
Statistical errors

I =
∫ ∞
−∞G(x)fx̂(x) dx

θ̂ =
1
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1− k

N

 ρG(k)

ρG(k) =
〈ĜiĜi+k〉 − I2

σ2[Ĝ]

If x̂i are independent, ρG(k) = δk and τG = 0

ρG(k) decays with k (exponentially)

Continuum time variable. δt = 1 MC

tG = τGδt =
N−1∑
k=1

1− k

N

 ρG(k)δt ≈
∫ ∞
0 ρG(t) dt
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One measures after M Monte-Carlo steps.∆t = Mδt

σ2[Ĝ] =
σ2[Ĝ]

N

2
tG
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Minimize σ2[Ĝ] for constant computer time.

t1 measure time, t2 1 MC time. Minimize:

1

N

2
τG

M
+ 1



with the constrain:

Nt1 + NMt2 = t constante

Solution:

M =

√√√√√√2τGt1
t2

So that

σ2[Ĝ] =
σ2[Ĝ]

N

1 +

√√√√√√2t2τG

t1


M
K t1
Mt2

=

√√√√√√ t1
2τGt2

6= 1!!!!

Near a critical point σ2[Ĝ] diverges.

Try to chose an algorithm that minimizes τG
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Intrinsic correlation time of the algorithm:

τ = max
G

τG

Rule: chose parameters such that acceptance ≈ 50%

Why?

In most algorithms τG also diverges near a critical point.

If we make the (exponential) approximation:

ρG(k) = [ρG(1)]k

then the correlation time is

τG =
M−1∑
k=1

1− k

M

 ρG(k) =
ρG(1)

1− ρG(1)

One can prove the (exact) formula:

ρG(1) = 1− 1

2σ2[G]

∫
dx

∫
dy h(x|y)g(x|y)fx̂(y)[G(x)−G(y)]2

For the Metropolis algorithm applied to the Ising model, one

gets for the magnetization m:

[m(x)−m(y)]2 =
4

N 2
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Therefore

ρm(1) = 1− 2ε

N 2σ2[m]
= 1− 2εkT

Nχ
T

(ε is the average acceptance probability). Therefore, we arrive

at:

tm =
τm

N
=

χ
T

2εkT

and tm diverges as
∣∣∣∣∣1− T

Tc

∣∣∣∣∣γ, in this approximation. In general,

one expects the behavior:

tG ∼
∣∣∣∣∣∣∣1−

T

Tc

∣∣∣∣∣∣∣
zG

for the Metropolis algorithm applied to the Ising model, it is

zm ≈ 2.2.

Clever algorithms have been devised to overcome this crit-

ical slowing down of the Montecarlo simulation. The best

performing ones are the collective updates: hybrid Montecarlo

and cluster algorithms (Wolff and Swendsen-Wang).

Another important improvement is that of extrapolation

techniques (Ferrenberg-Swendsen) that allow one to combine

simulations at different temperatures in order to obtain smoot
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curves as a function of temperature.

Thermalization

lim
n→∞ fx̂n(x) = fx̂(x)

Discard the first M0 values generated for x̂.

< G(n) >=
∫ ∞
−∞ fx̂n(x)G(x) dx

Non-linear relaxation function:

ρNL
G (n) =

〈G(n)〉 − 〈G〉
〈G(0)〉 − 〈G〉

Non-lineal relaxation time:

τNL
G =

∞∑
n=0

ρNL
G (n)

τNL = max
G

τNL
G

How do we know we are in the steady state?

We never know for sure!!!

But we can check:

〈q(x|y)〉x,y = 1

average over x in the supposed steady state

average over proposals y.
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Proof:

〈q(x|y)〉x,y =
∫

dy
∫

dxfx̂(x)g(y|x)q(y|x)

=
∫

dy
∫

dxfx̂(x)g(y|x)
g(x|y)fx̂(y)

g(y|x)fx̂(x)

=
∫

dy [
∫

dxg(x|y)] fx̂(y)

=
∫

dyfx̂(y) = 1

If g(x|y) = g(y|x) and fx̂(x) = exp (−βH(x))
Z then

〈exp (−β [H(y)−H(x)])〉 = 〈exp (−β∆H)〉 = 1

necessary condition to be verified at the equilibrium state.
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