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13
Generation of n-dimensional correlated Gaussian
variables

We have already explained in section 3.5 a method valid to generate a set of random
variables x = (x

1

, x
2

, . . . , xn)with a joint Gaussian distribution given by (1.80) with
mean values µ = (µ

1

, . . . , µn) and correlation matrix Cij = h(x̂i � µi)(x̂j � µj)i
with C = A�1. An equivalent way of looking at this problem is via the diago-
nalization of the quadratic form in the exponential of (1.80). This means to use
the matrix relation A = �

|D�, being �

| the transpose matrix of �, the matrix
of change of variables, and D a diagonal matrix with diagonal elements (the eigen-
values) (�

1

,�
2

, . . . ,�n). As A is a symmetric matrix, this diagonalization is always
possible and, as the quadratic form is supposed to be positive definite, the eigenval-
ues are strictly positive, �i > 0, 8i. Furthermore, the determinant of the matrix of
the change of variables is |�| = 1 and |A| =

Qn
i=1

�i. The change of variables
x = µ+�z or xi = µi+

Pn
j=1

�ijzj , in coordinates, changes the quadratic form to
exp

⇥� 1

2

z|Dz
⇤
= exp

⇥� 1

2

Pn
i=1

�iz
2

i

⇤
. As the Jacobian of this change is |�| = 1,

it leads to a pdf for the z variables:

f
ẑ1,...,ẑn

(z
1

, z
2

, ..., zn) =

sQn
i=1

�i
(2⇡)n

exp

"
�1

2

nX

i=1

�iz
2

i

#
(13.1)

=

nY

i=1

1

�i
p
2⇡

exp


� z2i
2�2

i

�
, (13.2)

indicating that the zi’s are independent Gaussian variables of zero mean and vari-
ance �2

i ⌘ 1/�i. Once the set of zi’s has been generated by our favorite Gaussian
number generator we just need to change back variables to the xi’s. In general, this
algorithm is slow (it requires to solve a full matrix diagonalization problem, finding
the eigenvalues and the eigenvectors) but it can be an alternative to the one explained
in section 3.5. It turns out that there are some cases of interest where the change of
variables adopts a particularly simple form and the whole algorithm can be speeded
up with the help of the fast Fourier transform. We now have a look at two of these
cases.

The free model
Let us here consider the so-called “1-d free model” in which the Gaussian joint pdf
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has the particular expression:

f
x̂1,...,x̂n

(x
1

, . . . , xn) = C exp[�L
0

(x
1

, . . . , xn)], (13.3)

where the quadratic form given by the function L
0

is1):

L
0

(x
1

, . . . , xn) =
1

2

nX

i=1

h
(xi+1

� xi)
2

+ ax2i

i
, a > 0, (13.4)

and C is the normalization constant. Here we consider what are called “periodic
boundary conditions” that have been discussed previously, i.e. whenever xn+1

ap-
pears in any formula, it should be replaced by x

1

. If we write the quadratic form as
L
0

=

1

2

x|Ax, matrix A is:

A =

0

BBBBBBBB@

2 + a �1 0 0 · · · 0 �1

�1 2 + a �1 0 · · · 0 0

0 �1 2 + a �1 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · �1 0

0 0 0 0 · · · a+ 2 �1

�1 0 0 0 · · · �1 a+ 2

1

CCCCCCCCA

(13.5)

with diagonal elements Aii = a + 2, o�-diagonal Ai�1,i = Ai,i�1

= �1 and the
corner elements A

1,n = An,1 = �1.
We make now a change of variables based on the discrete Fourier transform of the

variables2). Let us define, then, a set of complex variables x̂
0

, . . . , x̂n�1

as:

x̂k =

n�1X

j=0

e
2⇡i

n

jkxj+1

, k = 0, 1, . . . , n� 1. (13.6)

Here i stands for the imaginary unit i =

p�1. The inverse transformation is:

xj+1

=

1

n

n�1X

k=0

e�
2⇡i

n

jkx̂k, j = 0, . . . , n� 1. (13.7)

Note that the definition (13.6) can be used for whatever value of k 2 Z but as
x̂n+k = x̂k, only values of x̂k between k = 0 and k = n�1 are, in general, indepen-
dent of each other. In the particular case that the xj’s are real variables, it follows the
additional condition x̂�k = x̂n�k = x̂⇤k. This reduces the number of independent
values of x̂k even further. The analysis of the independent set of x̂k is slightly di�er-
ent for n even or n odd. In what follows, we consider only the case that n is an even
number and leave the reader to redo the details for the case of n odd. For instance, if
n = 8, the following relations apply: x̂

7

= x̂⇤
1

, x̂
6

= x̂⇤
2

, x̂
5

= x̂⇤
3

as well as x̂
0

=

1) In some contexts, this function is called a “free Lagrangian”.
2) The reader not familiar with the Fourier transform might have a look at appendix 18. For convenience,

the definitions used in this section are slightly di�erent from those of the appendix, where the numbers
x
i

run from i = 0 to i = N � 1, whereas in the notation used here they run from i = 1 to i = N .
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x̂⇤
0

, x̂
4

= x̂⇤
4

. These relations imply that if we write x̂k = rk+ isk, then s
0

= s
4

= 0

and the only independent variables are r
0

, r
1

, s
1

, r
2

, s
2

, r
3

, s
3

, r
4

. For compactness,
we will use the notation (z

1

, z
2

, z
3

, z
4

, z
5

, z
6

, z
7

, z
8

) ⌘ (r
0

, r
4

, r
1

, s
1

, r
2

, s
2

, r
3

, s
3

)

and a similar generalization for arbitrary n even.3)

The nice feature of the change of variables (13.6-13.7) is that it diagonalizes the
quadratic form:

nX

i=1

h
(xi+1

� xi)
2

+ ax2i

i
=

1

n

n�1X

k=0

!2

k|x̂k|2, !2

k = a+ 4 sin

2

✓
⇡k
n

◆
. (13.8)

To prove this identity it is useful the relation

1

n

nX

i=1

e

2⇡i

n

ik
=

(
1, k = 0,

0, k 6= 0.
(13.9)

However, we must not look at L
0

written in terms of x̂k and jump to the conclu-
sion that the full set of the x̂k’s are independent Gaussian variables, because we just
proved that there are relations between them and some of these variables depend on
the others. We need to rewrite the quadratic formL

0

using only the set of independent
variables zk, k = 1, . . . , n. Including only these variables and using !n�k = !k, the
quadratic form can be written as4):

1

n

n�1X

k=0

!2

k|x̂k|2 =

1

n

0

@!2

0

|x̂
0

|2 + !2

n

2
r2n

2
+ 2

n

2 �1X

k=1

!2

k|x̂k|2
1

A

=

nX

k=1

⇤kz
2

k, (13.10)

with ⇤

1

= !2

0

/n,⇤
2

= !2

n

2
/n,⇤

3

= ⇤

4

= 2!2

1

/n,⇤
5

= ⇤

6

= 2!2

2

, etc. As
f
ẑ1,...,ẑn

(z
1

, . . . , zn) / e�
1
2

P
⇤

k

z2
k , this shows that the zk’s are independent Gaus-

sian variables of zero mean and variance �2

k = 1/⇤k. Once these variables have
been generated, we use the discrete Fourier transform (13.7) to obtain the original
variables (x

1

, . . . , xn).
To sum up, to generate n Gaussian variables (x

1

, . . . , xn) whose pdf is (13.3)
we generate a set of independent Gaussian variables (z

1

, . . . , zn) of zero mean and
variance �2

k = 1/⇤k. From these variables, we construct the Fourier variables
(x̂

1

, . . . , x̂n) fulfilling the symmetry relations x̂�k = x̂n�k = x̂⇤k. Finally, using
an inverse discrete Fourier transform, we obtain the desired set (x

1

, . . . , xn).
In practice, most fast Fourier transform routines organize their variables such that,

for the discrete Fourier transform of a set of real variables xi, only the independent set
of values zk are kept in memory, precisely in the same order that have been defined

3) For n = 9, an odd number, the relations between the Fourier variables is: x̂8 = x̂⇤
1 , x̂7 =

x̂⇤
2 , x̂6 = x̂⇤

3 , x̂5 = x̂⇤
4 and x̂0 = x̂⇤

0 . The set of independent Fourier variables is
(z1, z2, z3, z4, z5, z6, z7, z8, z9) = (r0, r1, s1, r2, s2, r3, s3, r4, s4).

4) The reader can check this formula using n = 8, for example.
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here. For example, if (x
1

, x
2

, x
3

, x
4

, x
5

, x
6

, x
7

, x
8

) is the original vector of n = 8

real variables, the Fourier coe�cients x̂k = rk + isk, are kept in a vector organized
precisely as (r

0

, r
4

, r
1

, s
1

, r
2

, s
2

, r
3

, s
3

)

5). The next program listing implements this
algorithm .

program freeGaussian
implicit double precision (a-h,o-z)
parameter (n=256)
dimension x(n)
open(66,file=’freeGaussian.dat’,status=’unknown’)
a=1.0d0
pin=3.14159265358979d0/n

x(1)=ran_g()*dsqrt(n/a)
x(2)=ran_g()*dsqrt(n/(a+4.0d0))
do i=2,n/2

sigma=dsqrt(n/(2.0d0*(a+4.0d0*(dsin(pin*(i-1)))**2)))
x(2*i-1)=sigma*ran_g()
x(2*i)= sigma*ran_g()

enddo
call realfft1d(x,n,-1)

do i=1,n
write(66,*) x(i)

enddo
end program freeGaussian

Note that in our notation x(2) contains really rn/2 or z
2

. We have used the val-
ues ⇤

1

= !2

0

/n = a/n, ⇤

2

= !2

n

2
/n = (a + 4)/n. We include the call to

realfft1d(x,n,-1), a generic name for a routine which provides the inverse
discrete Fourier transform in the case that the variables are real numbers6).

Translational invariance
The second case7) in which the use of discrete Fourier transform can be useful is

when the correlation function of the random variables (x
1

, . . . , xn) depends only on
the absolute value of the di�erence between the indexes, i.e. when h(xi � µi)(xj �
µj)i = Cij = C|i�j|, i, j = 1, n. As we will see, the method we are going to explain
yields a correlation function that satisfies, beyond the general condition C` = C�`,
the so-called periodic boundary conditions, namely: C` = Cn+` = Cn�`. These
boundary conditions appear naturally if we consider that the (x

1

, . . . , xn) variables
are placed in a ring such that x

1

and xn are neighbors of each other, see figure 13.1.
In this setup, and considering n = 8 for the sake of clarity, it is clear that the cor-
relation between the x

1

and x
3

variables is the same whether we consider that the
distance separating them is ` = 3 � 1 = 2 if computed counter-clockwise from x

1

to x
3

, or ` = 8 + 1 � 3 = 6, computed clockwise, hence it is natural to assume that

5) Or, in general, organized as (r0, r
n/2, r1, s1, r2, s2, . . . , rn/2�1, sn/2�1)

6) Remember to read the exact definition of the discrete Fourier transform used by the numerical fast
Fourier transform package in order to correct by the right factors of n if needed, see appendix 18.

7) Actually, this second case includes the first one as a particular example.
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C
2

= C
8�2

= C
6

. If it is not reasonable to assume that our set of random vari-
ables (x

1

, . . . , xn) fulfill the periodic boundary conditions, there is a simple trick we
can use. We first double the number of variables and consider (x

1

, . . . , x
2n), which

then we generate assuming periodic boundary conditions. Finally, simply discard all
variables (xn+1

, . . . , x
2n), leaving us with the required set (x

1

, . . . , xn).8)

Figure 13.1 Graphical representation of the periodic boundary conditions for the set of
variables (x1, . . . , x2n).

Without loss of generality, we assume µi = 0 and hence C|i�j| = hxixji. When
µi 6= 0 all we need to do is to add µi to the generated value of the random variable
xi. Let x̂k be the discrete Fourier transform of xi as defined in (13.6). As xj are real
numbers, it is x̂⇤k = x̂�k, from where

h|x̂k|2i = hx̂kx̂�ki =
n�1X

i,j=0

e
2⇡i

n

(i�j)khxi+1

xj+1

i

=

n�1X

i,j=0

e
2⇡i

n

(i�j)kC|i�j|. (13.11)

If we now make the change of variables ` = i � j and use the periodic boundary
conditions C` = Cn+` we arrive at:

1

n
h|x̂k|2i =

n�1X

`=0

e
2⇡i

n

`kC` ⌘ Sk. (13.12)

We have defined Sk, the discrete Fourier transform of the correlation function C`.
This function is called, in some contexts, the “structure factor” or the “power spec-
trum” in others. It is obvious from its definition that it is a real, positive defined

8) The variables (x
n+1, . . . , x2n) also satisfy the required correlations, but they are not independent of

the set (x1, . . . , xn

).
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function. Moreover, it satisfies S�k = Skand Sk+n = Sk. It is possible to invert the
discrete Fourier transform to find C` from Sk:

C` =
1

n

n�1X

k=0

e�
2⇡i

n

`kSk, ` = 0, . . . , n� 1. (13.13)

We now introduce a set of independent Gaussian variables (z
1

, . . . , zn) of zero
mean and variance 1, hzizji = �ij . It is possible to show that if ẑk is the discrete
Fourier transform, defined as in (13.6), the corresponding structure factor turns out to
be h|ẑk|2i = n. Therefore, if we define x̂k = S

1/2
k ẑk, it is clear that 1

n h|x̂k|2i = S(k),
the desired relation (13.12) in Fourier space. All that remains now is to use the inverse
discrete Fourier transform (13.7) to obtain (x

1

, . . . , xn).
In summary, to generate n values (x

1

, . . . , xn) of Gaussian random variables with
a given correlation function C`, follow the next steps:
(0) Compute the discrete Fourier transform Sk of the correlation function C` (imple-
mented using periodic boundary conditions).
(1) Generate a set of independent Gaussian variables (z

1

, . . . , zn) of zero mean and
variance 1.
(2) Compute its discrete Fourier transform ẑk = FD(z) and obtain x̂k = S

1/2
k ẑk.

(3) Compute the inverse discrete Fourier transform to obtain x = F�1

D (x̂).
(4) Add the average value µi to xi, if needed.

This method is known in the literature as the Fourier filtering method[64]. A final
word of warning is necessary here. Many times one introduces an ad hoc correla-
tion function C`. For instance, a power-law type, C` ⇠ |`|�� . To use the previous
algorithm, we need precise values for C` for ` = 0, . . . , n � 1 and the fulfillment of
the periodic boundary conditions C` = Cn�`. Therefore, it is important to be more
precise about the exact meaning of “C` ⇠ |`|��”. For example, we could define (we
assume n even):

C` =

(
C
0

, ` = 0,

|`|�� , �n/2  `  n/2, ` 6= 0,
(13.14)

with a given value for C
0

, supplemented with the periodic boundary conditions
Cn�` = C�` = C`, whenever needed. One has to be careful, though, with the value
for C

0

. If one computes, in general numerically using (13.12), the structure factor
Sk corresponding to this definition, one will notice that it can become negative for
some range values of k, depending on the value of C

0

. This means that (13.14) is
such that the quadratic form

P
i,j xiAi,jxj with (A�1

)i,j = C|i�j|, is not positive
definite and, therefore, there does not exist a set of Gaussian random variables

whose correlation function is (13.14) with this particular choice for C
0

.
This example shows that the first thing we have to do when confronted with a “rea-

sonable” correlation function C` is to check whether the associated quadratic formP
i,j xiAi,jxj is positive definite. This is done by checking that all elements of the

discrete Fourier transform Sk are positive. Would that not be the case, one can either
discard the given C` or “fix it”. The simplest way of fixing it is by finding the min-
imum (negative) value Smin = mink Sk, and then replacing Sk ! Sk � Smin. This,
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of course, ensures that Sk � 0, 8k and, at the level of the correlation function, all
this procedure does is to replace C

0

by a new value while letting unchanged all other
values of C`, ` 6= 0. We call this the “minimal subtraction procedure”.

One could use instead the following expression for the correlation function:

C` = (1 + `2)��/2, �n/2  `  n/2 (13.15)

supplemented, again, with the periodic boundary conditions Cn�` = C�` = C`,
whenever needed. In this case the resulting Sk is always positive and we do not
need to worry about any modifications.9) We now present a program listing that
implements this algorithm for the generation of Gaussian random numbers with a
power-law correlation function of the form (13.15).

program C1d
implicit double precision (a-h,o-z)
parameter(N=64)
double complex s(0:N-1), x(0:N-1)
cc(i)=1.0d0/(1.0d0+i**2)**3.0d0
s(0)=dcmplx(cc(0),0.0d0)
do i=1,N/2

s(i)=dcmplx(cc(i),0.0d0)
s(N-i)=s(i)

enddo
call fft1d(s,N,1)
ss=0.0d0
do i=0,N-1

ss=min(ss,real(s(i)))
enddo
if (ss < 0.0d0) stop ’Non-positive quadratic form’
s=dsqrt(real(s))
!Actual generation begins here

do i=0,N-1
x(i)=ran_g()

enddo
call fft1d(x,N,1)
x=x*s
call fft1d(x,N,-1)

end program C1d

Note that the first lines up to the commented line are needed (i) to check that the
correlation value is acceptable as it yields a positive definite quadratic form and (ii)
to generate the discrete Fourier transform Sk and its square root S1/2

k from the giv-
en correlation function Ci defined as cc(i). These lines need to be ran only once.
The actual generation of the xi’s starts by the assignation of Gaussian values to the
components z(i). There are some symmetries that can be used to simplify this pro-
gram using that Sk is a actually a real number. Note that the desired random numbers

9) This is true if � > 0. Negative values of � and small values of n could again yield negative S
k

and
require again the use of the minimal subtraction procedure.
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x
1

, . . . , xn are stored in a complex vector x(0:N-1) but, in fact, the imaginary part
of any component x(i) is equal to zero10).

There are other ways in which a power-law-type C` ⇠ |`|�� can be accomplished.
A possibility is to take as a starting point directly Sk instead of C` using some (rea-
sonable) criterion. For instance, take (13.15) not as the real correlation function, but
as an starting point and define the structure factor suggested by the manipulation

Sk =

n

2X

`=�n

2 +1

e
2⇡i

n

`kC` ⇡
Z 1

�1
d` eiq`C` =

Z 1

�1
d`

eiq`

(1 + `2)�/2
(13.16)

=

2⇡1/2
⇣ |q|

2

⌘ ��1
2

K
��1
2

(|q|)
�

��
2

� , (13.17)

with q ⌘ 2⇡
n k and K⌫(z) is the modified Bessel function of the second kind. We

then define

Sk =

2⇡1/2
⇣
⇡|k|
n

⌘ ��1
2

K
��1
2

⇣
2⇡|k|
n

⌘

�

��
2

� , (13.18)

which satisfies Sk � 0, 8k. Now, we can skip step (0) and take this expression for Sk

as the starting point for the algorithm. The resulting correlation function will not be
given exactly by (13.15) but will still have the same asymptotic behavior C` ⇠ `�� .
This was, essentially, the procedure used in [65].

10) Typically the imaginary part of x(i) turns out to be a very small number, of the order of 10�12 or
less, due to round-o� errors of the fast Fourier transform routines.
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Exercises

1) Prove equation (13.8).
2) Prove equation (13.12).
3) Run the program to generate n Gaussian variables distributed according to the 1-

d free Lagrangian, compute the correlation function of the resulting numbers and
compare with the exact result

C` =
sinh((n� `)x) + sinh(`x)

4 sinh(x) sinh2
�
nx
2

�
2

,

being x = argcosh(1 + a/2).
4) Take the correlation function C` of the previous exercise as the starting point and

use the method based on the translational invariance property to generate values of
Gaussian random variables distributed according to the 1-d free Lagrangian.

5) Compare the e�ciency of the general method explained in section 3.5 and the one
based on Fourier transforms to generate n Gaussian variables distributed according
to the 1-d free Lagrangian.

6) Generalization to d dimensions: Consider a set of n = Ld variables labeled as
xi1,i2,...,id with ik = 1, . . . , L, such that the exponent of the quadratic form is

L
0

(x
1

, . . . , xn) =
1

2

LX

i1=1

· · ·
LX

i
d

=1

2

4
dX

µ=1

(x~i
µ

� x~i)
2

+ ax2~i

3

5 , a > 0.

where we have introduced the notation ~i = (i
1

, . . . , id) and ~iµ = (i
1

, . . . , iµ +

1, . . . , id). Write down a program to generate Gaussian variables distributed ac-
cording to the free Lagrangian in d dimensions.

7) Prove that if (x
1

, . . . , xn) is a set of independent Gaussian variables of mean zero
and variance one, then its discrete Fourier transform x̂k satisfies h|x̂k|2i = n for
k = 0, . . . , n� 1.

8) Show that for the correlation function (13.14), the minimum value of Sk occurs
at k = n/2 and that in order to keep the quadratic form

P
i,j xiAi,jxj positive

definite, C
0

must satisfy:

C
0

� (�1)

n/2
⇣
2

n

⌘�
� 2

n/2X

`=1

(�1)

`

`�
.

For large n this tends to 2(1� 2

1��
)⇣(�), being ⇣(�) the Riemann zeta function.

9) Use (13.18) to generate Gaussian random numbers as explained in the text, and
check that the resulting correlation function tends asymptotically to a power-law
with exponent ��.


