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1
Review of probability concepts

We will give in this chapter a brief summary of the main concepts and results about
probability and statistics that will be needed in the rest of the book. Readers who are
familiar with the theory of probability might not need to read this chapter in detail,
but we urge them to check that effectively this is their case.

1.1
Random variables

In most occasions, we can not predict with absolute certainty the outcome of an
experiment (otherwise it might not be necessary to perform the experiment). We
understand here the word “experiment” in a broad sense. We could count the number
of electrons emitted by a β-radioactive substance in a given time interval, determine
the time at which a projectile hits its target or a bus reaches the station, measure an
electron’s spin, toss a coin and look at the appearing side or have a look through
the window to observe if it rains or not. We will denote by E the set of possible
results of the experiment. For the β-radioactive substance E = {0, 1, 2, . . . } is the
set of natural numbers N; the hitting times of the projectile or the arrival times of
the bus (in some units) both belong to the set of real numbers E = R; the possible
outcomes of a measure of an electron’s spin are E = {−�/2, �/2}; when tossing a
dice the possible results are E = {heads, tails} and, finally, for the rain observation
the set of results is E = {yes, no}. In all these cases we have no ways of knowing a
priori which one of the possible outcomes will be observed. Hence, we abandon the
deterministic point of view and adopt a “probabilistic” description in which subsets
of results (which are called “events”) are assigned a number measuring their likeness
of appearance. The “theory of probability” is the brach of mathematics that allows
us to perform such an assignation in a logically consistent way and compatible with
our intuition of how this likeness of events should behave.

It is useful for the theory to consider that the set of results contains only numbers.
In this way we can use the rules of calculus (add, multiply, differentiate, integrate,
etc.). If the results themselves are numbers (case of counting the number of elec-
trons, determine the time of impact of the projectile, etc.) this requires no special
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consideration. In other cases (to observe whether it rains or not) we need to label
each result with a number. This assignation is arbitrary but usually it responds to
some logics of the problem under consideration. For instance, when tossing a coin,
it might be that we win one euro every time heads show up and we lose one euro
when tails appear. The “natural” identification is +1 for heads and −1 for tails. This
assignation of a number to the result of an experiment is called a “random variable”.
Random variables are, hence, an application of the set of results to the set of real
numbers. This application maps each result of the experiment ξ ∈ E into one, and
only one, number. The application needs not to be one-to-one. For instance, if the
experiment is to extract cards from a shuffled deck, we could assign +2 to all hearts
cards, +1 to spades, and 0 to diamonds and clubs. It is customary to denote random
variables by using a “hat” on top of its name, say x̂, or ŷ, or whatever name we
choose for it. If we choose the name x̂, the number associated to the result ξ ∈ S is
x̂(ξ) ∈ R. This distinction between the result of the experiment and the real number
associated to it is important from the mathematical point of view, but in many cases
of interest they both coincide as the result of the experiment is already a real number,
ξ = x, and it is natural to define x̂(x) = x in a somewhat redundant notation.

In summary, a random variable x̂ is a real number which is obtained as a result of
an experiment.

The next step in the theory is to assign numbers called “probabilities” to the pos-
sible results of the experiment or, equivalently, to the different values of the random
variable. The assignation should match our a priori expectations (if any) about the
likeness (expected frequency of appearance) of the different outcomes. For instance,
if tossing a coin it is natural (but not necessarily useful or convenient) to assign a
probability equal to 1/2 to the appearance of heads, such that P (heads) = 1/2 or,
equivalently, to the random variable x̂(heads) taking the value +1 (as assigned arbi-
trarily before), P (x̂ = +1) = 1/2. The assignation of probabilities to events might
follow some physical law (as in the case of the radioactive substance, the Boltzmann
law for the distribution of energies or the quantum-mechanical postulates), might
come after some lengthy calculation (the probability of rain tomorrow) or might fol-
low other arguments such as symmetry (the probability of heads is equal to 1/2),
Jayne’s principle (based on the extremization of the information function), etc., but,
whatever its origin, we consider the assignation to be known. A typical consequence
of the theory is the calculation of probabilities for more or less complicated events:
which is the probability of obtaining 5 heads in a row if we toss a coin 10 times?
which is the probability that the next emission of an electron by the radioactive sub-
stance occurs in the next 10 ms? etc.

In practice, the assignation of probabilities to values of the random variable is
performed differently if the random variable is continuous (i.e. can take continuous
values in a given interval x̂ ∈ (α, β) where α can also be−∞ or β can be +∞) or dis-
crete (can take only a finite or infinite numerable set of values x̂ ∈ {x1, x2, x3, . . . }).
For example, the random variable counting the number of times a coin must be tossed
before heads appear can take an infinite numerable set of values {1, 2, 3, . . . }. The
time at which the daily bus reaches the station can take continuous values in a finite
interval (0, 24)h.
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For a discrete random variable taking values x̂ ∈ {x1, x2, x3, . . . } we assign to
each value xi its probability pi = P (x̂ = xi) such that the following two conditions,
non-negativity and normalization, are satisfied:

pi ≥ 0, ∀i, (1.1)
X

∀i

pi = 1. (1.2)

One can check that the assigned probabilities pi are consistent with the actual results
of the experiment. For instance, quantum mechanics might predict that in a given
experiment with an electron’s spin, the random variable x̂ takes the value x1 = +�/2

with probability p1 = 1/3 and the value x2 = −�/2 with probability p2 = 2/3. To
check if this prediction is correct, one repeats the experiment M (a large number)
times and computes the frequency fi = ni/M , being ni the number of times that
result xi appears and checks whether f1 is close to 1/3 and f2 to 2/3. If they are
not, then the predictions of the theory or the implementation of the experiment are
wrong1).

For a continuous random variable x̂ we assign instead a probability to the random
variable taking a value in a finite interval [a, b] as

P (x̂ ∈ [a, b]) =

Z b

a
fx̂(x) dx. (1.3)

Here, fx̂(x) is known as the probability density function of the random variable x̂,
or pdf for short. It is one of the most important concepts in the theory of random
variables. To be able to consider fx̂(x) as a bona fide pdf, it must satisfy the non-
negativity and normalization conditions:

fx̂(x) ≥ 0, (1.4)
Z ∞

−∞

fx̂(x) dx = 1. (1.5)

The interpretation of the pdf is that in the limit dx → 0, fx̂(x) dx gives the proba-
bility that the random variable x̂ takes values between x and x + dx, i.e.:

P (x < x̂ ≤ x + dx) = fx̂(x) dx. (1.6)

In this way, the probability that the random variable x̂ takes a value within an arbi-
trary region Ω ⊂ R of the real numbers is given by the integral of the pdf over that
region:

P (x̂ ∈ Ω) =

Z

Ω
fx̂(x) dx. (1.7)

Note that fx̂(x) has units of the inverse of the units of x and it is not limited to take
values smaller or equal than 1. A pdf governing the probability of the next emission

1) An important issue in probability theory is to be able to conclude whether the observed frequencies fi

are indeed compatible, within the unavoidable statistical errors, with the postulated probabilities pi.
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of an electron by a β-radioactive substance has units of inverse of time, or T−1. A
pdf can be computed from the experimental data. We first generate M data of the
random variable x̂ by repeating the experiment M times and recording the outcomes
{x1, x2, . . . , xM}. We choose an interval ∆x and count the number of times n(x, x+

∆x) in which the random variable has taken values in the interval (x, x + ∆x).
According to the interpretation of fx̂(x) it is fx̂(x) ≈ n(x, x + ∆x)/(M∆x) from
where fx̂(x) can be estimated. A good estimator for fx̂(x) requires M to be large
and ∆x to be small. Again, if the estimated fx̂(x) is not equal to the theoretical
prediction, then something is wrong with the theory or with the experiment.

Further calculations can be simplified if one introduces the cumulative distribution
function or cdf, Fx̂(x), as:

Fx̂(x) =

Z x

−∞

fx̂(x�) dx�. (1.8)

From this definition it follows that the cdf Fx̂(x) is the probability that the random
variable x̂ takes values less than x:

P (x̂ ≤ x) = Fx̂(x), (1.9)

and that

P (x1 < x̂ ≤ x2) = Fx̂(x2)− Fx̂(x1), (1.10)

a relation that will be useful later. The following general properties arise from the
definition and the non-negativity (1.4) and normalization condition (1.5) of the pdf
fx̂(x):

Fx̂(x) ≥ 0, (1.11)
lim

x→−∞
Fx̂(x) = 0, (1.12)

lim
x→+∞

Fx̂(x) = 1, (1.13)

x2 > x1 ⇒ Fx̂(x2) ≥ Fx̂(x1). (1.14)

The last property tells us that Fx̂(x) is a non-decreasing function of its argument.
If fx̂(x) is piecewise continuous, then the probability of the random variable x̂

taking a particular value x is equal to zero, as it must be understood as the following
limit P (x̂ = x) = lim∆x→0

R x+∆x
x fx̂(x) dx = 0. It is possible to treat discrete

variables in the language of pdf’s if we use the “Dirac-delta function” δ(x). This
mathematical object is not a proper function, but it can be understood2) as the limit
of a succession of functions δn(x) such that δn(x) decays to zero outside a region
of width 1/n around x = 0 and has a height at x = 0 or order n such that the
integral

R∞
−∞

dx δn(x) = 1. There are many examples of such functions, for instance

δn(x) = 1
n
√

2π
e−x2/2n2

, or δn(x) =

(
0, x /∈ (−1/2n, 1/2n)

n(1− 2n|x|), x ∈ (−1/2n, 1/2n)
, see

2) Another way to introduce the Dirac-delta is by the use of distributions, but this is beyond the scope of
this book.
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figure 1.1. The important form is not important. What matters is that in the limit
n → ∞ these functions tend to yield a non-null value only at x = 0 while keeping
their integral over all R constant. As, for an arbitrary function f(x) we have

lim
n→∞

Z ∞

−∞

dx δn(x)f(x) = f(0), (1.15)

we can (in a non-rigorous way) exchange the limit and the integral and understand
the Dirac-delta function has to be understood as satisfying:

δ(x) = 0, if x �= 0, (1.16)
Z ∞

−∞

dx f(x)δ(x) = f(0). (1.17)

When the random variable takes a discrete (maybe infinite-numerable) set of values
x̂ ∈ {x1, x2, x3, . . . } such that the value xi has probability pi then the pdf can be
considered as a sum of Dirac-delta functions:

fx̂(x) =
X

∀i

piδ(x− xi), (1.18)

as now P (x̂ = xi) = lim∆x→0
R xi+∆x
xi

fx̂(x) dx = pi. The corresponding cumula-
tive function is a sum of Heaviside step functions:

Fx̂(x) =
X

∀i

piθ(x− xi), (1.19)

with the usual definition

θ(x) =

(
0, x < 0,

1, x ≥ 0.
(1.20)

1.2
Average values, moments

As a random variable x̂ assigns a real number x̂(ξ) to the result of the experiment
ξ, it is possible to use a given real function g(x) to define a new random variable ĝ

as ĝ(ξ) = g(x̂(ξ)). One defines the average or expected value E[ĝ] of this random
variable as:

E[ĝ] =

Z ∞

−∞

fx̂(x)g(x) dx. (1.21)

The alternative notations �ĝ� or simply E[g] and �g� are very common and will also
be used during the book. In particular, for a discrete random variable with pdf given
by (1.18), the average value is:

E[ĝ] =
X

∀i

pig(xi). (1.22)

Some important expected values are:
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Figure 1.1 Function δn(x). It has the property that
R∞
−∞ dxδn(x) = 1 and when n →∞ it

tends to the delta function δ(x)

-Mean or average value of the random variable: µ[x̂] = E[x̂].

-Moments of order n: E[x̂n].

-Central moments of n: E[(x̂− µ[x̂])n].

-Variance: σ2[x̂] = E[(x̂ − µ[x̂])2] = E[x̂2] − E[x̂]2. The value σ[x̂] is the root-
mean-square, rms for short, of the random variable x̂.

If two random variables ŷ and x̂ are related by a known function ŷ = y(x̂), then
their respective pdf’s are also related:

fŷ(y) =
X

µ

fx̂(xµ)˛̨
˛ dy
dx

˛̨
˛
x=xµ

, (1.23)

where xµ are the solutions of the equation y = y(x). For instance, if the change
is ŷ = x̂2, then the equation y = x2 has no solutions for y < 0 and two solutions
x1 = +

√
y, x2 = −

√
y for y ≥ 0, and the pdf for ŷ is:

fŷ(y) =

8
<

:
0, y < 0,
fx̂(

√
y)+fx̂(−

√
y)

2
√

y , y ≥ 0.
(1.24)

1.3
Some important probability distributions with a given name

-Bernoulli distribution. So-called Bernoulli’s distribution describes a binary ex-
periment in which only two exclusive options are possible: A or Ā (“heads or tails”,
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“either it rains or not”), with respective probabilities p and 1 − p, being p ∈ [0, 1].
We define the discrete Bernoulli random variable B̂ as taking the value 1 (resp. 0) if
the experiment yields A (resp. Ā). The probabilities are:

P (B̂ = 1) = p, (1.25)
P (B̂ = 0) = 1− p, (1.26)

The mean value and variance can be computed as:

E[B̂] = p, (1.27)
σ2[B̂] = p(1− p). (1.28)

Eventually, and when needed, we will use the notation B̂(p) to denote a random vari-
able that follows a Bernoulli distribution with parameter p.According to the general
expression, the cdf of this random variable is FB̂(x) = (1− p)θ(x) + pθ(x− 1) or,

FB̂(x) =

8
>><

>>:

0, x < 0,

1− p, 0 ≤ x < 1,

1, x ≥ 1.

(1.29)

Which is plotted in figure 1.2.

Figure 1.2 Cdf (cumulative distribution function) FB̂(x) of the Bernoulli random variable B̂(p).

-Binomial distribution. We now repeat M times the binary experiment of the pre-
vious case and count how many times does A appear (independently of the order of
appearance). This defines a random variable that we call N̂B . It is a discrete variable
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that can take any integer value between 0 and M with probabilities:

p(N̂B = n) =

 
M
n

!
pn(1− p)M−n. (1.30)

N̂B is said to follow a binomial distribution. The mean value and variance are:

E[N̂B ] = Mp, (1.31)
σ2[N̂B ] = Mp(1− p). (1.32)

We will denote by N̂B(p, M) a random variable that follows a binomial distribution
with probability p and number of repetitions M .

-Geometric distribution We consider again repetitions of the binary experiment
but now the random variable N̂G is defined as the number of times we must re-
peat the experiment before the result A appears (not including the case in which
A does appear). This is a discrete random variable that can take any integer value
0, 1, 2, 3, . . . . The probability that it takes a value equal to n is:

p(N̂G = n) = (1− p)np, n = 0, 1, 2, . . . (1.33)

The mean value and variance are:

E[N̂G] =
1− p

p
, (1.34)

σ2[N̂G] =
1− p

p2 . (1.35)

-Uniform distribution This is our first example of a continuous random variable.
We want to describe an experiment in which all possible results are real numbers
within the interval (a, b) occurring with the same probability, while no result can
appear outside this interval. We will use the notation Û(a, b) to indicate a uniform
random variable in the interval (a, b). The pdf is then constant within the interval
(a, b) and 0 outside it. Applying the normalization condition, it is precisely

fx̂(x) =

8
<

:

1
b− a

, x ∈ [a, b],

0, x /∈ [a, b].
(1.36)

The cumulative function is:

Fx̂(x) =

8
>><

>>:

0, x < a,
x− a
b− a

, a ≤ x < b,

1, x ≥ b.

(1.37)

These two functions are plotted in figure 1.3.
The mean value and variance are:

E[x̂] =
a + b

2
, (1.38)

σ2[x̂] =
(b− a)2

12
. (1.39)
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Figure 1.3 Top: pdf (probability density function) fx̂(x) of the Û(a, b) distribution uniformly

distributed in the interval (a, b); bottom: the corresponding cdf (cumulative distribution

function) Fx̂(x).

The uniform distribution Û(0, 1) appears in a very important result. Let us con-
sider an arbitrary random variable x̂ (discrete or continuous) whose cumulative dis-
tribution function is Fx̂(x) and let us define the new random variable û = Fx̂(x̂).
We will prove that û is a Û(0, 1) variable.

The proof is as follows. Let us compute the cumulative distribution function of û

starting from its definition:

Fû(u) = P (û ≤ u) = P (Fx̂(x̂) ≤ u) (1.40)

As Fx̂(x) ∈ [0, 1], the condition Fx̂(x̂) ≤ u requires necessarily u ≥ 0, so Fû(u) =

0 if u < 0. If, on the other hand, u > 1 then the condition Fx̂(x̂) ≤ u is always
satisfied and its probability is 1, or Fû(u) = 1 if u ≥ 1. Finally, for u ∈ (0, 1)

the condition Fx̂(x̂) ≤ u is equivalent to x̂ ≤ F−1
x̂ (u), as the function Fx̂(x) is a

non-decreasing function. This gives:

Fû(u) = P (x̂ ≤ F−1
x̂ (u)) = Fx̂(F−1

x̂ (u)) = u. (1.41)

Summing up,

Fû(u) =

8
>><

>>:

0, u < 0,

u, 0 ≤ u ≤ 1,

1, u > 1,

(1.42)



IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 1 — 2013/10/22 — 19:49 — page 12

12

nothing but the cumulative distribution function of a uniform random variable
Û(0, 1).

-Poisson distribution: Let us consider the binomial distribution in the limit of
infinitely many repetitions M . If we take the double limit: M → ∞, p → 0 but
keeping Mp → λ, a finite value, the binomial distribution N̂B(p) tends to the so-
called Poisson distribution P̂(λ). With the help of the Stirling approximation m! ≈

mme−m√2πm, valid in the limit m → ∞, we can prove, starting from (1.30), the
following expression for the probabilities of the Poisson distribution:

P (P̂ = n) = e−λ λn

n!
, n = 0, 1, . . . ,∞ (1.43)

The Poisson distribution is one of the most important distributions in nature, proba-
bly second to the Gaussian distribution (see later). The Poisson distribution has both
mean and variance equal to the parameter λ:

E[P̂] = σ2[P̂] = λ, (1.44)

a typical property that characterizes the Poisson distribution.
We can think of the Poisson distribution simply as a convenient limit which sim-

plifies the calculations in many occasions. For instance, the probability that a person
was born on a particular day, say January 1st, is p = 1/365, approximately3). Imag-
ine that we have now a large group of M = 500 people. Which is the probability
that exactly 3 people were born on January 1st? The correct answer is given by
the binomial distribution by considering the events A=“being born on January 1st”
with probability p = 1

365 and Ā=“not being born on January 1st” with probability
1− p = 364

365 :

P (N̂B = 3) =

 
500
3

!„
1

365

«3 „364
365

«497

= 0.108919 . . . (1.45)

As p is small and M large, we might find it justified to use the Poisson approxima-
tion, λ = pM ≈ 500/365 = 1.37, to obtain:

P (P̂ = 3) = e−1.37 1.373

3!
= 0.108900 . . . (1.46)

which is good enough. Let us compute now using this limit the probability that at
least two persons were born on May 11th

P (P̂ ≥ 2) = 1− P (P̂ ≤ 1) = 1− P (P̂ = 0)− P (P̂ = 1)

= 1− eλ
− λeλ = 0.3977 . . . (1.47)

to be compared with the exact result 1 − P (N̂B = 0) − P (N̂B = 1) = 1 −
`500

0

´ ` 1
365

´0 ` 364
365

´500
−
`500

1

´ ` 1
365

´1 ` 364
365

´499
= 0.397895 . . . , again a reasonable

approximation.

3) Neglecting leap years and assuming that all birth days are equally probable.
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There are occasions in which the Poisson limit occurs exactly. Imagine we dis-
tribute M dots randomly with a distribution Û[0, T ], uniform in the interval [0, T ]

(we will think immediately of this as events occurring randomly in time with a uni-
form rate, hence the notation). We call ω = M/T the “rate” (or “frequency”) at
which points are distributed. We now ask the question: which is the probability that
exactly k of the M dots lie in the interval [t1, t1 + t] ∈ [0, T ]? The event A=“one
given dot lies in the interval [t1, t1 + t]” has probability p =

t
T

, whereas the event
Ā=“the given dot does not lie in the interval [t1, t1 + t]” has probability q = 1 − p.
The required probability is given by the binomial distribution, B̂(p, M) defined by
(1.30). We now make the limit M → ∞, T → ∞ but ω = M/T finite. This lim-
it corresponds to the distribution in which the events occur uniformly in time with
a rate (frequency) ω. As mentioned before, it can be proven, using Stirling’s ap-
proximation, that, in this limit, the binomial distribution B̂(p, M) tends to a Poisson
distribution P̂(λ), of parameter λ = pM = ωt, finite. Let us give an example: con-
sider the N atoms of an β-radioactive substance. Each atom emits one β-particle
independently of each other. The probability that one given atom will disintegrate is
constant with time but it is not known which atoms will disintegrate in a given time
interval. All we observe is the emission of electrons with a given rate. It is true that,
as time advances, the number of atoms that can disintegrate diminishes, although
for some radioactive elements the decay of the rate is extremely slow (of the order
of billions of years for the radioactive element 40

19K, for example). We can hence
assume a constant rate ω that can be estimated simply by counting the number of
electrons M emitted in a time interval T as ω = M/T . Under those circumstances,
the number k of electrons emitted in the time interval [t1, t1 + t] follows a Poisson
distribution of parameter λ = pM = t

T M = ωt, or

P (k; t) = e−ωt (ωt)k

k!
. (1.48)

-Exponential distribution A continuous random variable x̂ follows an exponential
distribution if its probability density function is:

fx̂(x) =

(
0, x < 0,

ae−ax, x ≥ 0.
(1.49)

The mean value and variance are:

E[x̂] =
1
a

, (1.50)

σ2[x̂] =
1

a2 , (1.51)

being a > 0 a parameter.
An interesting example is related to the Poisson distribution. Consider the emis-

sion of electrons by a radioactive substance, which we know it is governed by the
Poisson distribution for those time intervals such that the emission rate can be con-
sidered constant. Let us set out our clock at t = 0 and then measure the time t of the
first observed emission of an electron. This time is a random variable t̂ (a number
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associated to the result of an experiment) and has a pdf that we call f1st
t̂

(t). By defi-
nition f1st

t̂
(t)dt is the probability that the first electron is emitted during the interval

(t, t+dt) and accordingly, the probability that the first electron is emitted after time t

is
R∞
t f1st

t̂
(t�)dt�. This is equal to the probability that no electrons have been emitted

during (0, t) or P (0; t) = e−ωt,
Z ∞

t
f1st
t̂ (t�)dt� = e−ωt, t ≥ 0. (1.52)

Taking the time derivate on both sides of this equation we obtain f1st
t̂

(t) = ωe−ωt,
valid for t ≥ 0, the exponential distribution. Alternatively, if t̂ follows this exponen-
tial distribution, then the number of events occurring in a time interval (0, 1) follows
a Poisson P̂(λ) distribution with λ = ω × 1 = ω.

-Gaussian distribution A continuous random variable x̂ follows a Gaussian dis-
tribution if its probability density function is:

fx̂(x) =
1

σ
√

2π
exp

»
−

(x− µ)2

2σ2

–
. (1.53)

The average and variance are given by

E[x̂] = µ, (1.54)
σ2[x̂] = σ2. (1.55)

We will use the notation that x̂ is a Ĝ(µ, σ) random variable. The cumulative distri-
bution function is:

Fx̂(x) =
1
2

+
1
2

erf

„
x− µ

σ
√

2

«
, (1.56)

being erf(z) the error function:

erf(z) =
2
√

π

Z z

0
e−y2

dy. (1.57)

fx̂(x) and Fx̂(x) are plotted in figure (1.4).
The Gaussian random variables are very important in practice as they appear in a

large number of problems, either as an exact distribution in some limit or, simply,
they provide a sufficient approximation to the real distribution. After all, it is not
unusual that many distributions have a maximum value and this can in many cases
approximated by a Gaussian distribution (the so-called “bell-shape” curve). One of
the reasons for the widespread appearance of Gaussian distributions is the central-
limit theorem that states that the sum of a large number of independent random
variables, whatever their distribution, will approach a Gaussian distribution.
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Figure 1.4 Pdf (top) and cdf of the Gaussian distribution of mean 0 and variance 1.

As a first example, it can be proven that the binomial distribution N̂B(p, M) tends
to the Gaussian distribution Ĝ(Mp,

p
Mp(1− p)). More precisely, that:

P (N̂B = n) =

 
M
n

!
pn(1− p)M−n

≈

exp
h
−(n−Mp)2/2Mp(1− p)

i

p
2πMp(1− p)

. (1.58)

The theorem of de Moivre-Laplace, loosely speaking, establishes the equality of both
sides of the previous equation in the limit M → ∞ if |n−Mp| /

p
Mp(1− p) re-

mains finite. In practice, the above approximation is sufficiently good for M ≥ 100

if p = 0.5 or M ≥ 1000 if p = 0.1 (see figure 1.5). As it can be seen in these figures,
the Gaussian approximation to the binomial distribution is best around the maximum
of the distribution and worsens in the tails. An equivalent way of stating the equiv-

alence of both distributions is to define the random variable x̂ =
N̂B −Mpp
Mp(1− p)

. As

�x̂� = 0 and σ[x̂] = 1, it follows that x̂ obeys a Gaussian distribution Ĝ(0, 1) in the
limit M →∞.

The Gaussian distribution can also be obtained as the limit of the Poisson distri-
bution for large parameter λ → ∞. This yields a Gaussian distribution of the same
mean and variance, or Ĝ(λ,

√
λ). Again, although the exact result refers to the limit

λ → ∞, in practice the approximation can be considered sufficient for λ ≥ 100,
specially around the maximum of the distribution (see figure 1.5).

-Gamma distribution A random variable x̂ is said to follow a gamma distribution
Γ̂(α, θ) with shape α and scale parameter θ if the pdf is:

fx̂(x) =

8
><

>:

0, x < 0,

xα−1e−x/θ

θαΓ(α)
, x ≥ 0,

(1.59)
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n!

n!

n!

!=10!

!=100!

!=1000!

n!

n!

n!

p=0.5, M=10!

p=0.5, M=100!

p=0.1, M=100!

Figure 1.5 Left: Binomial distribution (dots) and its Gaussian approximation (solid line). Right:

Poisson distribution (dots) and its binomial approximation (solid line).
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Figure 1.6 Pdf for the Gamma distribution Γ̂(α, θ = 1) for α = 0.5 (solid), 1 (dashed), 2
(dotted), 5 (dot-dashed).

where α > 0, θ > 0 are real numbers. The mean value and variance are given by

E[x̂] = αθ, (1.60)
σ2[x̂] = αθ2. (1.61)

The shape depends on the value of α. For 0 < α < 1 it diverges at x = 0, while for
α ≥ 1 has a single maximum located at x = α− 1. In figure 1.6 we plot the gamma
distribution for different values of the parameter α.

Note that for θ = 1 the Gamma and the Poisson distributions share the property
that the mean value is equal to the variance. In fact, one can prove that the Poisson
distribution P̂(λ) can be approximated for large values of λ by the Γ̂(λ, θ = 1).
Evidence is given in figure 1.7.

If Γ = k/2, with k ∈ N, and θ = 2, the resulting distribution Γ̂(k/2, 2) is also
called the χ̂2(k) or chi-square distribution with k degrees of freedom. This is the
distribution followed by the sum of the squares of k independent Ĝ(0, 1) Gaussian
variables of mean 0 and variance 1. Its square root, or chi distribution χ̂(k), follows
the pdf

fχ̂(χ) =
21− k

2 χk−1e−χ2/2

Γ (k/2)
, (1.62)

with mean value and variance

�χ̂� =
√

2
Γ((k + 1)/2)

Γ(k/2)
, (1.63)

σ2[χ̂] = k − �χ̂�2. (1.64)
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Figure 1.7 Comparison between the Poisson P̂(λ) and the Γ̂(λ, θ = 1) distributions for

different values of the parameter λ.
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1.4
Successions of random variables

It is of course possible (and useful) to assign more that one random variable to the
result of an experiment. For example, we could measure in a β-radioactive sample
the time t and the speed v at which and electron is emitted; we can measure the time
of arrival of the bus and the number of people in the waiting queue; observe if it rains
or not and measure the air temperature and pressure, etc. In general, given an experi-
ment, let us consider N random variables assigned to it: (x̂1, . . . , x̂N ). The joint pdf
of all these random variables is a function of N real variables fx̂1,...,x̂N

(x1, . . . , xN )

which allows us to compute the probability that the vector of results (x̂1, , . . . , x̂N )

belongs to a region Ω of RN as:

P ((x̂1, . . . , x̂N ) ∈ Ω) =

Z

Ω
dx1 . . . . dxNfx̂1,...,x̂N

(x1, . . . , xN ). (1.65)

In other words, fx̂1,...,x̂N
(x1, . . . , xN ) dx1 . . . . dxN is the probability that in a mea-

surement of the N random variables, the value of x̂1 lies in (x1, x1 +dx1), the value
of x̂2 in (x2, x3 + dx2), and so on. The cumulative distribution function is defined
as:

Fx̂1,x̂2,...,x̂N
(x1, x2, . . . , xN ) = (1.66)

Z x1

−∞

dx�1

Z x2

−∞

dx�2 . . .

Z xN

−∞

dx�Nfx̂1,x̂2,...,x̂N
(x�1, x�2, . . . , x�N ).

We do have an intuitive idea of when some random variables can be considered
independent of each other. A precise statement is that the N random variables
x̂1, . . . x̂N are defined to be statistically independent if the joint pdf factorizes as
product of pdf’s for each variable:

fx̂1,...,x̂N
(x1, . . . , xN ) = fx̂1(x1)fx̂2(x2) · · · fx̂N

(xN ). (1.67)

The mean value of a function of N variables g(x1, . . . xN ) is computed as:

E[g(x1, . . . , xN )] =

Z ∞

−∞

dx1 · · ·

Z ∞

−∞

dxNg(x1, . . . , xN )fx̂1,...,x̂N
(x1, . . . , xN ).

(1.68)

In particular, if g(x1, . . . xN ) = λ1g1(x1) + · · · + λNgN (xN ) then

E[g(x1, . . . , xN )] = λ1E[g1(x1)] + · · · + λNE[gN (xN )], (1.69)

and if the random variables x̂1, . . . x̂N are independent of each other, then

σ2[g(x1, . . . , xN )] = λ2
1σ2[g1(x1)] + · · · + λ2

Nσ2[gN (xN )]. (1.70)

The covariance between two of the random variables x̂i, x̂j is defined as:

C[x̂i, x̂j ] ≡ Cij ≡ E[(x̂i − µi)(x̂j − µj)]. (1.71)
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Note that a trivial consequence of that definition is that the matrix whose entries
are the covariances, is symmetrical Cij = Cji. If variables x̂i, x̂j are statistically
independent then it is easy to verify that:

Cij = σ2[x̂i]δij , (1.72)

although the inverse statement (if Cij = σ2[x̂i]δij then variables x̂i, x̂j are statisti-
cally independent), does not need to be true.

In general, the variance of the sum of two functions g1(x), g2(x),

σ2[g1 + g2] = �(g1 + g2)
2
� − �g1 + g2�

2, (1.73)

can be written as

σ2[g1 + g2] = σ2[g1] + σ2[g2] + 2C[g1, g2], (1.74)

being C[g1, g2] the covariance of g1 and g2.
The correlation coefficient ρ[x̂i, x̂j ] of the random variables x̂i, x̂j is defined as a

suitable normalization of the covariance:

ρ[x̂i, x̂j ] =
C[x̂i, x̂j ]

σ[x̂i]σ[xj ]
. (1.75)

From the definition it follows that

|ρ[x̂i, x̂j ]| ≤ 1. (1.76)

Even if there are N random variables (x̂1, . . . , x̂N ) defined on an experiment, we
can still “forget” about some of them and consider the probability density functions
of only a subset of variables. For instance, fx̂1

(x1) or fx̂2x̂4(x2, x4). These are
called, in this context, “marginal” probabilities and can be obtained integrating out
the variables which are not of interest. For example,

fx̂1
(x1) =

Z ∞

−∞

dx2 fx̂1x̂2(x1, x2) (1.77)

or

fx̂2x̂4(x2, x4) =

Z ∞

−∞

dx1

Z ∞

−∞

dx3 fx̂1x̂2x̂3x̂4(x1, x2, x3, x4) (1.78)

It is possible to relate the joint pdf’s of two sets of related random variables: ŷ1 =

y1(x̂1, x̂2, . . . , x̂n), . . . , ŷn = yn(x̂1, x̂2, . . . , x̂n). The result generalizing (1.23) is:

fŷ1,...,ŷn
(y1, . . . , yn) =

X

µ

fx̂1,...,x̂n
(x1µ , . . . , xnµ)˛̨

˛J
“

y1,...,yn
x1,...,xn

”˛̨
˛
xi=xiµ

, (1.79)

where the sum runs again over all solutions of y1 = y1(x1, x2, . . . , xn), . . . , yn =

yn(x1, x2, . . . , xn) and J is the Jacobian matrix of coefficients Jij = ∂yi
∂xj

.
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Figure 1.8 A joint Gaussian pdf in n = 2 variables.

1.5
Joint Gaussian random variables

There are not many examples (besides those derived from statistically independent
variables) of specific forms for a joint pdf fx̂1,...,x̂N

(x1, . . . , xN ). A particularly
useful case is that of jointly Gaussian random variables for which the pdf is the
exponential of a quadratic form, namely

fx̂1,...,x̂N
(x1, . . . , xN ) =

s
|A|

(2π)N
exp

2

4−1
2

NX

i=1

NX

j=1

(xi − µi)Aij(xj − µj)

3

5.

(1.80)

Here A = {Aij}i=1,...,N ;j=1,...,N is a symmetric matrix and µ1, µ2, . . . , µN are
real constants. The joint pdf has, hence, N(N+1)

2 + N = N(N+3)
2 constants. As

the pdf must be normalizable it must go to zero as any of the variables (x1, . . . , xN )

tends to ±∞. This implies that the quadratic form in the exponential must be positive
defined. A simple way of checking this out is to make sure that all eigenvalues
λ1, λ2, · · · , λN of matrix A are strictly positive (remember that they will be real
as the matrix is symmetric). The determinant of A is nothing but the product of the
eigenvalues |A| =

QN
i=1 λi. The shape of the Gaussian distribution is such that it has

a maximum at the point (µ1, . . . , µN ) and it decays to zero in the typical bell-shape
curve for large values of the coordinates, see 1.8.

Some average values and correlations are given by

E[x̂i] = µi, (1.81)

Cij = (A−1)ij . (1.82)

Hence, the correlation matrix C = {Cij}i=1,...,N ;j=1,...,N is the inverse of the ma-
trix A, C = A−1. It is common, instead of writing out in full the expression (1.80),
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to characterize a jointly Gaussian distribution by giving the mean values E[x̂i] and
the correlations Cij . In fact, most of the integrals needed in the calculations can be
obtained directly from these numbers by application of Wick’s theorem. The theo-
rem gives an expression for the calculation of averages of an even product of terms
as

�(xi1−µi1)(xi2−µi2) . . . (xi2n−µi2n)� =
X

all possible pairings

Cj1k1Cj2k2 . . . Cjnkn
.(1.83)

But if the number of terms in the left-hand-side were odd then the average value
would be 0.

Wick’s theorem is better understood by specific examples. Let us take a set of four
random variables (x̂1, x̂2, x̂3, x̂4) which follow a jointly Gaussian distribution with
average values �x1� = �x2� = �x3� = �x4� = 0 and (symmetric) correlation matrix
Cij . To compute, for example, �x1x2x3x4�, we need to take all possible pairings of
the four numbers 1, 2, 3, 4. They are (1, 2)(3, 4), (1, 3)(2, 4) and (1, 4)(2, 3). This
gives, according to Wick’s theorem,

�x1x2x3x4� = C12C34 + C13C24 + C14C23. (1.84)

It is useful to use a diagrammatic representation of this theorem. Each factor
(xi − µi)

k is represented by a dot with k “branches” coming out of it. All possible
pairings can be realized by joining all the legs in all possible ways. The next figure
1.9 exemplifies this case.

Figure 1.9 Graphs for the calculation of �x1x2x3x4� using Wick’s theorem.

Let us consider another example for the same set of four random variables (with
zero means, µi = 0). We want to compute �x2

1x2x3�. As this is equal to �x1x1x2x3�,
Wick’s theorem tells us to all pairings of the variables x1, x1, x2, x3. The diagram-
matic representation is in figure 1.10: or, in equations,

�x2
1x2x3� = C11C23 + 2C12C13 (1.85)

The factor 2 of the second term in the right-hand-side is the symmetry factor of the
diagram. It corresponds to the two ways in which the branches coming out of dot
number 1 can be joined to the branches of dot number 2 and dot number 3.

Two very important results apply to a set of N jointly Gaussian random variables:
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Figure 1.10 Graphs for the calculation of �x2
1x2x3� using Wick’s theorem.

1.- The marginal probability density function of a subset of m random variables is
also jointly Gaussian.

2.- Defining new random variables ŷ1, . . . , ŷn as linear combinations ŷi =PN
j=1 Bij x̂j , then ŷ1, . . . , ŷn are also jointly Gaussian variables. The new cor-

relation matrix is BCB−1.

1.6
Interpretation of the variance. Statistical errors.

Let us consider a random variable x̂ assigned to an experiment. In general, every
time we execute the experiment and obtain a result ξ, we do not know a priori which
numerical value, x̂(ξ), will the random variable take (unless there exists an event
with probability 1). That’s why is called a random variable. Imagine we do know
the average value µ = E[x̂] and the variance σ2 = E[x̂2] − E[x̂]2. Maybe this
knowledge comes from some theory that provides us with the values of µ and σ.
What can we say about a single outcome x̂(ξ) of the random variable? Not much in
general. But we can say something about the probability of x̂(ξ) taking values far
away from µ, the mean value. Intuitively, we expect that it will be unlikely to obtain
values very far away from µ. But how unlikely? Chebycheff’s theorem quantifies
this probability:

P (| x̂(ξ)− µ |≥ k σ) ≤
1

k2 , (1.86)

for arbitrary k > 1. In words: the probability that a single measurement x̂(ξ) of
a random variable differs from the mean value µ an amount larger than k times the
standard deviation σ is smaller that k−2. The result can be written with the equivalent
expression

P (| x̂(ξ)− µ |≤ k σ) ≥ 1−
1

k2 , (1.87)
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For instance, if k = 3, it is less than 1/32
≈ 11% probable, that the result of a

single experiment lies outside the interval (µ − 3σ, µ + 3σ). In other words, we
can not predict the result of a single experiment but we can affirm that with an 11%
confidence (about 89 out of every 100 times we make the experiment) it will lie in
the interval (µ− 3σ, µ + 3σ). Of course, if σ is a large number this prediction might
be useless, but the reverse is also true, if σ is small then we might be pretty sure of
the result. Imagine that the experiment is to measure the radius of one polystyrene
bead taken at random from a large set that we have bought to a manufacturer that
tells us that the average radius of the set is µ = 3.5mm and the root-mean-square
is σ = 1.0µm. How confident can we be that the radius of that particular bead lies
in the interval (3.49, 3.51)mm? To apply Chebycheff’s inequality to this data we
need to take (3.49, 3.51) = (µ − kσ, µ + kσ) or 0.01mm = k × 1µm or k = 10.
This means that, on average, 1 out of k2 = 100 beads will not have a radius within
these limits (or, from the positive side, 99 out of 100 beads will have a radius within
these limits). This interpretation of Chebycheff’s theorem allows us to identify (in
the precise manner defined before) the root mean square of a distribution with the
error (e.g. the uncertainty) in a single measurement of a random variable.

Once we have understood this, we should understand the expression

x̂(ξ) = µ ± σ (1.88)

with µ = E[x̂] and σ2 = E[x̂2] − E[x̂]2 as a short-hand notation of the exact
statement of Chebycheff’s theorem (1.86). It does not mean that experimental values
x̂(ξ) that differ from µ in a quantity greater that σ can not appear, are forbidden,
it simply means that they are unlikely. How unlikely? Exactly 1/k2, with k =
|x̂(ξ)−µ|

σ .
Chebycheff’s theorem is very general. It applies to any random variable whatever

its probability density function. In most cases, however, the Gaussian distribution is
a sufficient approximation to the true (maybe unknown) distribution. In the case of
a Gaussian distribution, Chebycheff’s inequality becomes an equality:

P (| x̂(ξ)− µ |≤ k σ) = erf

„
k
√

2

«
. (1.89)

Which takes the following values,

P (| x̂(ξ)− µ |≤ σ) = 0.68269 . . . (1.90)

P (| x̂(ξ)− µ |≤ 2σ) = 0.95450 . . . (1.91)

P (| x̂(ξ)− µ |≤ 3σ) = 0.99736 . . . (1.92)

Which means that we can be certain with a 68% probability that the result of the
measurement will lie in the interval (µ − σ, µ + σ), with a 95% probability in (µ −

2σ, µ+2σ) and with 99.7% probability in (µ−3σ, µ+3σ). Note that if we take σ as
the error of the measurement, in a 32% (nearly 1/3 ) of the cases the observed value
x̂(ξ) will lie outside the error interval.
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In most cases, one does not know the distribution function of the experiment,
neither the mean µ nor the root-mean-square σ. Chebycheff’s theorem can be read
in the inverse sense

µ = x̂(ξ) ± σ. (1.93)

Given the result of a single measurement x̂(ξ), this allows us to predict the value
of µ within a certain interval of confidence that depends on the generally unknown
standard deviation σ. However, it is clear that we can not use this single measure-
ment to obtain information about σ (which is ultimately related to the dispersion
in a set of measurements). The idea to obtain estimates for both µ and σ is to re-
peat the experiment M times, each one independent of the other. We call, then,
Ξ = (ξ1, ξ2, · · · , ξM ) the result of the experiment which consists in M independent
repetitions and use some properties of the sum of random variables.

1.7
Sums of random variables

Let x̂1, x̂2, · · · , x̂M be independent random variables all of them described by the
same probability density function fx̂(x) with mean µ and variance σ2. The natural
idea is to consider them as independent repetitions of the same experiment. Asso-
ciated to the result Ξ = (ξ1, ξ2, · · · , ξM ) we define the random variables sample
mean µ̂M and sample variance, σ̂2

M :

µ̂M (Ξ) =
1
M

MX

i=1

x̂i(ξi), (1.94)

σ̂2
M (Ξ) =

1
M − 1

MX

i=1

(x̂i(ξi)− µ̂M )2

=
M

M − 1

0

@ 1
M

MX

i=1

x̂i(ξi)
2
−

 
1
M

MX

i=1

x̂i(ξi)

!21

A , (1.95)

(note that the notation stresses the fact that both random variables depend on the
number of repetitions M ). It is simple to obtain the average of these two sample
random variables:

E[µ̂M ] = E[x̂i] = µ, (1.96)
E[σ̂2

M ] = σ2. (1.97)

Furthermore, the variance of the sample mean is given by:

σ2[µ̂M ] =
1
M

σ2. (1.98)
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If we now repeat the experiment M times and obtain a value for µ̂M (Ξ), we can use
Chebycheff’s theorem in its inverse short-hand-notation (1.93) applied to the random
variable µ̂M to write µ = µ̂M (Ξ) ± σ[µ̂M ] or using (1.98),

µ = µ̂M (Ξ) ±
σ
√

M
. (1.99)

Still, we do not know the true value of σ in the right-hand-side of this equation. It
seems intuitive, though, given (1.97) that we can replace it by the sample variance
σ ≈ σ̂M [Ξ], leading to the final result:

µ = µ̂M (Ξ) ±
σ̂M [Ξ]
√

M
, (1.100)

that yields an estimate of the average value µ together with its error. As discussed
before, this error has to be interpreted in the statistical sense. There are some
good news here. As the sum of M independent random variables does tend to a
Gaussian distribution as M increases, we can take the Gaussian confidence limits
and conclude that in 68% of the cases, the true value for µ will lie in the interval“
µ̂M (Ξ)− σ̂M [Ξ]

√
M

, µ̂M (Ξ) + σ̂M [Ξ]
√

M

”
, etc.

If we worry about the replacement σ ≈ σ̂M [Ξ] in the previous formulas, we can
estimate the error of this replacement (again in a statistical sense) applying Cheby-
cheff’s theorem to the random variable σ̂M . In the limit of large M we assume thatr
PM

i=1

“
x̂i−µ̂M

σ

”2
, and hence

√
M − 1σ̂M/σ, can be approximated by a χ(M)

distribution with M degrees of freedom. Using (1.63)-(1.64) and the result of ex-
ercise 5 in the limit of large M , we conclude that σ̂M/σ follows a Ĝ(1, 1/

√
2M)

Gaussian distribution or that σ̂M follows a Ĝ(σ, σ/
√

2M) distribution. Using again
Chebycheff’s theorem in its short-hand notation, we can write:

σ = σ̂M (Ξ) ±
σ

√
2M

, (1.101)

so justifying the replacement σ ≈ σ̂M [Ξ], valid in the limit of large M . This result
also leads to an error estimation for the root-mean-squared:

σ = σ̂M (Ξ) ±
σ̂M (Ξ)
√

2M
. (1.102)

1.8
Conditional probabilities

As the final ingredient in this brief summary of probability theory, we review now
the concept of conditional probability. For the sake of simplicity we will consider
the case of two random variables x̂ and ŷ but similar ideas can be easily generalized
in the case of more random variables.

The joint probability density fx̂ŷ(x, y), is defined such that the probability that a
measurement of the random variable x̂ and the random variable ŷ gives for each one
of them a value in the interval (x, x + dx) and (y, y + dy), respectively, is:

P (x < x̂ ≤ x + dx, y < ŷ ≤ y + dy) = fx̂ŷ(x, y) dx dy. (1.103)
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The cumulative distribution function,

Fx̂ŷ(x, y) =

Z x

−∞

Z y

−∞

fx̂ŷ(q, p) dq dp, (1.104)

is such that

P (x1 < x̂ ≤ x2, y1 < ŷ ≤ y2) = (1.105)
Fx̂ŷ(x2, y2)− Fx̂ŷ(x1, y2)− Fx̂ŷ(x2, y1) + Fx̂ŷ(x1, y1).

Some results follow straightforwardly from the definition:

∂Fx̂ŷ(x, y)

∂x
=

Z y

−∞

fx̂ŷ(x, p) dp, (1.106)

∂Fx̂ŷ(x, y)

∂y
=

Z x

−∞

fx̂ŷ(q, y) dq, (1.107)

∂2Fx̂ŷ(x, y)

∂x∂y
= fx̂ŷ(x, y). (1.108)

The marginal probabilities are:

fx̂(x) =

Z ∞

−∞

fx̂ŷ(x, y) dy, (1.109)

fŷ(y) =

Z ∞

−∞

fx̂ŷ(x, y) dx. (1.110)

Let us recall the definition of conditional probability. For any two events A and B

such that P (B) �= 0, the probability of A conditioned to B is defined as:

P (A|B) =
P (A ∩B)

P (B)
. (1.111)

This suggests the definition of the conditional distribution function

Fŷ(y|B) = P (ŷ ≤ y|B) =
P (ŷ ≤ y, B)

P (B)
, (1.112)

and the conditional density function

fŷ(y|B) =
∂Fŷ(y|B)

∂y
. (1.113)

In the particular case of the event B = {x̂ ≤ x} we have:

Fŷ(y|x̂ ≤ x) =
P (x̂ ≤ x, ŷ ≤ y)

P (x̂ ≤ x)
=

Fx̂ŷ(x, y)

Fx̂(x)
(1.114)

and the probability density function ca be written as

fŷ(y|x̂ ≤ x) =
∂Fx̂ŷ(x, y)/∂y

Fx̂(x)
=

R x
−∞

fx̂ŷ(q, y) dq
R∞
−∞

R x
−∞

fx̂ŷ(q, y) dq dy
. (1.115)
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If we now take B = {x1 < x̂ ≤ x2} we get

Fŷ(y|x1 < x̂ ≤ x2) =
P (x1 < x̂ ≤ x2, ŷ ≤ y)

P (x1 < x̂ ≤ x2)

=
Fx̂ŷ(x2, y)− Fx̂ŷ(x1, y)

Fx̂(x2)− Fx̂(x1)
, (1.116)

and a probability density function

fŷ(y|x1 < x̂ ≤ x2) =

R x2
x1

fx̂ŷ(x, y) dx
R x2
x1

fx̂(x) dx
. (1.117)

Let us consider, finally, the set B = {x̂ = x}, as the limit x1 → x2 of the previous
case. Consequently, we define:

Fŷ(y|x̂ = x) = lim
∆x→0

Fŷ(y|x < x̂ ≤ x + ∆x). (1.118)

From (1.116) we obtain:

Fŷ(y | x̂ = x) = lim
∆x→0

Fx̂ŷ(x + ∆x, y)− Fx̂ŷ(x, y)

Fx̂(x + ∆x)− Fx̂(x)

=
∂Fx̂ŷ(x, y)/∂x

dFx̂(x)/dx
, (1.119)

that can be expressed as:

Fŷ(y | x̂ = x) =

R y
−∞

fx̂ŷ(x, p) dp

fx̂(x)
. (1.120)

By taking the derivative with respect to x we obtain the conditional probability den-
sity function:

fŷ(y|x̂ = x) =
fx̂ŷ(x, y)

fx̂(x)
=

fx̂ŷ(x, y)
R∞
−∞

fx̂ŷ(x, y) dy
. (1.121)

Exchanging the role of x and y we obtain

Fx̂(x | ŷ = y) =

R x
−∞

fx̂ŷ(q, y) dq

fŷ(y)
(1.122)

and

fx̂(x|ŷ = y) =
fx̂ŷ(x, y)

fŷ(y)
=

fx̂ŷ(x, y)
R∞
−∞

fx̂ŷ(x, y) dx
. (1.123)

For the sake of simplicity, and if no confusion can arise, we’ll shorten the notation
of the four last defined functions to

Fŷ(y|x), fŷ(y|x), Fx̂(x|y), fx̂(x|y). (1.124)

Recall Bayes theorem: if A and B are events and B1, B2, . . . is a partition of B,
i.e. B = ∪iBi and Bi ∩Bj = ∅, then

P (Bi|A) =
P (A|Bi)P (Bi)P
j P (A|Bj)P (Bj)

. (1.125)
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We now rephrase an equivalent of Bayes theorem in terms of probability density
functions. It follows from (1.121) and (1.123) that

fx̂ŷ(x, y) = fŷ(y|x̂ = x)fx̂(x), (1.126)
fx̂ŷ(x, y) = fx̂(x|ŷ = y)fŷ(y), (1.127)

from where we obtain

fŷ(y|x̂ = x) =
fx̂(x|ŷ = y)fŷ(y)

fx̂(x)
. (1.128)

We now use (1.109) and (1.127) to derive

fx̂(x) =

Z ∞

−∞

fx̂(x|ŷ = y)fŷ(y) dy, (1.129)

which, replaced in the denominator of (1.128) yields:

fŷ(y|x̂ = x) =
fx̂(x|ŷ = y)fŷ(y)

R∞
−∞

fx̂(x|ŷ = y)fŷ(y) dy
, (1.130)

which is a version of Bayes theorem in terms of probability density functions.
In the application of these formulas in the next chapters, we will consider the case

in which one of the random variables, say ŷ, takes only discrete values. This means
that its probability density function takes the form

fŷ(y) =
X

i

Prob(ŷ = yi)δ(y − yi), (1.131)

and

fŷ(y|x) =
X

i

Prob(ŷ = yi|x)δ(y − yi). (1.132)

Replacing both expressions in

fŷ(y) =

Z ∞

−∞

fx̂ŷ(x, y) dx =

Z ∞

−∞

fŷ(y|x)fx̂(x) dx (1.133)

we derive,

Prob(ŷ = yi) =

Z ∞

−∞

Prob(ŷ = yi|x)fx̂(x) dx. (1.134)

Also, replacing in (1.129), we obtain:

fx̂(x) =
X

i

fx̂(x|ŷ = yi)Prob(ŷ = yi). (1.135)

Formulas that will be of interest later.
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1.9
Markov chains

As stated before, it is not difficult to generalize these concepts of joint-probabilities
to more than 2 random variables. For example, the probability density function of n

random variables x̂1, . . . , x̂n can be written in terms of conditional probabilities as

fx̂1,...,x̂n
(x1, . . . , xn) = (1.136)

fx̂1(x1)fx̂2(x2|x1)fx̂3(x3|x1, x2) . . . fx̂n
(xn|x1, . . . , xn−1).

This complicated expression adopts a much simpler form for a particular kind of
random variables. A succession of random variables x̂1, . . . , x̂n, is called a Markov
chain if for any value of m = 1, . . . , n it fulfills:

fx̂m
(xm|x1, . . . , xm−1) = fx̂m

(xm|xm−1). (1.137)

That is, the pdf of x̂m conditioned to x̂1, . . . , x̂m−1 is equal to the pdf of x̂m condi-
tioned only to x̂m−1. From this property, (1.136) simplifies to:

fx̂1,...,x̂n
(x1, . . . , xn) = (1.138)

fx̂n
(xn|xn−1)fx̂n−1(xn−1|xn−2) . . . fx̂2(x2|x1)fx̂1(x1).

Therefore the joint pdf of x̂1, . . . , x̂n is determined by the only knowledge of
fx̂1(x1) and the conditional probability density functions fx̂m

(x|y) (also known in
this context as transition probability density function). We recall that fx̂m

(x|y) is ac-
tually a short way to write fx̂m

(x|x̂m−1 = y) with the meaning that fx̂m
(x|y) dx is

the probability that the random variable x̂m adopts a value in the interval (x, x+dx)

given that the random variable took the value x̂m−1 = y.
A Markov chain is called homogeneous if the probabilities of the transition

fx̂m
(x|y) are independent of m. Thus, for a homogeneous Markov chain we write

the transition probabilities simply as f(x|y).
It is easy to establish a relationship between fx̂m+1(x) and fx̂m

(y) using the defi-
nition of conditional probability:

fx̂m+1(x) =

Z ∞

−∞

fx̂m+1,x̂m
(x, y) dy

=

Z ∞

−∞

fx̂m+1(x|y)fx̂m
(y) dy, m ≥ 1, (1.139)

which for a homogeneous chain reduces to:

fx̂m+1(x) =

Z ∞

−∞

f(x|y)fx̂m
(y) dy, m ≥ 1. (1.140)

We can use this relation to construct the Markov chain. Starting from a given fx̂1(x)

initial pdf and a transition pdf f(x|y) we can obtain the succession of random vari-
ables x̂m, m = 1, 2, . . . with respective pdf’s fx̂m

(x).



IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 1 — 2013/10/22 — 19:49 — page 31

31

If the resulting pdf’s fx̂m
(x) are all identical, fx̂m

(x) = f st
x̂ (x), m = 1, 2, . . . ,

we say that the Markov chain is stationary. For a stationary Markov chain (1.140)
becomes:

f st
x̂ (x) =

Z ∞

−∞

f(x|y)f st
x̂ (y) dy. (1.141)

It is not easy in general to solve the above integral equation to find the stationary pdf
of a Markov chain with a given transition pdf f(x|y). However, using
Z ∞

−∞

f(y|x) dy = 1 (1.142)

one can write (1.141) as
Z ∞

−∞

f(y|x)f st
x̂ (x) dy =

Z ∞

−∞

f(x|y)f st
x̂ (y) dy , (1.143)

or equivalently as
Z ∞

−∞

ˆ
f(y|x)f st

x̂ (x)− f(x|y)f st
x̂ (y)

˜
dy = 0 . (1.144)

A way to satisfy this equation is by requiring the detailed balance condition:

f(y|x)f st
x̂ (x) = f(x|y)f st

x̂ (y) . (1.145)

This is a simpler functional equation for f st
x̂ (x) than the integral (1.141). Any solu-

tion f st
x̂ (x) of the detailed balance condition4) will satisfy (1.141), but the reverse is

not always true.
Certainly, if a pdf f st

x̂ (x) satisfies (1.141) then it is a stationary solution of the
recursion relation (1.140) such that fx̂m

(x) = f st
x̂ (x), ∀m, provided that fx̂1(x) =

f st
x̂ (x).
What happens when fx̂1(x) �= f st

x̂ (x)? Will the recursion (1.140) converge towards
the stationary solution f st

x̂ (x)? A partial, but important, answer can be formulated as
follows: If for every point x such that f st

x̂ (x) > 0 and for every initial condition
fx̂1(x), there exists a number m of iterations such that fx̂m

(x) > 0 (irreducibility
condition) and the recursion relation (1.140) does not get trapped in cyclic loops,
then f st

x̂ (x) is the unique stationary solution and, furthermore, limm→∞ fx̂m
(x) =

f st
x̂ (x). These conditions (irreducibility and non-cyclic behavior) are summarized

by saying that the Markov chain is ergodic. The irreducibility condition has a sim-
ple intuitive interpretation. It states that, independently of the initial condition, the
recursion relation (1.140) does not have “forbidden” zones, meaning that it is able
to provide eventually a pdf with a non-zero probability to any point x such that
f st
x̂ (x) > 0.
Finally, we can consider that the variable m of the Markov chain represents, in

some suitable units, a “time”. In this sense, equation (1.140) introduces a dynamics

4) Note that the detailed balance condition might have no solution, as we require that f st
x̂(x) is a pdf, i.e.

non-negative and normalizable.
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in the space of pdf’s. We will make often use of this dynamical interpretation of a
Markov chain in the rest of the book. This dynamical interpretation, which can also
be framed in the theory of Markov processes, can be made clear by introducing a
“time” variable, t = mδt, where δt is just the time unit. Then the function fx̂m

(x)

becomes a two variable function f(x, t) and the evolution equation is given by:

fx̂m+1(x)− fx̂m
(x) =

Z
f(x|y)fx̂m

(y) dy − fx̂m
(x) , (1.146)

or using (1.142)

fx̂m+1(x)− fx̂m
(x) =

Z ˆ
f(x|y)fx̂m

(y)− f(y|x)fx̂m
(x)
˜

dy . (1.147)

With the interpretation fx̂m
(x) → f(x, t) we can write it as

fx̂(x, t + δt)− fx̂(x, t) =

Z
[f(x|y)fx̂(y, t)− f(y|x)fx̂(x, t)] dy . (1.148)

And, obviously, one is tempted to interpret the left-hand side as a partial derivative

δt
∂f(x, t)

∂t
. We will explore this possibility in a later chapter.

Further reading

The material covered in this chapter is rather standard and there are many books that
cover it in more detail than our brief summary. The book by Papoulis and Pillai[1]
is a good general introduction. The book by Grimmett and Stirzaker[2] is also of a
more advanced level and is particularly interesting for the topic of Markov chains.
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Exercises

1) A rod of length a is randomly dropped on a floor which has parallel lines drawn
on it at a distance � = 1. Define what you think it is meant by “randomly dropped"
and, consequently, compute the probability that the rod intersects any of the lines
(a problem due to Buffon).

2) A typist makes on average 5 mistakes every 100 words. Find the probability that
in a text of 1000 words the typist has made (a) exactly 10 mistakes, (b) at least 10

mistakes.
3) Use the Gaussian approximation to the Poisson distribution to find the probability

that in a group of 10000 people, at least 10 people were born on January 1st.
4) A study on the influence of the contraceptive pill on cervical cancer published in

Lancet, 380, 1740 (24 november 2007) analyzed a group of 52082 women, 16573
of which had taken the pill and 35509 have used other contraceptive methods. The
study shows that the incidence of cervical cancer in the group of women that have
taken the pill is 4.5 cases per 1000 women while in the group that does not take the
pill is of 3.8 per 1000. Calculate the overall incidence rate in the group of 52082
women. With this result, calculate the probability that a group of 16573 women
chosen randomly out of the 52082 have a rate of 4.5 per 1000 or larger. Can we
conclude that the pill increases the risk of cervical cancer as it was published in
some newspapers?

5) Prove that in the large M limit, the mean value and variance of the χ̂ distribution,
as given by Eqs. (1.63-1.64) tend to �χ̂� =

√
k and σ2[χ̂] = 1/2.

6) Prove that the correlation coefficient |ρ[x̂i, x̂j ]| = 1 if and only if there is a linear
relationship x̂i = ax̂j + b between the two random variables.

7) Compute the following integral:

L[J1, J2, . . . , JN ] =s
| A |

(2π)N

Z

RN
dx1 · · · dxN exp

2

4−1
2

NX

i=1

NX

j=1

xiAijxj +
NX

i=1

Jixi

3

5

and use the result to prove Wick’s theorem. Show first the relations

�xi� =
∂L
∂Ji

˛̨
˛̨
�J=0

,

*
nY

k=1

xik

+
=

∂nLQn
k=1 ∂Jik

.

˛̨
˛̨
�J=0

8) Prove that the sum of all symmetry factors in a Wick’s diagram with n legs is
(n− 1)!!.

9) Use Wick’s theorem to compute �x3
1x3

2x3x4� being xi a set a Gaussian variables
of zero mean.

10) Let x be a Gaussian random variable of zero mean and variance σ2, and let g(x)

be an arbitrary function. Prove Novikov’s theorem:

�xg(x)� = σ2
�g�(x)�.
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If x = (x1, . . . , xN ) is a set of jointly Gaussian random variables, generalize the
theorem to:

�xig(x)� =
NX

k=1

�xixk�

fi
∂g(x)
∂xk

fl
.

11) Prove that for a Gaussian variable x of mean µ and variance σ2 it is �e−x
� =

e−µ+σ2/2. For a general random variable prove Jensen’s inequality: �e−x
� ≥

e−�x�.
12) Consider a homogeneous Markov chain with the following transition pdf:

f(x|y) =
1

σ
p

2π(1− λ2)
e
−

(x−λy)2

2σ2(1−λ2) ,

with |λ| < 1. Prove that it is irreducible (hint: simply consider fx̂2(x)). Find its
stationary pdf f st

x̂ (x) by searching for solutions of the detailed balance equation.
Take as initial condition

fx̂1(x) =
1

a
√

2π
e−

x2

2a2 ,

compute fx̂n
(x) and prove that, effectively, limn→∞ fx̂n

(x) = f st
x̂ (x).

13) Consider a homogeneous Markov chain with the following transition pdf:

f(x|y) =

(
e−(x−y), x ≥ y,

0, x < y.

Prove that it is not irreducible. Furthermore, show that there are no solutions f st
x̂ (x)

to the detailed balance condition 1.145 or the recursion relation 1.140.
14) Consider a homogeneous Markov chain with the following transition pdf:

f(x|y) =
b
π

1

1 + b2(x− λy)2
.

Show that it is irreducible. Prove that if |λ| < 1 the stationary solution is

f st
x̂ (x) =

a
π

1

1 + a2x2 .

with a = b(1− λ), but prove also that there are no solutions f st
x̂ (x) to the detailed

balance condition 1.145 if λ �= 0.
15) Consider a homogeneous Markov chain with the following transition pdf:

f(x|y) =

(
2x
y , x ∈ (0, y),
2(1−x)
1−y , x ∈ (y, 1),

if y ∈ (0, 1) and f(x|y) = 0 otherwise. Show that is irreducible and find its
stationary distribution.


