
IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 35

35

2
Monte Carlo integration

In this chapter we review the basic algorithms for the calculation of integrals using
random variables and define the general strategy based on the replacement of an
integral by a sample mean

2.1
Hit and miss

The hit and miss method is the simplest of the integration methods that use ideas
from probability theory. Although it is not very competitive in practical applications,
it is very convenient in order to explain in a simple and comprehensive case some of
the ideas of more general methods. Let y = g(x) be a real function which takes only
bounded positive values in a finite interval [a, b], i.e. 0 ≤ g(x) ≤ c. In Riemann’s
sense, the integral

I =

Z b

a
g(x) dx (2.1)

is nothing but the area of the region Ω between the X-axis and the curve given by
g(x). In the rectangle S = {(x, y), a ≤ x ≤ b, 0 ≤ y ≤ c} we consider a pair
or random variables (x̂, ŷ) which are uniformly distributed in S, see figure 2.1. The
joint probability density function of x̂ and ŷ is

fx̂ŷ(x, y) =

8
<

:

1
c(b− a)

(x, y) ∈ S,

0 (x, y) /∈ S.
(2.2)

The probability that a point (x, y) distributed according to fx̂ŷ(x, y) lies within Ω is,
using (1.65):

p =

Z

Ω
fx̂ŷ(x, y) dx dy =

1
c(b− a)

Z

Ω
dx dy =

I
c(b− a)

(2.3)

as
R
Ω dx dy is the area of Ω, or the integral I. The idea of the Monte Carlo integration

is to read this equation as: I = c(b − a)p. So, if we know the probability p then we
know the integral I. But how can we obtain the probability p that a point distributed

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 36

36

Figure 2.1 Schematics and definitions of the hit and miss method.

according to a uniform distribution lies in region Ω? Simple: perform an experiment
whose outcome is the pair (x, y), distributed according to (2.2), and compute from
that experiment the probability p. It might help to imagine an archer who is sending
arrows uniformly to region S. If he sends 100 arrows and 78 of them are in region
Ω then an estimation of the probability is p = 0.78. The hit and miss method is a
sophisticated manner of replacing the archer giving us, hopefully, a precise value for
p as well as the error in the calculation of the integral I.

Let us imagine, then, that we have an ideal (though very inefficient) archer that is
able to send arrows that fall uniformly (and this is the key word) in points (x, y) of S.
The point (x, y) can or can not fall within Ω and, hence, the event “the point (x, y)

is in Ω” can take the values “yes” or “no”, a binary variable that follows a Bernoul-
li distribution. We make M independent repetitions of this Bernoulli experiment,
generate the points (x1, y1), (x2, y2), ..., (xM , yM) uniformly distributed in S and
define the random variable N̂B as the number of points that belong to Ω, i.e. those

satisfying yi ≤ g(xi). We introduce a random variable Î1, defined from p̂ = N̂B
M ,

as

Î1 = c(b− a)
N̂B

M
= c(b− a)p̂. (2.4)

As N̂B follows a binomial distribution of mean value pM , it results that �̂I1� = I.
Such a random variable whose average value is equals to I is called an unbiased esti-
mator of the integral. Using the results of the binomial distribution we can compute

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 37

37

also the root mean square of this estimator as:

σ[̂I1] =
c(b− a)

M
σ[N̂B] =

c(b− a)
M

p
Mp(1− p) = c(b− a)

r
p(1− p)

M
. (2.5)

We can now perform the experiment which consists in generating M points inde-
pendently and uniformly distributed in the rectangle S and count how many times
N̂B the points lie in Ω. This gives us a value for the random variable p̂. Using the
short-hand notation we derived from Chebyshev’s theorem we can write:

I = Î1 ± σ̂[̂I1] = c(b− a)p̂ ± c(b− a)

r
p̂(1− p̂)

M
, (2.6)

with the usual confidence intervals for the error. If we make a large number of
repetitions M we can approximate the binomial by a Gaussian distribution and the
confidence levels indicate that there is a probability of 68% that the integral is indeed
in the interval (̂I1 − σ̂[̂I1], Î1 + σ̂[̂I1]), 95% that is in the interval (̂I1 − 2σ̂[̂I1], Î1 +

2σ̂[̂I1]), etc. Consequently we associate σ̂[̂I1] to the error (in the statistical sense) of
our estimator. The relative error is:

σ[̂I1]

�̂I1�
≈

r
1− p
pM

. (2.7)

From this expression we obtain (i) the error decreases as the inverse square root
M−1/2 of the number of repetitions M and (ii) the error decreases with increasing
p. Therefore it is convenient to chose the, otherwise arbitrary, rectangle S as small
as possible, which is equivalent to taking c = max(g(x)).

In a numerical algorithm, to replace our archer we need to generate random points
(x, y) from a two-dimensional uniform distribution. This can be obtained by gener-
ating one random variable x̂ uniformly in the interval [a, b] and another, independent,
random variable ŷ uniformly in (0, c). In practice, we use two independent random
variables û, v̂ uniformly distributed in the interval [0, 1] and the lineal transforma-
tions x̂ = a + (b− a)û, ŷ = cv̂.

So let us assume that we have a way, a black box for the moment being, an algo-
rithm that enables us to generate independent Û(0, 1) random variables. We explain
in appendix A how to construct such an algorithm. It suffices to say that almost
every scientific programming language or library incorporates a built-in function to
do the job. The name of the function depends on the programing language and may
even vary from compiler to compiler. Popular names are rand(), random(),
randu(), etc. Here we will use here the generic name ran_u(). In the follow-
ing, every time we see a call to the function ran_u() the return is an independent
Û(0, 1) random number uniformly distributed in the interval (0, 1).

We implement the hit and miss method as a subroutine. The subroutine returns
the estimator of the integral in the variable r and the error in s. In this and other
examples, the important part of the code, the one that the reader should read in detail
is framed in a box.

subroutine mc1(g,a,b,c,M,r,s)
implicit none

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 38

38

double precision, intent (in) :: a,b,c
integer, intent (in) :: M
double precision, intent (out) :: r,s
double precision :: g,p,u,v,ran_u
integer :: na,i
external g

na=0
do i=1,M

u=ran_u()
v=ran_u()
if (g(a+(b-a)*u).gt.c*v) na=na+1

enddo
p=dble(na)/M
r=(b-a)*c*p
s=sqrt(p*(1.d0-p)/M)*c*(b-a)

end subroutine mc1

For the sake of clarity we include an example of a program calculating the area of
the function g(x) = x2 in the interval [0, 1]:

program area
implicit none
interface
double precision function g(x)

double precision, intent (in) :: x
end function g

end interface
double precision :: a,b,c,r,s
integer :: M
a=0.d0
b=1.d0
c=1.d0
M=100000
call mc1(g,a,b,c,M,r,s)
write (*,*) "The estimated value of the integral is", r
write (*,*) "The estimated error is", s

end program area

double precision function g(x)
implicit none
double precision, intent (in) :: x
g=x*x

end function g

The reader is encouraged to run this simple program and check that the result is
compatible, within errors, with the exact value I = 1/3.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 39

39

2.2
Uniform sampling

Let us know explain a second, more sophisticated method to perform integrals using
random numbers and ideas from probability theory. We consider again the integral

I =

Z b

a
g(x) dx (2.8)

but now g(x) does not need to be necessarily limited to take non-negative values. We
write this integral as

I =

Z
G(x)fx̂(x) dx, (2.9)

with G(x) = (b− a)g(x) and

fx̂(x) =

(1
b− a a ≤ x ≤ b,

0 otherwise.
(2.10)

This integral can be understood as the average value of the function G(x) with re-
spect to a random variable x̂ whose probability density function is fx̂(x), i.e. a uni-
form random variable in the interval (a, b). If we now devise an experiment whose
outcome is the random variable x̂ and repeat that experiment M times to obtain the
values x1, . . . , xM we can compute from those values the sample mean and variance:

µ̂M [G] =
1
M

MX

i=1

G(xi), (2.11)

σ̂2
M [G] =

1
M

MX

i=1

G(xi)
2
−

1
M

MX

i=1

G(xi)

!2

. (2.12)

note that we have not included the term M
M−1 in the definition of σ̂2

M [G] as we
will be using these formulas with a large value for M (or the order of thousands or
millions) and it has a minimal numerical importance. Using (1.100), the integral can
be estimated as:

I = µ̂M [G] ±
σ̂M [G]
√

M
, (2.13)

where the error has to be understood in the statistical sense of Chebyshev’s theorem
as explained in section 1.6. If we write, for convenience, everything in terms of the
original function g(x), we obtain

I = (b− a)µ̂M [g] ± (b− a)
σ̂M [g]
√

M
, (2.14)

where µ̂M [g] and σ̂M [g] are the sample mean and root-mean-square of the function
g(x).

It is very easy to implement this method as we already know how to generate
values of a random variable x̂ which is uniformly distributed in an interval (a, b):
take a Û(0, 1) variable û and use the linear transformation x̂ = (b− a)û + a. Let us
give a simple computer program:

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 40

40

subroutine mc2(g,a,b,M,r,s)
implicit none
double precision, intent (in) :: a,b
integer, intent (in) :: M
double precision, intent (out) :: r,s
double precision :: g,g0,ran_u
integer :: i
external g

r=0.d0
s=0.d0
do i=1,M

g0=g(a+(b-a)*ran_u())
r=r+g0
s=s+g0*g0

enddo
r=r/M
s=sqrt((s/M-r*r)/M)
r=(b-a)*r
s=(b-a)*s

end subroutine mc2

This simple algorithm is the uniform sampling method. If we think of the Riemann
integral as the limiting sum of the function g(x) over an infinite number of points in
the interval (a, b), the uniform sampling method replaces that infinte sum by a finite
sum (2.11) over points randomly distributed in the same interval.

2.3
General sampling methods

Similar ideas can be used for the integral

I =

Z
G(x)fx̂(x) dx, (2.15)

where again there are no restrictions about the function G(x), but we demand that
fx̂(x) has the required properties of a probability density function: non-negative
and normalized. The key point is to understand the integral as the average value
of the function G(x) with respect to a random variable x̂ whose probability density
function is fx̂(x):

I = E[G]. (2.16)

If we devise now an experiment whose outcome is the random variable x̂ with proba-
bility density function fx̂(x) and repeat that experiment M times to obtain the values
x1, . . . , xM we can compute from those values the sample mean and variance using
Eqs. (2.11) and (2.12). Then, as before, the integral can be approximated by Eq.
(2.13). This simple, but deep, result is the basis of the general sampling method:
To evaluate integral (2.15) we consider it as the average of G(x) with respect to a

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 41

41

random variable x̂ whose probability distribution function is fx̂(x) and use the ap-
proximation given by the sample mean and the error given by the sample root mean
square: formulas (2.11)-(2.12) and (2.13), but using for xi, i = 1, . . . , M values of
the random variable x̂ whose pdf is fx̂(x). It is straightforward to write a computer
program to implement this algorithm.

subroutine mc3(g,ran_f,M,r,s)
implicit none
integer, intent (in) :: M
double precision, intent (out) :: r,s
double precision :: g,ran_f,g0
integer :: i
external g,ran_f

r=0.d0
s=0.d0
do i=1,M

g0=g(ran_f())
r=r+g0
s=s+g0*g0

enddo
r=r/M
s=sqrt((s/M-r*r)/M)

end subroutine mc3

The main difference with respect to the uniform sampling is the substitution of the
values uniform distribution (b− a)ran_u() + a distributed according to an uniform
distribution in (a, b) by the values ran_f() distributed according to the distribution
fx̂(x). And how do we implement this function? Although we will devote next
chapter entirely to this question, let us give now some basic results.

2.4
Generation of non-uniform random numbers: basic concepts

The basic method to generate values of a random variable x̂ distributed according to
the probability distribution function fx̂(x) uses the theorem proven in section 1.3:

Theorem.- If x̂ is a random variable whose cumulative probability function is
Fx̂(x), then the change of variables û = Fx̂(x̂) yields a random variable û uniform-
ly distributed in the interval (0, 1), a Û(0, 1) variable.

We read this theorem backwards: if û is a Û(0, 1) random variable, then the prob-
ability distribution function of x̂ = F−1

x̂ (û) is fx̂(x), see figure 2.2. Let us see an
example. We want to generate random numbers distributed according to an expo-
nential distribution:

fx̂(x) =

(
0, x < 0,

a exp(−ax), x ≥ 0,
(2.17)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 42

42

!"

x!

 Fx! (x)

u!

 Fx!
!1(u)

Figure 2.2 Inversion of the cdf Fx̂(x). If u is a value of a random variable û uniformly

distributed in the (0, 1) interval, then x = F−1
x̂ (u) follows the corresponding pdf

fx̂(x) =
F−1
x̂ (x)

dx
.

We first compute the cumulative distribution

Fx̂(x) =

Z x

−∞

fx̂(x�) dx� = 1− exp(−ax), (2.18)

and then invert x = F−1
x̂ (u) by solving u = Fx̂(x) or x = −1

a log(1 − u). This
means that to generate random numbers x distributed according to an exponential
distribution, we need to generate numbers u uniformly distributed in the (0, 1) and
then apply x = −1

a log(1−u). As 1− û is obviously also a Û(0, 1) variable, we can
simply use the formula:

x =
−1
a

log(u). (2.19)

The algorithm can be implemented in the following simple program1):

double precision function ran_exp(a)
implicit none
double precision, intent (in) :: a
double precision :: ran_u

1) A possible problem with this algorithm one needs to be aware of is that it might occur that the uniform
random number u takes exactly the value u = 0. This can be avoided generating the uniform numbers
in a suitable way as discussed in the appendix 12.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 43

43

ran_exp=-log(ran_u())/a

end function ran_exp

Let us see some more examples:
Cauchy distribution: The probability distribution function is:

fx̂(x) =
1
π

1

1 + x2 . (2.20)

The cumulative function is

Fx̂(x) =

Z x

−∞

fx̂(x) dx =

Z x

−∞

1
π

1

1 + x2 =
1
2

+
1
π

arctan(x), (2.21)

and its inverse function:

x = tan

„
π(u−

1
2
)

«
. (2.22)

To generate random values distributed according to the more general distribution:

fx̂(x) =
a
π

1

1 + a2(x− x0)2
, (2.23)

we do not need to repeat the whole process. We simply note that the variable ẑ

defined by ẑ = a(x̂ − x0) follows the Cauchy distribution fẑ(z) = 1
π

1
1+z2 and use

x = x0 + a−1 tan
`
π(u− 1

2)
´
.

A power-law distribution in a bounded domain: Consider the random variable
x̂ distributed according to:

fx̂(x) =

(
(1 + a)xa, x ∈ [0, 1],

0, x /∈ [0, 1],
(2.24)

with a > −1 (otherwise, it is not normalizable). The cumulative distribution is
Fx̂(x) = xa+1 if x ∈ [0, 1] and the inversion is x = u1/(1+a).

A power-law distribution in an infinite domain. This kind of random variables
appear in many modern applications of the field of complex systems. Roughly speak-
ing, a random variable defined in the infinite domain (0,∞) is said to have a power-
law distribution fx̂(x) with exponent a > 0 if fx̂(x) ∼ x−a for large x. The problem
is that this definition is not very precise. There are many functions fx̂(x) which be-
have as fx̂(x) ∼ x−a for large x and one needs to specify which one is needed in
a particular problem. Note that one can not use fx̂(x) = Cx−a for all x ∈ (0,∞)

as this function is not normalizable for any value of the exponent a. Many functions
fx̂(x) have been proposed. We will consider here the specific example:

fx̂(x) =

8
<

:
0, x < 0,

a−1
x0

“
1 + x

x0

”−a
, x ∈ [0,∞),

(2.25)

which is well defined if a > 1 and x0 > 0. The cumulative function for x ≥ 0 is

Fx̂(x) = 1−

„
1 +

x
x0

«1−a

, (2.26)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 44

44

and the inversion x = F−1
x̂ (u) leads to

x = (u
1

1−a − 1) x0, (2.27)

where we have replaced u by 1− u as they are statistically equivalent.
Other possibilities for a bona fide power-law distribution imply the use of cut-offs.

For example, a distribution cut-off at small values of x:

fx̂(x) =

8
<

:
0, x < x0,

a−1
x0

“
x
x0

”−a
, x ∈ [x0,∞),

(2.28)

valid for x0 > 0 and a > 1. It is easy to show that values of this random variable can
be generated using x = u

1
1−a x0.

Rayleigh distribution: A random variable r̂ that follows the Rayleigh distribution
has as probability density function:

fr̂(r) =

(
0, r < 0,

re−
1
2 r2

, 0 ≤ r ≤ ∞.
(2.29)

The cumulative function is:

Fr̂(r) =

Z r

−∞

fr̂(r) dr = 1− e−
1
2 r2

, (2.30)

and the inverse function

r =
p
−2 log(1− u) ≡

p
−2 log(u) (2.31)

where again we can replace u by 1−u as they are statistically equivalent. We will be
using this formula later when discussing the Box-Muller-Wiener algorithm for the
Gaussian distribution.

Gaussian distribution. If x̂ is a Gaussian random variable of mean µ and variance
σ2, with probability density function

fx̂(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.32)

then ẑ = x̂−µ
σ is a Gaussian random variable of zero mean and variance 1 with

probability density function:

fẑ(z) =
1
√

2π
e−

z2
2 . (2.33)

Then, in order to generate x̂ all we need to do is generate ẑ and apply the linear
change x̂ = σẑ + µ. The cumulative function of ẑ is:

Fẑ(z) =

Z z

−∞

fẑ(z) dz =

Z z

−∞

1
√

2π
e−

z2
2 dz =

1
2

“
1 + erf

“
z/
√

2
””

, (2.34)

and values of the random variable ẑ are obtained from:

z =
√

2 erf−1(2u− 1) (2.35)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 45

45

A possible problem with this expression is that the inverse error function erf−1(x) is
not standard in most programming languages and you will need to search for it in an
appropriate scientific library. For instance, in Intel’s Math Kernel Library it is called
erfinv(x). One could use, alternatively, some of the good approximations to the
inverse error function z = F−1

ẑ (u),

z ≈ t−
c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3
, t =

p
−2 log(1− u) (2.36)

and the numerical values c0=2.515517, c1=0.802853, c2=0.010328, d1=1.432788,
d2=0.189269, d3=0.001308. The error is less than 4.5× 10−4 if 0.5 ≤ u ≤ 1.0. For
0 < u < 0.5 we can use the symmetry property of the Gaussian distribution around
x = 0 to write up the following computer program:

double precision function ran_g()
implicit none
double precision, parameter :: c0=2.515517d0
double precision, parameter :: c1=0.802853d0
double precision, parameter :: c2=0.010328d0
double precision, parameter :: d1=1.432788d0
double precision, parameter :: d2=0.189269d0
double precision, parameter :: d3=0.001308d0
double precision :: u,t,ran_u

u=ran_u()
if (u.gt.0.5d0) then

t=sqrt(-2.d0*log(1.-u))
ran_g=t-(c0+t*(c1+c2*t))/(1.d0+t*(d1+t*(d2+t*d3)))

else
t=sqrt(-2.d0*log(u))
ran_g=-t+(c0+t*(c1+c2*t))/(1.d0+t*(d1+t*(d2+t*d3)))

endif

end function ran_g

Besides the intrinsic error which might or might not be important in a particular
application, this approximation to the inverse error function is relatively slow as it
involves the calculation of a square root, a logarithm and a ratio of polynomials. In
the next chapter we will develop alternative algorithms for the Gaussian distribution
that use faster functions.

The problem of the lack of a good algorithm for the calculation of the inverse
cumulative distribution function is very general and, sometimes, it is a bottleneck for
the implementation of the method described in this section. For example, consider a
variable distributed according to the distribution:

fx̂(x) =

(
0, x < 0,

xe−x, x ≥ 0,
(2.37)

(it belongs to the Gamma-distribution family, concretely it is the Γ̂(2, 1) distribution,
see more in the next chapter). The cumulative distribution is:

Fx̂(x) =

(
0, x < 0,

1− (1 + x)e−x, x > 0.
(2.38)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 46

46

Now, given a value u uniformly distributed in the interval (0, 1) all we need to do is
to find the positive solution x of the non-algebraic equation u = Fx̂(x) = 1 − (1 +

x)e−x. This could be solved, for example, using Newton-Raphson method with the
recursion relation2):

xn+1 = xn −
Fx̂(xn)− u

fx̂(xn)
, (2.39)

where we have replace F �x̂(x) = fx̂(x). As a initial condition we can expand
Fx̂(x) = x2/2 + O(x3) = u and use x0 =

√
2u. A possible program could be:

double precision function ran_gamma2()
implicit none
double precision :: u,x,xn,fx,fxc,ran_u

fx(x)=x*exp(-x)
fxc(x)=1.d0-exp(-x)*(1.d0+x)
u=ran_u()
x=sqrt(2.d0*u)
xn=x-(fxc(x)-u)/fx(x)
do while(abs(xn-x).gt.1.d-8)

xn=x
x=x-(fxc(x)-u)/fx(x)

enddo
ran_gamma2=x

end function ran_gamma2

The same procedure can be used, for instance, to generate the distribution (the
Γ̂(3, 1) member of the gamma family):

fx̂(x) =

(
0, x < 0,
1
2x2e−x, x > 0.

(2.40)

with a cumulative distribution:

Fx̂(x) =

8
<

:
0, x < 0,

1−
“
1 + x + 1

2x2
”

e−x, x > 0.
(2.41)

The Newton-Raphson algorithm can be implemented in the following program using
the initial value x0 = (6u)1/3 obtained by expanding Fx̂(x) = 1

6x3 + O(x4):

double precision function ran_gamma3()
implicit none
double precision :: u,x,xn,fx,fxc,ran_u

2) Other methods of solution will also work. For instance, write it in the form x = − log
`

u
1+x

´
and use

the recursion relation xn+1 = − log
“

u
1+xn

”
with x0 = 1. The reader can check that this procedure

always converges to the appropriate, positive, solution for x.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 47

47

fx(x)=0.5d0*x*x*exp(-x)
fxc(x)=1.d0-exp(-x)*(1.d0+x*(1.d0+0.5d0*x))
u=ran_u()
x=(6.d0*u)**(1.d0/3.d0)
xn=x-(fxc(x)-u)/fx(x)
do while(abs(xn-x).gt.1.d-8)

xn=x
x=x-(fxc(x)-u)/fx(x)

enddo
ran_gamma3=x

end function ran_gamma3

In the next chapter, however, we will see more efficient methods to generate values
of random variables distributed according to gamma-type distributions.

The same method of the inversion of the cumulative distribution function can be
used in the case of discrete random variables, those taking values from a numerable
(maybe infinite) set (x1, x2, . . .) ordered as x1 < x2 < x3 If pi is the probability
that the random variable x̂ takes the value xi, the pdf is:

fx̂(x) =
X

i=1

piδ(x− xi), (2.42)

and the corresponding cdf

Fx̂(x) =

Z x

−∞

fx̂(x) dx =
mX

i=1

pi, (2.43)

here m stands for the largest integer number for which it is xm ≤ x. The cdf is a
step function. To invert Fx̂(x) we need to determine to which interval [xm, xm+1)

does F−1
x̂ (u) belong to, see figure 2.3 In general, it is not easy to find the interval

[xm, xm+1) and it is better to consider the equivalent problem of finding the maxi-
mum value of m for which

Fx̂(xm) =
mX

i=1

pi ≤ u. (2.44)

If the number of values that the random variable x̂ can take is not too big, it might
be convenient to check directly to which interval does the uniform random number
belongs. For instance, let us consider the distribution

fx̂(x) =
1
8
δ(x) +

3
8
δ(x−

1
2
) +

1
6
δ(x− 2) +

1
3
δ(x− 4), (2.45)

for which we could use the following program

double precision function ran_discrete_f()
implicit none
double precision :: u,p1,p2,p3,ran_u

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 48

48

x1! x2! x3! x4! x5!
p1!

p2!

p3!

p4!

1!

p5!

u!

x!

 Fx! (x)

Figure 2.3 Inversion of the cdf for a discrete distribution.

u=ran_u()
s1=1.d0/8.d0
s2=s1+3.d0/8.d0
s3=s2+1.d0/6.d0
if (u.lt.s1) then

ran_f=0.d0
elseif(u.lt.s2) then

ran_f=0.5d0
elseif(u.lt.s3) then

ran_f=2.d0
else

ran_f=4.d0
endif

end function ran_discrete_f

A particular case is that of the Bernoulli distribution for which the cumulative distri-
bution function is (1.29). The inverse function takes only two values:

F−1
x̂ (u) =

(
0 u < 1− p,

1 u ≥ 1− p,
(2.46)

see figure 1.2. Hence, a program to generate a Bernoulli random variable with pa-
rameter p could be:

integer function iran_bern(p)
implicit none

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 49

49

double precision, intent (in) :: p
double precision :: ran_u

if (ran_u().lt.1.0d0-p) then
iran_bern=0

else
iran_bern=1

endif

end function iran_bern

Replacing u by 1 − u (as they are statistically equivalent), the relevant lines of this
program can also be written as:

if (ran_u().gt.p) then
iran_bern=0

else
iran_bern=1

endif

If the random variable x̂ takes N values x1, . . . , xN with the same probability, i.e.
pi = 1

N , it is possible to find the desired interval [xm, xm+1) as3) m = [Nu] + 1.
Hence, to sample

fx̂(x) =
NX

i=1

1
N

δ(x− xi) (2.47)

we take u from a Û(0, 1) distribution and take4) x = x[Nu]+1.
If the discrete random variable can take an infinite numerable number of values,

it is usually difficult to invert efficiently the cdf Fx̂(x). A notable exception is the
geometric distribution which takes integer values x = i with probability pi = pqi

(with q = 1− p). The cdf is

Fx̂(m) =
mX

i=0

pi =
mX

i=0

pqi = 1− qm+1. (2.48)

We need to find the maximum integer value m for which

1− qm+1
≤ u → qm+1

≥ 1− u ≡ u, (2.49)

or

m =

»
log(u)
log(q)

–
. (2.50)

The program could look like5):

3) Recall that [z] denotes the integer part of the real variable z.
4) This algorithm assumes that the value u = 1 can never appear exactly. This is true for the random

numbers of the form u = m/M with 0 ≤ m ≤ M − 1 discussed in the appendix 12.
5) Now we need to make sure that the random number generator can not return exactly the value u = 0.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 50

50

integer function iran_geo(p)
implicit none
double precision, intent (in) :: p
double precision :: ran_u

iran_geo=int(log(ran_u())/log(1.d0-p))

end function iran_geo

In other cases of discrete variables, the cdf Fx̂(x) might be difficult to invert.
Consider the discrete distribution: pi = (1 + i)p2qi, with q = 1 − p, a modified
geometric distribution. The cumulative distribution is:

Fx̂(m) =
mX

i=0

pi = 1− qm+1(1 + p(m + 1)), (2.51)

and we need to find the maximum integer value m for which Fx̂(m) ≤ u, or

qm+1(1 + p(m + 1)) ≥ 1− u ≡ u. (2.52)

This equation needs to be solved numerically. For instance, we can set x = m + 1

and set the iteration scheme:

x0 =
log(u)
log(q)

,

xn+1 =
log u− log (1 + pxn)

log q
, (2.53)

and iterate until |xn−xn+1| is less than, say 10−6. Next, we set m = [x], the integer
part of x. The program would be:

integer function iran_modgeo(p)
implicit none
double precision, intent (in) :: p
double precision :: a,v,x0,x,ran_u

a=log(1.d0-p)
v=log(ran_u())
x0=v/a
x=x+1.d0
do while(abs(x0-x).gt.1.d-6)

x=x0
x0=(v-dlog(1.d0+p*x))/a

enddo
iran_modgeo=int(x)

end function iran_modgeo

Sometimes, it is not even possible to find a suitable analytical expression for

Fx̂(m) =
mX

i=0

pi. In this case, what we can do is to find directly the solution of

Fx̂(m) ≤ u. This can be generically implemented as follows:

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 51

51

integer function iran_generic(p)
implicit none
double precision :: p
double precision :: F,v,ran_u
integer :: i
external p

v=ran_u()
F=p(0)
i=0
do while(F.lt.v)

i=i+1
F=F+p(i)

enddo
iran_generic=i

end function iran_generic

Where p(i) is a external function which returns the value of pi. For example, for the
distribution pi = 6

π2 (i + 1)−2 the function p(i) can be written as:

double precision function p(i)
implicit none
integer, intent (in) :: i
double precision, parameter :: coeff=0.6079271018540266261d0
p=coeff/(1+i)**2

end function p

Since in this case, Fx̂(m) ≤ u corresponds to
Pm

i=0(i + 1)−2
≤

π2

6 u. Therefore
one can also implement directly:

integer function iran_pot2()
implicit none
double precision, parameter :: pi26=1.644934066848226d0
double precision :: v,F,ran_u
integer :: m

v=pi26*ran_u()
F=1.d0
m=0
do while(F.lt.v)

m=m+1
F=F+1.d0/(m+1)**2

enddo
iran_pot2=m

end function iran_pot2

The same ideas can be applied to the Poisson distribution of parameter λ, P̂(λ),
which takes the integer value i = 0, 1, 2, . . . with probability pi = e−λλi/i!. Giv-
en a number u extracted from a uniform Û(0, 1) distribution, we need to find the
maximum value m which satisfies:

mX

i=0

e−λ λi

i!
≤ u. (2.54)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 52

52

Although this sum can be written out in terms of known functions, namely
mX

i=0

e−λ λi

i!
=

Γ(m + 1, λ)
Γ(m + 1)

, (2.55)

being Γ(x, λ) =

Z ∞

λ
dt tx−1e−t the incomplete Gamma function, this does not help

us in the solution of (2.54), as both Γ(x) and Γ(x, λ) are not part of the standard set
of most compiling languages. A better alternative is to solve (2.54) directly. We first
write it as

mX

i=0

λi

i!
≤ ueλ. (2.56)

We find the value of m by adding terms to the left-hand-side of this expression until
the inequality is not satisfied. In the calculation of the terms of the sum it is helpful
to use the relation:

λi+1

(i + 1)!
=

λ
i + 1

λi

i!
, (2.57)

leading to the algorithm:

integer function iran_poisson(lambda)
implicit none
double precision, intent (in) :: lambda
double precision :: v,F,a,ran_u
integer :: m

F=1.d0
v=dexp(lambda)*ran_u()
a=F
m=0
do while(F.lt.v)
a=a*lambda/(m+1)
F=F+a
m=m+1

enddo
iran_poisson=m

end function iran_poisson

This algorithm works fine for small values of λ but its efficiency worsens for large
λ. The reason is simple to understand. We know that the Poisson distribution has
mean value and variance equal to λ. This means that most of the times the generated
values belong to the interval λ −

√
λ, λ +

√
λ. As we begin searching from m = 0,

it takes, on average, λ sums to solve (2.54). Why not then start by searching the
solution of (2.54) using a value of m close to λ, namely m = [λ], instead of starting
from m = 0? All we need to do is to compute first the partial sum

F =

[λ]X

i=0

λi

i!
, (2.58)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 53

53

as well as the latest term a =
λ[λ]

[λ]!
. If F < ueλ, this means that the required value of

m that satisfies (2.56) is larger that [λ] and we keep on increasing m until we find its
largest value for which (2.56) holds. If, on the other hand, F > ueλ, it is m < [λ],
and we decrease m and subtract terms from the sum until the condition (2.56) is
satisfied. In this way, we need to sum of the order of

√
λ terms to find the solution

of (2.54). A big improvement if λ is large.
As a practical issue, in this case, to find the corresponding terms of the sum we

use

λi−1

(i− 1)!
=

i
λ

λi

i!
. (2.59)

Here comes a program implementing these ideas.

integer function iran_poisson(lambda,a0,F0)
implicit none
double precision, intent (in) :: lambda
double precision :: v,F,F0,a,a0,ran_u
integer :: m

v=dexp(lambda)*dran_u()
m=lambda
a=a0
F=F0
if (F.lt.v) then

do while(F.lt.v)
m=m+1
a=a*lambda/m
F=F+a

enddo
else

do while(F.gt.v)
m=m-1
F=F-a
a=a*(m+1)/lambda

enddo
m=m+1

endif
iran_poisson=m

end function iran_poisson

where, in the main program, we need to add the lines:

F0=1.0d0
a0=F0
do i=1,lambda

a0=a0*lambda/i
F0=F0+a0

enddo

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 54

54

In any event, neither of these programs is useful for very large λ as the calculation
of eλ can easily yield an overflow. There are alternative ways to generate a Poisson
distribution. We will review them in a later chapter.

The final example is that of the binomial distribution, where pi =
`N

i

´
pi(1 −

p)N−i. According to the general procedure, we need to find the maximum value of
m for which:

mX

i=0

N
i

!
pi(1− p)N−i

≤ u, (2.60)

where u is a random number taken from a Û(0, 1) distribution. When programming
this algorithm it is useful to use the relation between two consecutive terms in the
sum:

N
i + 1

!
pi+1(1− p)N−i−1 =

p
1− p

N − i
i + 1

N
i

!
pi(1− p)N−i, (2.61)

valid for i = 0, 1, . . . , N − 1, and that the first term is (1 − p)N . A possible imple-
mentation is:

integer function iran_binomial(N,p)
implicit none
integer, intent (in) :: N
double precision, intent (in) :: p
double precision :: u,a,F,ran_u
integer :: m

a=(1.d0-p)**N
F=a
m=0
u=ran_u()
do while(F.lt.u)

a=a*p/(1.d0-p)*(N-m)/(m+1.d0)
F=F+a
m=m+1

enddo
iran_binomial=m

end function iran_binomial

As before, we could start by checking first the value of m equal to the average
value of the distribution pN and then increase or decrease m as needed. In the next
chapter, however, we will see alternative methods for the generation of the binomial
distribution.

This ends our short introduction to the basic methods for the generation of random
variables distributed according to a given probability distribution. We will devote
more time to this important topic in next chapters, but now let us return to the expla-
nation of different integration techniques.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 55

55

2.5
Importance sampling

Let us consider again the general integral

I =

Z
g(x) dx, (2.62)

that we write in the form:

I =

Z
G(x)fx̂(x) dx, (2.63)

with G(x) =
g(x)
fx̂(x)

and fx̂(x) has to be a probability density function (non-negative

and normalized). In the sampling method we considering this to be equal to the
average E[G] and use the approximation used by the sample mean.

There are infinite ways in which (2.62) can be decomposed as in (2.63), although
some might be more “natural” than others. For instance, take the integral,

I =

Z ∞

0
dx cos(x)x2e−x, (2.64)

which is I = −1/2. If we would like to use a sampling method for its calculation,
possible “natural” choices would be

G(1)(x) = cos(x)x2, x ≥ 0, (2.65)

f
(1)
x̂ (x) =

(
0, x < 0,

e−x, x ≥ 0,
(2.66)

or

G(2) = cos(x)x, x ≥ 0, (2.67)

f
(2)
x̂ (x) =

(
0, x < 0,

xe−x, x ≥ 0,
(2.68)

or

G(3) = 2 cos(x), x ≥ 0, (2.69)

f
(3)
x̂ (x) =

(
0, x < 0,
1
2x2e−x, x ≥ 0,

(2.70)

but we could have used, for example, a not so obvious splitting:

G(4)(x) =

(
0, x < 0,

π(x2 + 1) cos(x)xe−x, x ≥ 0.
(2.71)

f
(4)
x̂ (x) =

1
π

1

1 + x2 , ∀x. (2.72)

Which is the best way to split g(x) = G(x)fx̂(x)? Of course, a possible criterion
is that the numerical generation of random numbers according to fx̂(x) turns out

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 56

56

to be easy from a practical point of view. But leaving aside this, otherwise very
reasonable, requirement, a sensible condition to chose the splitting is to obtain an
algorithm with the minimum statistical error. If we look at (2.13), the smallest error
is obtained when the sample variance σ̂2

M [G] is minimum, or, equivalently, when the
variance as given by:

σ2[G] =

Z
G[x]2fx̂(x)dx−

„Z
G(x)fx̂(x)dx

«2

=

Z
g(x)2

fx̂(x)
dx− I2 (2.73)

is a minimum. As I is independent of fx̂(x), the minimization of σ2[G] is equivalent

to the minimization of
R g(x)2

fx̂(x)
dx. The minimization has to be achieved in the

space of functions fx̂(x) which can be considered as probability density functions,
i.e. those functions satisfying:

fx̂(x) ≥ 0, (2.74)
Z

fx̂(x) dx = 1. (2.75)

The optimal solution fopt
x̂ (x) can be found using the method of the Lagrange mul-

tipliers. Let us introduce the functional L [fx̂]:

L [fx̂] =

Z
g(x)2

fx̂(x)
dx + λ

Z
fx̂(x) dx, (2.76)

being λ the Lagrange multiplier needed to take into account the normalization con-
dition (2.75). The minimization of L [fx̂] leads to:

δL
δfx̂

˛̨
˛̨
fx̂(x)=f opt

x̂ (x)
= 0 =⇒ −

g(x)2

fopt
x̂ (x)2

+ λ = 0, (2.77)

or

fopt
x̂ (x) = +λ−1/2

|g(x)| . (2.78)

According to (2.74) we have taken the + sign for the square root. Now λ is found
from the normalization condition (2.75):

fopt
x̂ (x) =

|g(x)|R
|g(x)| dx

. (2.79)

The corresponding optimal function Gopt(x) is

Gopt(x) =
g(x)

fopt
x̂ (x)

, (2.80)

and the associated minimum variance is

σ2[Gopt] =

„Z
|g(x)| dx

«2

− I2. (2.81)

This result indicates that if g(x) is a non-negative function, such that |g(x)| =

g(x), then the variance of the optimal estimator is 0. In other words, the statistical

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 57

57

error is 0 and the sample average is exact (independently of the number of points M

used). Where is the trick? If we look at the optimal choice, in the denominator of
(2.79) appears precisely the integral I. But knowing the value of the integral was the
initial goal. If we know it, why should we need a numerical algorithm whose goal is
the calculation of the integral?

However, the idea of importance sampling is to replace the optimal value fopt
x̂ (x)

by some other function fx̂(x) close to it (while still keeping the generation of the
random variable easy enough). For example, let us look at the calculation of the
integral in (2.64). The optimal choice would be the splitting

Gopt(x) = λ1/2 cos(x)
| cos(x)|

, x ≥ 0, (2.82)

fopt
x̂ (x) =

(
0, x < 0,

λ−1/2
| cos(x)|x2e−x, x ≥ 0,

(2.83)

being λ1/2 =
R∞
0 | cos(x)|x2e−xdx the normalization constant6). The minimal vari-

ance of the optimal choice is σ2[Gopt] = λ − I2
≈ 1.190009. However, there is no

simple way to solve
Z x

0
fopt
x̂ (x�)dx� = u and the optimal choice is useless. We could

use instead, for example, any of the four splittings given in (2.65)-(2.71). Which one
would be the most efficient? The one that uses a probability density function fx̂(x)

closer to fopt
x̂ . Intuitively, it is option number 3, as all it does is to replace | cos(x)|

by an average value 1/2, We can check this out, by computing (analytically) the
variance in the four cases using the integrals of (2.73), with the result:

σ2[G(1)] =
148843
12500

≈ 11.907

σ2[G(2)] =
6791
2500

≈ 2.716

σ2[G(3)] =
787
500

≈ 1.574

σ2[G(4)] = −
1
4

+
27π
16

≈ 5.051

Hence, the splitting number 3, given by (2.69) is indeed the most efficient, at least
from the point of view of the associated variance. Of course, we need to check that
the generation of the random numbers distributed according to f

(3)
x̂ (x), a Γ̂(3, 1)

distribution is not so slow as to render the method more inefficient than the others.
We will return to this point later in the chapter.

Once we have determined which is the optimal splitting, all we need to do is to use
subroutine mc3 with a function G(3)(x) = 2 cos(x) and ran_gamma3 for the gen-
eration of random numbers distributed according to the Γ̂(3, 1) distribution. For the
sake of clarity we include below a driver program as well as an implementation of the
function G(3)(x) which together with subroutine mc3 and function ran_gamma3
leads to a full program.

6) The integral can be performed analytically to obtain

λ1/2 = 2−6eπ+6e2π
−2e3π+eπ/2(−2+π)2+e5π/2(2+π)2+e3π/2(−8+6π2)

4(−1+eπ)3
≈ 1.20003565

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 58

58

program area2
implicit none
interface
double precision function g3(x)
double precision, intent (in) :: x

end function g3
end interface
interface
double precision function ran_gamma3()
end function ran_gamma3

end interface
double precision :: r,s
integer :: M
M=100000
call mc3(g3,ran_gamma3,M,r,s)
write (*,*) "The estimated value of the integral is", r
write (*,*) "The estimated error is", s

end program area2

double precision function g3(x)
implicit none
double precision, intent (in) ::x
g3=2.d0*cos(x)

end function g3

The reader should run this program with a reasonable large number, e.g. M = 105,
and check that the numerical result agrees, within errors, with the known value I =

−1/2.
Summing up, the basic idea of the importance sampling method is to split the

integrand as g(x) = G(x)fx̂(x) using a suitable random variable x̂ with pdf fx̂(x).
It is desirable to chose fx̂(x) in such a way that (i) it is reasonably simple to generate,
(ii) it gives a small variance. The optimal fx̂(x) most often does not satisfy condition
(i), but we might then look for functions fx̂(x) which are close enough to the optimal
one. For example, let us consider the integral of g(x) = J0 (x0x),

I =

Z 1

0
dxJ0 (x0x) (2.84)

being J0 the Bessel function and x0 = 2.404825557695773 . . . the first zero of
J0(x). Looking at the shape of J0 we propose the family of pdf’s:

fx̂(x) =
6

3 + a

“
−ax2 + (a− 1)x + 1

”
, x ∈ (0, 1) (2.85)

i.e. a properly normalized family of parabolic functions that have a maximum at
x = 0 if a < 1, and vanish at x = 1. Positivity is ensured if a ≥ −1. Therefore a is
restricted to the interval (−1, 1). We define, hence:

G(x) =
g(x)
fx̂(x)

=
3 + a

6
J0 (x0x)

(−ax2 + (a− 1)x + 1)
(2.86)

and use the sample mean of G(x) as an unbiased estimator for the integral. To gener-
ate random numbers distributed according to fx̂(x) we need to invert the cumulative

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 59

59

distribution function:

Fx̂(x) =
6

3 + a

„
−

a
3
x3 +

a− 1
2

x2 + x

«
, x ∈ (0, 1) (2.87)

Although in this case Cardano’s formula gives us the solution of the cubic equation
Fx̂(x) = u, it is actually easier to implement again the Newton-Raphson algorithm.
The following program returns random numbers distributed according to fx̂(x).

double precision function ran_poli2()
implicit none
double precision :: a,x,xn,fx,fxc,u,ran_u
common /a/a

fx(x)=6.0/(3.0+a)*(1.0+x*(a-1.0-a*x))
fxc(x)=6.0/(3.0+a)*x*(1.0+x*((a-1.0)/2-a/3.0*x))
u=ran_u()
x=u
xn=x-(fxc(x)-u)/fx(x)
do while(abs(xn-x).gt.1.0d-8)

xn=x
x=x-(fxc(x)-u)/fx(x)

enddo
ran_poli2=x

end function ran_poli2

We give here an example of a driver and an implementation of G(x):

program area3
implicit none
interface

double precision function gb(x)
double precision, intent (in) :: x

end function gb
end interface
interface

double precision function ran_poli2()
end function ran_poli2

end interface
double precision :: a,r,s
integer :: M
common /a/a
M=1000000
a=0.5d0
call mc3(gb,ran_poli2,M,r,s)
write (*,*) "The estimated value of the integral is", r
write (*,*) "The estimated error is", s

end program area3

double precision function gb(x)
implicit none
double precision, intent (in) :: x
double precision, parameter :: x0=2.404825557695773d0
double precision :: a,fx,dbesj0

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 60

60

common /a/a
fx(x)=6.d0/(3.d0+a)*(1.d0+x*(a-1.d0-a*x))
gb=dbesj0(x*x0)/fx(x)

end function gb

This has to be complemented with the function ran_poli2() and the subroutine
mc3. Here dbesj0 is the Bessel function J0(x) as implemented in gfortran and
also in the Intel fortran compiler. Otherwise a routine that returns the value of the
Bessel function J0(x) must be provided. Running this program for different values
of a it is found that the minimal error is obtained for a ≈ 0.4. From a particular run,
we have obtained 7) I = 0.611411 ± 0.000024. We do not have an exact value to
compare with now, but a numerical integration using more traditional techniques8)

yields I = 0.6113957. The difference is 1.5 × 10−5, in perfect agreement with the
importance sampling estimate, including the error.

2.6
Advantages of Monte Carlo integration

The reader might be somehow disappointed as the examples we have given so
far could be done either analytically, e.g. (2.64), or by other numerical methods
with more precision, case of (2.84). Although there might be examples of one-
dimensional integrals in which the Monte Carlo integration could be competitive
compared to more traditional methods (like Simpson integration), the truth is that
the real power of Monte Carlo integration lies in the calculation of N -dimensional
integrals. Let us consider, for example, the integral:

I(N) =

Z ∞

−∞

dx1 · · ·

Z ∞

−∞

dxNe−(x1+···+xN)J0

“
x2
1 + · · · + x2

N

”
. (2.88)

For large N it would be difficult to write an efficient code implementing, for instance,
a Simpson-like algorithm. Let us consider it from the point of view of importance
sampling. We split the integrand g(x1, . . . , xN) = G(x1, . . . , xN)fx̂1,...,x̂n

(x1, . . . , xN)

with:

G(x1, . . . , xN) = J0

“
x2
1 + · · · + x2

N

”
, (2.89)

fx̂1,...,x̂n
(x1, . . . , xN) = e−(x1+···+xN) = e−x1

· · · e−xN . (2.90)

The key point is that fx̂1,...,x̂n
(x1, . . . , xN) can be considered as the probabili-

ty density function of an N -dimensional random variable x̂ = (x̂1, . . . , x̂N). In
fact, as it can be factorized as fx̂1,...,x̂n

(x1, . . . , xN) = fx̂(x1) · · · fx̂(xN) with
fx̂(x) = e−x, the N random variables x̂1, . . . , x̂N are independent of each other

7) Needless to say, running the program with different random number generators will produce different
results. This value is just an example of one output of this program, not the one the reader will obtain
when running the algorithm by himself. This comment applies to all the cases in which we give a
numerical estimate of an integration using these any of these Monte Carlo methods.

8) Actually, it is the result given by the Mathematica program.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 61

61

and follow the same exponential distribution. It is the very easy to use the method
of importance sampling to compute (2.88): Generate M values x(1), . . . ,x(M) of
the N -dimensional vector x = (x1, . . . , xN), and use them to compute the sample
mean and variance of G(x), using the known formulas (2.11-2.12) and approximate
the integral by (2.13).

Let us present a simple computer program:

program n_dimensional_integral
implicit none
interface

double precision function ran_exp(a)
double precision, intent (in) :: a

end function ran_exp
end interface
double precision :: r,s,x,dbesj0,sx,s2,g0
integer, parameter :: N=4
integer ::M,i,k
M=1000000

r=0.d0
s=0.d0
do k=1,M

sx=0.d0
s2=0.d0
do i=1,N

x=ran_exp(1.d0)
sx=sx+x
s2=s2+x*x

enddo
g0=dbesj0(s2)
r=r+g0
s=s+g0*g0

enddo
r=r/M
s=sqrt((s/M-r*r)/M)

write (*,*) "The estimated value of the integral is", r
write (*,*) "The estimated error is", s

end program n_dimensional_integral

As an example, we have ran this program with M = 106 samples and it took us a
fraction of a second in a desktop computer to obtain the values I(2) = 0.38596 ±

0.00049, I(3) = 0.20028± 0.00044, I(4) = 0.08920± 0.00036. These are in agree-
ment with what you can get with other numerical methods, but are much faster to
obtain. The complexity of the Monte Carlo algorithm does not increase with N , the
number of integration variables. The program runs perfectly for N = 10 giving,
using M = 108, I(10) = −0.002728 ± 0.000016 in less than one minute, whereas
it would extremely costly to get the same accuracy with a deterministic integration
algorithm.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 62

62

2.7
Monte Carlo importance sampling for sums

The same ideas of the different Monte Carlo integration techniques can be used in
the case of sums. Imagine we want to compute a sum

P
i gi and that it is possible

to split gi = Gipi, in such a way that pi ≥ 0 and
P

i pi = 1. Then the sum can be
considered as the average value of a random variable x̂ that takes only integer values,
such that its pdf is:

fx̂(x) =
X

i

piδ(x− i). (2.91)

We can then consider this sum as the average value E[G] and evaluate it using the
sample mean. In this case this means to generate integer values i1, . . . , iM distribut-
ed with the set of probabilities pi and then compute the sample mean and variance:

µ̂M [G] =
1
M

MX

k=1

Gik (2.92)

σ̂2
M [G] =

1
M

MX

k=1

G2
ik
−

1
M

MX

k=1

Gik

!2

. (2.93)

For example, if we want to compute the sum

S =
∞X

i=0

i1/22−i (2.94)

(the exact value is PolyLog
ˆ
−

1
2 , 1

2

˜
= 1.347253753 . . .), we split gi = Gipi with

Gi = 2i1/2 and pi = 1
22−i. Then the pi’s are the probabilities of a discrete geomet-

ric distribution of parameter q = 1/2 and we already learned how to generate those.
A full program is:

program monte_carlo_sum
implicit none
interface
integer function iran_geo(a)

double precision, intent (in) :: a
end function ran_exp

end interface
double precision :: q,r,s,a,g0
integer :: M,i,k
p=0.5d0
M=1000000

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 63

63

r=0.d0
s=0.d0
a=-log(q)
do k=1,M

i=iran_geo(p)
g0=2.d0*sqrt(dble(i))
r=r+g0
s=s+g0*g0

enddo
r=r/M
s=sqrt((s/M-r*r)/M)

write (*,*) "The estimated value of the sum is", r
write (*,*) "The estimated error is", s

end program monte_carlo_sum

A particular run of this program with M = 108 gave us S = 1.34714 ± 0.00015,
in perfect agreement, within statistical errors, with the exact result. Again, the real
advantage of the Monte Carlo integration lies in the numerical calculations of high-
dimensional sums. For example, the sum:

S(N) =
∞X

i1=0

· · ·

∞X

iN=0

2−(i1+···+iN)

1 + i21 + · · · + i2N
(2.95)

can be evaluated splitting gi1···iN = Gi1···iN pi1···iN , with Gi1···iN = 2N

1+i21+···+i2N

and pi1···iN =
“

1
22−i1

”
· · ·

“
1
22−iN

”
, the product of N independent geometric dis-

tributions. The program is:

program monte_carlo_multidimensional_sum
implicit none
interface

integer function iran_geo(a)
double precision, intent (in) :: a

end function ran_exp
end interface
integer, parameter :: N=4
double precision :: q,r,s,sx,a,g0
integer :: M,i,k,j
p=0.5d0
M=100000000

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 64

64

r=0.d0
s=0.d0
a=-log(q)
do k=1,M

sx=1.0d0
do i=1,N
j=iran_geo(p)
sx=sx+j*j

enddo
g0=2.0d0**N/sx
r=r+g0
s=s+g0*g0

enddo
r=r/M
s=sqrt((s/M-r*r)/M)

write (*,*) "The estimated value of the sum is", r
write (*,*) "The estimated error is", s

end program monte_carlo_multidimensional_sum

A particular run with M = 108 gave the following results S(1) = 1.318107 ±

0.000073, S(2) = 1.79352±0.00014, S(4) = 3.67076±0.00040, S(10) = 63.5854±

0.0071. While the first three are in agreement with other numerical methods to eval-
uate sums, the last result, for N = 10, which requires less than one minute in a
desktop computer, would be difficult to evaluate using any other method.

2.8
Efficiency of an integration method

This is a concept very easy to understand. The efficiency of an integration method is
measured by the time it takes a computer to provide an estimate of the integral with
some given error �. In the Monte Carlo methods explained so far, the error is always
given by

� =
σ
√

M
, (2.96)

being σ, the root-mean-square, an intrinsic value independent of the number of rep-
etitions M . If we fix the error �, it turns out that M = σ2/�2 is proportional to the
variance of the estimator, σ2. At first sight, then, it seems natural to use an estimator
with the smallest possible variance (i.e. the importance sampling), but there is an-
other factor to take into consideration: the actual time (in seconds) t that it takes to
generate each contribution to the estimator. This consists in the time spent in every
call to the function ran_f() plus the time needed to compute the function G(x)

and do the sums contributing to the average and the variance. The total needed time
is then Mt which is proportional to tσ2. Hence, it might pay off to use a method
with a larger variance, if the time needed to generate each contribution to the sample
mean compensates the larger variance. The relative efficiency between integration

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 65

65

methods 1 and 2 is nothing but the ratio

e12 =
t1σ2

1

t2σ2
2

, (2.97)

being t1 and σ2
1 the time and variance of method 1 and similarly for method 2. If

e12 > 1 we conclude that method 2 is more efficient than method 1.
We can prove, for instance, that the method of uniform sampling is more efficient

than the hit and miss method. For the hit and miss method, recalling (2.4)-(2.5), we
get that the variance of this method can be written as:

σ2
1 = c(b− a)I − I2. (2.98)

While for the uniform sampling method, the variance is:

σ2
2 = (b− a)

Z
g(x)2 dx− I2. (2.99)

So that

σ2
1 − σ2

2 = (b− a)

»
cI −

Z
g(x)2 dx

–
. (2.100)

Since we had the condition 0 ≤ g(x) ≤ c we obtain
Z

g(x)2 dx ≤ c

Z
g(x) dx = cI (2.101)

and σ1 ≥ σ2. Furthermore, given that the hit and miss method requires the calcu-
lation of two random numbers, whereas the uniform sampling requires only one, it
turns out that it takes more time, t1 > t2. As e12 > 1, we conclude that uniform
sampling is more efficient than hit and miss.

2.9
Summary

In this chapter we have argued that numerical integration based on the sampling
algorithm:
Z

G(x)fx̂(x) dx = µ̂M [G] ±
σ̂M [G]
√

M
(2.102)

with

µ̂M [G] =
1
M

MX

k=1

G(xk), (2.103)

σ̂2
M [G] =

1
M

MX

k=1

G(xk)2 −

1
M

MX

k=1

G(xk)

!2

, (2.104)

being xk, k = 1, . . . , M values of the random variable x̂ whose pdf is fx̂(x), can be
very competitive if x = (x1, . . . , xN) is high-dimensional. How high is high? How

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 66

66

large must N be for this method to be competitive? The exact answer might depend
on the specific details of the function G(x) and the difficulty in the generation of the
random variables. The answer might be N > 10 or N > 5, but one thing is sure:
when N is very large, of the order of thousands or millions of variables involved
in the integral, then there is no alternative to the Monte Carlo sampling. There
are many problems that need of the calculation of such high dimensional integrals,
but the typical applications are to the field of statistical mechanics, where ideally
one would like to deal with N of the order of the Avogadro number, N ∼ 1023,
although we are very far away from being able to get close to this number with
today’s (or tomorrow’s, for that matter) computer capabilities. We have reached a
stage, however, where it is not unusual to consider that N is in the range of 106,
although much larger values can be dealt with satisfactorily in some specific cases.

It is clear that, to proceed, we need efficient ways of generating the values of the
N -dimensional random variable x̂ = (x̂1, . . . , x̂N) whose pdf is fx̂1,...,x̂n

(x1, . . . , xN).
In the few examples of this chapter in which we have used the sampling method for
N -dimensional integrals or sums, we have managed to split fx̂1,...,x̂n

(x1, . . . , xN) =

fx̂(x1) . . . fx̂(xN) as the product of N identical and independent random variables.
Unfortunately, this it not the case of the majority of applications of interest and we
must develop methods to generate those high-dimensional random variables. Before
we dwell into this, we will explain further algorithms valid for one variable pdf’s
and then move on to high-dimensional variables.

Further reading

The basic Monte Carlo integration techniques, including hit and miss, sampling
methods and other not explained here can be found in the classic books by Kalos
and Whitlock[3] and Rubinstein[4].

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 67

67

Exercises

1) Compute numerically using the hit and miss Monte Carlo method, the integral

Z 1

0
dx
p

1− x2

Compute the dependence of the root–mean-square σ of the Monte Carlo estimator
with the number of points used (take M=10,100,1000, etc.). Calculate the integral
analytically and plot in a log-log scale the real error (absolute difference between
in exact value and the Monte Carlo estimator) versus N . Which is the slope of the
curve as M →∞?

2) Repeat the previous problem using the uniform sampling method. Which is the
relation between the rms of both methods? Measure the time it takes to run both
algorithms and find which method is more efficient. How many CPU seconds will
it take to compute the integral with an error less that 10−6?

3) Repeat the two previous problems 104 times with M = 100 using each time a
different sequence of random numbers. Compute, for each method, the percentage
of cases for which the numerical result differs from the exact one in less that (a)
σ, (b) 2σ, (c) 3σ.

4) Compute the integral of the previous exercises using the method of uniform sam-
pling with M = 104. Compute the rms of the result. Let µ1 and σ1 be, respec-
tively, the estimator and the rms obtained. Repeat 10 times using each a different
sequence of random numbers and obtain 10 different estimators µ1, . . . , µ10 and
rms σ1, . . . , σ10. Compute a new estimator µ and rms σ from the average of the
10 values Ii and their rms. Which relation do you expect between Ii, σi, I and σ?
Check that relation.

5) Using the pdf fx̂(x) = exp(−x), x ≥ 0 compute using the sampling method the
integral: Z ∞

0
dx
√

x cos(x) exp(−x)

6) Compute the integral

I =

Z 1

0
dx cos

“πx
2

”

using uniform sampling and a general sampling method with the pdf fx̂(x) =
3
2 (1−x2). Which is the relation between the rms of both methods? Which is their
relative efficiency?

7) Compute the integral of the previous problems using the sampling method with the
pdf fx̂(x) = 6

3+a [1 + x(a− 1)− ax2]. Compute numerically the rms of the result
as a function of a and determine the optimal value of a. Compare the efficiency
for a = 1 and the optimal value.

8) Compute using the sampling method the integral of problem 1 using the pdf
fx̂(x) = 1−ax2

1−a/3 depending on the parameter a and compute, numerically, the
optimal value for a.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 2 — 2013/10/22 — 19:49 — page 68

68

9) For problem 1 check that when using the optimal pdf fopt
x̂ (x) as given by the

importance sampling method, then the sampling error is zero whenever the number
of points used for the numerical integration.

10) Compute

Z 1

0
dx1 . . .

Z 1

0
dxn exp [−

1
2
(x2

1 + x2
2 + · · · + x2

n)] cos2(x1x2+x2x3+· · ·+xnx1)

for n = 1, 2, 3, 5, 10 using Simpson’s, uniform sampling and hit and miss methods.
11) Prove, without using variational methods, that the function fopt

x̂ is the one that
minimizes the rms of the numerical estimator to the integral I. Show that this
equivalent to prove:

„Z
|g(x)| dx

«2

≤

Z
g(x)2

fx̂(x)
dx

and this follows from Schwartz’s inequality

„Z
f1(x)f2(x) dx

«2

≤

Z
f1(x)2 dx

Z
f2(x)2 dx

