Statistical errors
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If X; are independent, pg(k) = 0 and 7¢ = 0

pa(k) decays with k (exponentially)

Continuum time variable. 6t = 1 MC
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oG] = ][\7G] ( 5t " 1)

One measures after M Monte-Carlo steps. At = Mot

[G] = 7’lG] (22 + 1) — (;2][\[(2] (QE + 1) _

Minimize ¢2[G] for constant computer time.

t1 measure time, t5 1 MC time. Minimize:
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with the constrain:
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Near a critical point o2[G] diverges.

Try to chose an algorithm that minimizes 7¢
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Intrinsic correlation time of the algorithm:
T = mgx TG

Rule: chose parameters such that acceptance ~ 50%

Why?
In most algorithms 74 also diverges near a critical point.

If we make the (exponential) approximation:

pa(k) = [pa(1))*

then the correlation time is

_ Mt k _ pe(l)
= (1 N M) pelk) =4 —Gpg(l)

One can prove the (exact) formula:
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202(C] [ da [ dy h(z|y)g(z|y) fx(y)[G(z)—G(y)?

pa(l) = 1—

For the Metropolis algorithm applied to the Ising model, one

gets for the magnetization m:



Therefore
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(¢ is the average acceptance probability). Therefore, we arrive

at:
ty= = Ar
N 2e¢kT
and t,, diverges as |1 — IT}; 7, in this approximation. In general,
one expects the behavior:
T ¢
o1

for the Metropolis algorithm applied to the Ising model, it is
Zm R 2.2.

Clever algorithms have been devised to overcome this crit-
ical slowing down of the Montecarlo simulation. The best
performing ones are the collective updates: hybrid Montecarlo
and cluster algorithms (Wolftf and Swendsen-Wang).

Another important improvement is that of extrapolation
techniques (Ferrenberg-Swendsen) that allow one to combine

simulations at different temperatures in order to obtain smoot
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curves as a function of temperature.

Thermalization

A fx, () = fal2)

Discard the first M values generated for X.

< G(n) >= [T fz,()G(z)dx

Non-linear relaxation function:

pe’(n) =

Non-lineal relaxation time:

NL X NL
o = X pa(n)
n=0
NL — mgx T(];V L

How do we know we are in the steady state?
We never know for sure!!!

But we can check:

average over r in the supposed steady state

average over proposals .



Proof:
(@(x|y))ey = | dy | dxfo(x)g(y|z)q(y|)

g(zly) fz(y)
9(y|z) fx(x)

= [dy|[ dzg(z|y)] fx(y)

= [dy | dxfz(x y\x)

= [ dyfs(y) =1
If g(x|y) = g(y|z) and fi(z) = SLETU) thep

(exp (=G [H(y) = H(z)])) = (exp (=SAH)) =

necessary condition to be verified at the equilibrium state.



