�m4
�

3�m2�2
= Ū4[(1− T/Tc)L

1/ν ]. (5.117)

As U4(Tc, L) = Ū4(0), a constant, the critical temperature Tc can be then determined
as the common intersection of the U4(T, L) curves for different values of L, see
figure 5.11. Once Tc has been determined by this procedure, we can use the fits to
determine the values of the critical exponent ν and use those values in the analysis of
the curves for the magnetization, susceptibility, etc. However, be aware that these are
not easy fits and it is essential to have a precise determination of the errors, including
those due to the large autocorrelation times at the critical point.



IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 5 — 2013/10/22 — 19:49 — page 162

162

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-8 -6 -4 -2  0  2  4  6
(1-T/Tc)L1/!!

"# L-$/!!

Figure 5.10 Check of the scaling relation with system size of the susceptibility. Data for

L = 40, 80, 120, 160, 200 have been collapsed onto the same curve using the rescaling of

axes as indicated.

Increase of fluctuations The variance σ[m] measures the fluctuations of m. As we
have discussed, the fluctuations increase at the critical region of a phase transition.
This result can be obtained from the relation between the fluctuations and some
response functions, such as (5.49) and (5.51).

Near a critical point, the isotherm becomes flat and hence some of these deriva-
tives become formally infinite and have associated, therefore, fluctuations of a very
large amount. These increase of fluctuations at the critical point is the origin of the
so-called critical opalescence that can be observed with the naked eye and that con-
stitutes one of the trademarks of critical points. But from the numerical point of
view, this is a disaster. If the fluctuations, as measure by σ[m] increase, so does the
error �[m]. The theory of finite-size scaling that we have briefly reviewed tells us
that fluctuations of the order parameter behave at the critical region as dictated by
(5.116). Therefore, exactly at T = Tc, it is χT (Tc, L) = Lγ/ν χ̄(0). If we know
the value of Tc we can fit this expression to obtain γ/ν. There is another way in
which we can proceed. As seen in figure 5.8 the susceptibility χT (T, L) develops
a maximum at a location Tc(L). By finding the maximum of (5.116) we can prove
that the location of this maximum varies as

Tc(L) = Tc + a1L−1/ν , (5.118)

being a a constant. From here we deduce that a plot of Tc(L) vs L−1/ν must yield
a straight line whose interception at the origin is precisely Tc. This can provide a
confirmation of the values of Tc and ν obtained by other fits, such as the ones coming
from the fourth-order cumulant.
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Figure 5.11 Behavior of the ratio of moments U4 defined in (5.117) coming from numerical

simulations of the 2-d square Ising model for system sizes L = 40, 80, 120, 160, 200. The

common crossing of the curves for different values of L indicates the critical temperature Tc

(left panel). In the right panel, the data have been collapsed onto the same curve using the

rescaling of the horizontal axis as indicated.

Critical slowing down As well as the fluctuations, the correlation time τm also di-
verges at the critical point! It is known that the real dynamics of a physical system
slows down at the critical region (again, a fact that can be observed experimental-
ly). However, we are not using here the real (say Hamiltonian) dynamics, but we
have introduced (within some arbitrariness) a convenient Markov chain that allows
us to generate representative configurations at equilibrium. Does this stochastic dy-
namics also suffer from critical slowing down? The answer is yes, as shown by the
numerical data and supported by a simple calculation. We had derived in (4.80) an
exact expression for the value of the correlation function ρG(1) after one elementary
proposal-acceptance step. We combine this with the approximate expression for the
correlation time (??) to obtain

τm ≈
2σ2[m]R

dx dy h(x|y)g(x|y)[m(x)− m(y)]2fx̂(y)
. (5.119)

Consider, for the sake of clarity, the Metropolis algorithm for the Ising model and
we want to consider the correlation time of the magnetization (5.46). We know that
the proposal for change x → y is to reverse the sign of a single spin. This yields a
modification of m(x)− m(x) = ±2

N . After squaring, it can be taken out of the integral
and we are left with

R
dx dy h(x|y)g(x|y)fx̂(y) which is nothing but the average

acceptance probability �. We get finally

N−1τm =
Nσ2[m]

2�
=

kTχT

2�
. (5.120)

N−1τm ≡ τMCS
m is the autocorrelation time in units of updates per spin, or MCS. As

the average acceptance probability does not decrease near zero at the critical point, it
follows that, within this approximation, the critical behavior of the correlation time
τMCS
m , is that of the magnetic susceptibility χT . As this diverges at the critical point,
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it turns out that τMCS
m diverges as well. As explained in the previous section, for a

finite system of linear side L, it can not really diverge to infinity, but it grows as a
power of the system side

τMCS
m (T = Tc) ∼ Lz . (5.121)

The simple expression (5.120) we have derived here would tell us that z = γ/ν,
the exponent giving the divergence of the susceptibility with system size. Intensive
numerical simulations using the Metropolis algorithm suggest that the dynamical
critical exponent takes a value z ≈ 2 for the 2d Ising model. As the fluctuations
increase at the critical point as χT ∼ Lγ/ν , it turns out that the error (5.109) at the
critical point increases with system size as �[m] ∼ L(z+γ/ν)/2 with (z + γ/ν)/2 ≈

1.9. Roughly speaking, for the 2d Ising model, the errors in the Metropolis algorithm
near the critical increase by a factor of 4 every time we double the system linear side,
if keeping constant the number of measurements M .

While the divergence of the fluctuations (e.g. susceptibility) near a critical point is
intrinsic to the model under study, the divergence of τm and other correlation times
is a property of the numerical method we use to generate the representative configu-
rations. Therefore, some Monte Carlo schemes have a smaller correlation time than
others. It is then important to compare the different possibilities available and to tune
up the parameters of the numerical method, whenever possible, in order to obtain the
smallest correlation time. As far as the Ising model is concerned, the best algorithms
use collective updates in which many spin are changed at once. In this way it is pos-
sible to reduce the critical exponent z to a value close to 0. This, however, require an
exquisite care in the choice of the proposal and acceptance probabilities. They will
be discussed briefly in Appendix 15.

Thermalization We will very brief here. We just want to remind the reader that
the Boltzmann factor is sampled only asymptotically by the Monte Carlo algorithm.
Therefore, we need to make sure that we are in the regime where all generated con-
figurations follow the distribution (5.3). We have already discussed that one way
of checking that this is the case is to check the result (5.24). More sophisticated
tests include computing the non-linear relaxation function and checking that it has
decayed to a value close to 0. We refer the reader to section 4.7 for a discussion of
this point.

Further reading

Concerning the applications to lattice Ising-type models, the books by M.E.J. New-
man and G.T. Barkema [? ] and by D.P. Landau and K. Binder [? ] give further
details about data analysis using finite-size scaling techniques. The second book also
offers a good summary of techniques and results for off-lattice continuous models
such as Lennard-Jones and hard-spheres. This topic is also covered in the classic
book by Allen and Tildesley [? ].
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Exercises

1) Consider a hard-sphere model including a gravitational potential −mgz acting on
each sphere. Use the Monte Carlo algorithm to compute the density profile ρ(z)

as a function of height.
2) Prove that, in the Ising model, if we select randomly the spin to be updated, then

the proportion of nodes that are not selected after N trials tends, for large N , to
the value 1/e ≈ 37%.

3) Compute numerically the autocorrelation times for the magnetization and the ener-
gy for the two-dimensional Ising model using Metropolis algorithm, as a function
of temperature T for systems of size L× L with L = 20, 40, 60, 80. Compare the
result given by the analysis of the temporal series (using, for example, the method
given in Appendix 14) with the approximate value 4.26.

4) Run the Monte Carlo algorithm for the Ising model at exactly the critical temper-
ature Tc = 1/ log

p
1 +

√
2 ≈ 2.2691853 . . . and compute the magnetization, the

susceptibility and the correlation time of the magnetization for a square lattice of
systems size L × L with L = 20, 40, 80, 160, 320 (larger if your computer allows
you to do so). Check that all these quantities behave proportionally to a power of
the system size L and compute in each case the exponent of the power-law. Do
not forget to perform a proper analysis and give meaningful error bars for each
exponent.

5) Modify the program for the 2-d Ising model including the so-called Moore neigh-
borhood, in which each spin interacts with its 4 nearest neighbors and the 4 next-
nearest.

6) Run the heat-bath algorithm for the Ising model in the 3d cubic lattice. Use the
finite-size scaling techniques analysis of the fourth-order cumulant and determine
the critical temperature (best estimate in the literature Tc ≈ 4.5115).

7) In the so-called q-state Potts model, in every site of the lattice the variable si can
take any integer value between 1 and q (the case q = 2 is isomorphic to the Ising
model). The interaction energy between two nearest neighbors si, sj is equal to
0 if si �= sj and equal to −1 if si = sj . If we want to implement the Metropolis
algorithm, what is a reasonable proposal probability probability in this model?
Which is the corresponding acceptance probability? Run the program for q = 3

and compute the order parameter, defined as

m =

s
1

q − 1

X

k>�

(xk − x�)2,

being xk, k = 1, . . . , q the proportion of sites occupied by a value si = k. Deter-
mine the critical temperature.

8) An elegant way of implementing a Monte Carlo method for the Φ4 model is that of
Bruce[8]. In his approach, the proposal gx̂(x|y) ≡ gx̂(φ�i) is also independent of
the old configuration y (in the same vein than heat-bath), but gx̂(φ�i) is chosen to
be the sum of two Gaussians which best approximate the actual local distribution
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of the field φ�i:

gx̂(φ�i) =
1
2

"
1

σ1
√

2π
e
−

(φ�i−µ1)2

2σ2
1 +

1

σ2
√

2π
e
−

(φ�i−µ2)2

2σ2
2

#
,

and σ1, σ2, µ1, µ2 are determined self-consistently during the simulation. Use the
detailed balance condition to determine a possible acceptance probability for this
method.

9) Prove equation 5.118 for the location of the maximum of the susceptibility accord-
ing to the theory of finite-size scaling.

10) Implement a simple Metropolis algorithm for the 2d square lattice Φ4 model in
which the proposal changes the scalar variable φi → φ�i ∈ (φi −∆, φi + ∆). Run
the program at the approximate value of the critical point (u = 1, b ≈ −2.735) and
determine the optimal value for ∆ as the one that minimizes the correlation time
of the magnetization.


