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3
Generation of non-uniform random numbers:
non-correlated values

3.1
General method

We have already described in section 2.4 a method that allows one, in principle, to
generate values of a random variable distributed according to a given probability
distribution function fx̂(x) based upon the relation x̂ = F−1

x̂ (û) being û a Û(0, 1)

random variable uniformly distributed in the interval (0, 1).
The main problem with this general method is the technical difficulty in finding

a good implementation of the inverse cumulative distribution function F−1
x̂ . When

this happens, a possibility is to use the Newton-Raphson method to find the solution
of Fx̂(x) − u = 0. As F �x̂(x) = fx̂(x), the algorithm proceeds by iteration as
described in (2.39). After setting an initial value x0, the recursion proceeds until
|xn+1 − xn| < �, a prefixed accuracy, for instance � = 10−8. However, this method
might be slow and it is not guaranteed that the algorithm always converges to the
solution as it is known that the Newton-Raphson algorithm might get trapped in
endless loops. Therefore, one needs a good deal of testing before the algorithm
can actually be used with warranty of success. Of course, this method needs a good
routine for the calculation of Fx̂(x) which is not always the case. Imagine we want to
apply it to generate random numbers distributed according to the the gamma family
of distributions1). The pdf of the Γ̂(α) distribution is given in (1.59). The cumulative
function is:

Fx̂(x; α) =

Z x

−∞

dx�fx̂(x�) =

8
<

:

0, x < 0,
γ(α; x)
Γ(α)

, x ≥ 0,
(3.1)

being γ(α; x) the lower incomplete gamma function2). To generate random numbers
x distributed according to the gamma distribution using the inverse cdf, x = F−1

x̂ (u),
all we need, then, is a good algorithm to compute the inverse lower incomplete gam-
ma function, γ−1(α; x) . Alas, this function is not one of the standard functions

1) We are simplifying notation and denote Γ̂(α) ≡ Γ̂(α, θ = 1). To generate a random variable dis-
tributed according to Γ̂(α, θ) we simply multiply by θ a random variable distributed according to
Γ̂(α).

2) This is defined precisely as γ(α; x) =
R x
0 ds sα−1e−s.
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Figure 3.1 Fx̂(x) and the piece-wise linear approximation used in the numerical inversion

method.

you get “for free” in the most popular compilers and one might need to shop around
to find a good library that implements this function. The same technical difficul-
ty arises when finding the numerical solution of Fx̂(x) = u using, for instance,
Newton-Raphson method as the lower incomplete gamma function itself, γ(α; x),
is not standard. Even if we manage to find suitable implementations for γ(α; x) or
γ−1(α; x) (or if we write those ourselves) it is more likely that the resulting algo-
rithm will be slow as it will require a lot of calculations.

A good alternative to solving Fx̂(x) = u every time we need a random number
x might be to use a numerical inversion algorithm. The trick is to divide the [0, 1]

interval in K subintervals
h

i
K , i+1

K

i

i=0,1,...,K−1
and tabulate the inverse cumulative

distribution function at the points ui = i/K, i.e. compute xi = F−1(i/K) for
i = 0, ..., K. However painful this might be, the good news is that you need to do it
only once. The set of numbers xi can be kept in a file and read whenever are needed.
The next step is to replace the true Fx̂(x) by its piecewise-linear approximation in
the interval [ i

K , i+1
K ], see figure 3.1. Given a number u ∈ [0, 1] it is straightforward

to invert the linear interpolation to x = F−1
x̂ (u) by means of

x = (Ku− i)xi+1 + (i + 1−Ku)xi, (3.2)

where i is such that the number u belongs to the interval [ i
K , i+1

K ), or i = [Ku],
(integer part of Ku). A possible program could be:

double precision function ran_f(x,K)
implicit double precision (a-h,o-z)
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dimension x(0:K)

u=ran_u()
i=K*u
ran_f=(K*u-i)*x(i+1)-(i+1-K*u)*x(i)

end function ran_f

Recall that in the Fortran language, there is an automatic truncation for integer num-
bers. So the line i=K*u is equivalent to i=int(K*u). Before the first call to this
routine, we need to initialize it by choosing a value for K and filling the entries of
x(i) for i = 0, . . . , K with the values xi = F−1

x̂ (i/K). A technical problem arises
if either x0 = −∞ or xK = +∞, as it happens in common distributions. The usual
procedure is then set x0 = −Γ0 and xK = +Γ1 being Γ0 and Γ1 cut-off values. One
then has to check that these cut-off values correspond to events of very low probabil-
ity and can be safely discarded. Another possibility is not to cut off the distribution,
but to use the numerical inversion only for the part of the distribution fx̂(x) limited
to x ∈ (−Γ0, Γ1) and to use another, exact or approximate method, for values of x

outside this interval.
Whether this numerical solution to the inverse cumulative function will yield good

quality random numbers depends on the goodness of the piecewise approximation to
Fx̂(x). This is, in turn, determined by the smoothness of Fx̂(x) and by the number
of subdivisions K of the [0, 1] interval. On the other hand, once the table of xi’s has
been generated, the method is very quick as it only involves sums and multiplica-
tions.

3.2
Change of variables

Sometimes a random variable which is difficult to generate can become easy after a
change of variables. We gave in (1.23) the relation between the pdf’s of two random
variables ŷ and x̂ related by a known function ŷ = y(x̂). A very simple case is
the linear change ŷ = ax̂ + b with a �= 0. The only solution of y = ax + b is
x = (y − b)/a and the pdf of ŷ is:

fŷ(y) =
1
|a|

fx̂

„
y − b

a

«
. (3.3)

For example, we have already used that if x̂ is a Û(0, 1), then ŷ is Û(b, a + b) for
a > 0 or Û(a + b, b) for a < 0, as well as the fact that if x̂ is a Gaussian Ĝ(0, 1)

variable, then the change ŷ = σx̂ + µ converts ŷ into a Ĝ(µ, σ) Gaussian variable.
It is possible to derive useful algorithms by using changes of variables in more than

one dimension. An interesting example appears when we consider two independent
Gaussian Ĝ(0, 1) random variables x̂1, x̂2, such that the joint probability density
function is:

fx̂1,x̂2(x1, x2) = fx̂1(x1)fx̂2(x2) =
1
2π

e−
x2
1+x2

2
2 . (3.4)
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Consider the change to polar coordinates r̂ and θ̂:

x̂1 = r̂ cos(θ̂),

x̂2 = r̂ sin(θ̂). (3.5)

We now apply (1.79) to this change of variables. As for given x1, x2 there is a unique
pair of values (r, θ), the joint pdf of r̂ and θ̂ is:

fr̂,θ̂(r, θ) =
fx̂1,x̂2(x1, x2)

J
“

r,θ
x1,x2

” (3.6)

The Jacobian is 1/r and, after replacing r2 = x2
1 + x2

2, we obtain:

fr̂,θ̂(r, θ) =
1
2π

re−
r2
2 . (3.7)

This can be written in the form:

fr̂,θ̂(r, θ) = fr̂(r)fθ̂(θ) (3.8)

with

fr̂(r) = re−
r2
2 , (3.9)

fθ̂(θ) =
1
2π

, (3.10)

which shows that r̂ and θ̂ are also independent random variables. More specifically, θ̂

is uniformly distributed in the interval [0, 2π] that can be obtained simply as θ̂ = 2πû

being û a uniform Û(0, 1) variable. r̂ follows a Rayleigh distribution and we already
showed in section 2.4 that it can be generated by r̂ =

p
−2 log(v̂). This means that

the variables x̂1 and x̂2 can be generated by

x̂1 =
p
−2 log(v̂) cos(2πû),

x̂2 =
p
−2 log(v̂) sin(2πû). (3.11)

This way of obtaining two independent Gaussian Ĝ(0, 1) variables x̂1, x̂2 starting
from two independent uniform Û(0, 1) variables û, v̂ is the celebrated Box-Muller-
Wiener algorithm. The main advantage of this algorithm, besides being exact and
not relying upon approximations to the inverse error function, is that it uses only
elementary functions (sine, cosine, log, square root) that can be found in (almost)
any computing language. At the same time, it turns out to be somewhat slow as
these elementary functions are computed by complicated routines. It all depends on
what you need. If you just need a few thousands of Gaussian random numbers, then
use the Box-Muller-Wiener algorithm. If your needs are in the millions of Gaussian
random numbers you might want to implement a more efficient routine based upon
numerical inversion, for example. We give now a possible implementation of the
Box-Muller-Wiener algorithm. We need to know if the function is being called for
an even or an odd number of times, since the second time of a pair we do not need
to generate again the uniform random numbers u, v.
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double precision function ran_gbmw()
implicit none
double precision ran_u
double precision, parameter :: pi2=6.283185307179586d0
double precision, save :: u,v
integer, save :: icount=1

if (icount.eq.1) then
u=dsqrt(-2.0d0*log(ran_u()))
v=pi2*ran_u()
ran_gbmw=u*cos(v)
icount=2

else
ran_gbmw=u*sin(v)
icount=1

endif

end function ran_gbmw

The change of variables does not need to lead from a set of n random variables to
another set of exactly the same number of variables. For instance, we could consider
the change x̂ = x̂1 + x̂2 that takes from two independent variables (x̂1, x̂2) to only
one, x̂. It is known that the pdf of the sum is:

fx̂(x) =

Z ∞

−∞

dx1fx̂1(x1)fx̂2(x− x1). (3.12)

Imagine, for example, that x̂1 follows a gamma distribution Γ̂(α1) and x̂2 follows a
gamma distribution Γ̂(α2). The pdf of the sum is:

fx̂(x) =

Z x

0
dx1

xα1−1e−x1

Γ(α1)
(x− x1)

α2−1e−(x−x1)

Γ(α2)

=
xα1+α2−1e−x

Γ(α1 + α2)
, (3.13)

for x ≥ 0. This is a Γ̂(α1 + α2) distribution! This is called the α-addition property.
A simple iteration of this rule tells us that to generate a gamma distribution whose
index α is an integer number, all we have to do is to add up α independent Γ̂(1)
variables, i.e. variables following an exponential distribution generated, as we know,
as− log(u) being u obtained from a uniform Û(0, 1) distribution. A simple program
is:

double precision function ran_gamma(alpha)
implicit none
integer i,alpha

ran_gamma=0.0d0
do i=1,alpha

ran_gamma=ran_gamma-dlog(ran_u())
enddo

end function ran_gamma
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If α is not an integer number, this α-additivity property allows us to reduce the prob-
lem to the case α ∈ (0, 1). For this case, it is particularly appropriate the rejection
methods that will be the topic of next sections (see also problem 9).

Other transformations lead also to interesting results. For instance, take 2 indepen-
dent random variables x̂1, x̂2 with cumulative distribution functions Fx̂1(x1), Fx̂2(x2)

and let us define a new random variable ẑ:

ẑ = max(x̂1, x̂2). (3.14)

The cdf of ẑ is defined as Fẑ(z) = P (ẑ ≤ z), but ẑ ≤ z requires x̂1 ≤ z and x̂2 ≤ z.
As x̂1 and x̂2 are independent variables, we have

P (ẑ ≤ z) = P (x̂1 ≤ z, x̂2 ≤ z) = P (x̂1 ≤ z)P (x̂2 ≤ z), (3.15)

or

Fẑ(z) = Fx̂1(z)Fx̂2(z). (3.16)

Take, for instance, the case that Fx̂1(x) = xn, Fx̂2(x) = xm for x ∈ (0, 1). Then
ẑ has a cdf Fẑ(z) = zn+m, a sort of α-additivity property. Iterating this procedure,
we can see that taking ẑ = max(x̂1, . . . , x̂n) where x̂i, i = 1, . . . , n are independent
Û(0, 1) uniform variables with Fx̂i

(x) = x, then

Fẑ(z) = zn, z ∈ [0, 1], (3.17)

and the corresponding pdf is:

fẑ(z) = nzn−1. (3.18)

Hence a generation based on ẑ = max(x̂1, . . . , x̂n) is an alternative to the formula
ẑ = û1/n that we can derive by a direct application of the inversion of the cdf. If
n is not too a large number, it is faster to compute the maximum of n independent
uniform random numbers than to exponentiate u to 1/n as this is a slow operation.

The same ideas can be used with discrete distributions. For instance, if x̂1, x̂2 are
two discrete distributions taking the value i = 0, 1, 2, . . . with probability p

(1)
i and

p
(2)
i , respectively, then x̂ = x̂1 + x̂2 adopts the value i with probability:

pi =
iX

k=0

p
(1)
k p

(2)
i−k. (3.19)

For example, if x̂1 and x̂2 both follow a geometrical distribution with respective
probabilities p1 and p2, i.e. p

(1)
i = p1(1− p1)

i and p
(2)
i = p2(1− p2)

i, then

pi =
p1p2

p2 − p1
((1− p1)

i+1
− (1− p2)

i+1). (3.20)

It is the time now to mention another algorithm for the generation of the binomial
distribution B̂(N, p). We have shown how to implement the inversion of the cumula-
tive function in section 2.4. We use here the fact that a binomial distribution appears
as the sum of Bernoulli distributions. Therefore, we could generate N repetitions of
an event with probability p and add up the positive results. The algorithm would be:
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integer function iran_binomial2(N,p)
implicit none

iran_binomial2=0
do i=1,N

if (ran_u().lt.p) iran_binomial2=iran_binomial2+1
enddo

end function iran_binomial2

This algorithm is slower that the one developed in 2.4 for moderate values of N as
it implies the generation of N uniform random numbers, but it is more efficient for
large values of N .

The Poisson distribution can be generated using an interesting ad hoc method. We
have shown when discussing the exponential distribution in section 1.3 a relation
between the Poisson and the exponential distribution. This relation says that if t̂

follows an exponential distribution with pdf:

ft̂(t) = λe−λt, (3.21)

then the number of events occurring in a time interval (0, 1) follows a Poisson P̂(λ)

distribution. As values ti of this random variable can be obtained from

ti =
−1
λ

log ui, (3.22)

being ui independent values of a Û(0, 1) distribution, we need to count emissions
until the total time exceeds t = 1. Hence, if m are integer values distributed accord-
ing to the Poisson distribution P̂(λ), then the times ti verify

mX

i=0

ti ≤ 1 <
m+1X

i=0

ti, (3.23)

which, using (3.22), can be written as:

−
1
λ

mX

i=0

log ui ≤ 1 < −
1
λ

m+1X

i=0

log ui, (3.24)

or
mY

i=0

ui ≥ e−λ >
m+1Y

i=0

ui, (3.25)

as the condition to verify by the number m. This can be implemented by the follow-
ing program:
integer function iran_poisson(lambda)

implicit none
double precision u, lambda,ran_u

u=ran_u()
iran_poisson=0
do while(u.gt.exp(-lambda))

u=u*ran_u()
iran_poisson=iran_poisson+1

enddo
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end function iran_poisson

The examples could continue forever, but our intention has been just to show that
a little of thinking combined with some intuition can simplify the problem of the
generation of random numbers for many complicated distributions. We will just
explain a last trick that can be useful in a variety of occasions.

3.3
Combination of variables

Imagine that the pdf fx̂(x) of the random variable x̂ whose values we want to gen-
erate can be split as

fx̂(x) =
X

i

pifi(x), (3.26)

where the functions fi(x) can also be considered as the pdf of some random variables
x̂i. All we need for that is non-negativity fi(x) ≥ 0 and normalization

R
dxfi(x) =

1. From the latter we derive easily
X

i

pi = 1. (3.27)

If, furthermore, it is pi > 0 ∀i, we can interpret pi as the different probabilities of
the outcomes of a discrete random variable ẑ that takes integer values, with pdf:

fẑ(z) =
X

i

piδ(z − i). (3.28)

The generation of a value for x̂ proceeds in two steps: first we generate a value of ẑ,
say ẑ = i and then we generate a value of the random variable distributed according
to fi(x). Using (1.135) the resulting pdf of this two-step process,

fx̂(x) =
X

i

Prob(ẑ = i)f(x|ẑ = i) =
X

i

pifi(x), (3.29)

is the pdf fx̂(x) we wanted to sample.
Let us see an example. Imagine we want to generate values of a random variable

x̂ with pdf:

fx̂(x) =
5
6
(1 + x4), x ∈ (0, 1), (3.30)

that we write in the form:

fx̂(x) =
5
6
1 +

1
6
(5x4) ≡ p1f1(x) + p2f2(x). (3.31)

f1(x) = 1 is the pdf of a uniform Û(0, 1) variable. This occurs with probability
p1 = 5/6. Using the inverse cdf, f2(x) = 5x4 can be generated using x = u1/5,
with u a value from a Û(0, 1) variable. This second distribution should be used with
probability p2 = 1/6. The algorithm can be programmed as:
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double precision function ran_f()
implicit none
double precision ran_u

if (ran_u().gt.1.0d0/6.0d0) then
ran_f=ran_u()

else
ran_f=ran_u()**0.2d0

endif

end function ran_f

Some reflexion shows that this program is equivalent to the following

double precision function ran_f()
implicit none
double precision ran_u

ran_f=ran_u()
if (ran_u().lt.1.0d0/6.0d0) ran_f=ran_f**0.2d0

end function ran_f

Sometimes, the splitting given by (3.26) is not so obvious. Remember that it is
essential that pi > 0. Take, for instance, the pdf

fx̂(x) =
4
7
(1 + 3x2

− x3), x ∈ (0, 1), (3.32)

that we split as

fx̂(x) =
1
7
(4(1− x)3) +

6
7
(2x) ≡ p1f1(x) + p2f2(x) (3.33)

so p1 = 1/7, p2 = 6/7, f1(x) = 4(1 − x)3, f2(x) = 2x, f1(x) and f2(x) can be
sampled easily as 1− (1−u)1/4

≡ 1−u1/4 and u1/2, respectively. The program is:

double precision function ran_f()
implicit none
double precision ran_u

ran_f=sqrt(ran_u())
if (ran_u().lt.1.0d0/7.0d0) ran_f=1.0d0-dsqrt(ran_f)

end function ran_f

Here comes an interesting example. Imagine we need to sample the pdf:

fx̂(x) = e−x−1/4I0(
√

x), x ≥ 0, (3.34)

We expand in a Taylor series the modified Bessel function I0 to obtain:

fx̂(x) = e−x−1/4
∞X

i=0

“√
x

2

”2i

(i!)2
=

∞X

i=0

e−1/4

` 1
4

´i

i!
e−x xi

i!
(3.35)
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which is of the form (3.26) with pi = e−1/4 ( 1
4 )i

i! , a Poisson distribution of parameter
λ = 1/4 and fi(x) = e−x xi

i! a gamma distribution with integer parameter α = i+1.
All we need to do to generate the distribution fx̂(x) is to get an integer number i
from a Poisson distribution of parameter 1/4 and then add i + 1 random numbers
distributed according to an exponential distribution. A possible program would be:

double precision function ran_I0()
implicit none
double precision ran_gamma
integer k,iran_poisson

k=iran_poisson(0.25d0)+1
ran_I0=ran_gamma(k)

end function ran_I0

This method of combination of variables has an interesting twist. It suffices to
consider the case of two variables for which (3.29) reduces to

fx̂(x) = Prob(ẑ = 1)f(x|ẑ = 1) + Prob(ẑ = 2)f(x|ẑ = 2)

= p1fx̂1(x) + p2fx̂2(x). (3.36)

We consider now the case in which the random variable x̂ can be easily generated,
but not so x̂1 (we do not care much about x̂2 in this process). If we generated a value
x from fx̂(x) using the method of combination of variables, we know that it could
have come from the generation of x̂1 or of x̂2. Let us be more precise using Bayes
theorem. Given a value x of the random variable x̂, the probability P (ẑ = 1|x) that
it comes from the variable x̂1 is:

P (ẑ = 1|x) =
f(x|ẑ = 1)P (ẑ = 1)

fx̂(x)
=

fx̂1(x)p1

fx̂(x)
. (3.37)

The idea now is to generate a value of x from fx̂(x) (which is supposed to be easy)
and keep this value with probability P (ẑ = 1|x). In this way, we keep it only when
x corresponds to x̂1 and, effectively, we generate values of x̂1 (which was supposed
to be difficult). The price to pay is that not all values x are valid, we only keep a
fraction of them. If we do not keep a value, we need to repeat the process until we
generate a valid number.

Let us give an example. Let us consider fx̂(x) = 2x, this can be generated as
x =

√
u; fx̂1(x) = 6x(1 − x), this is the difficult one to generate as the cumulative

function is Fx̂1 = 3x2
− 2x3 and the inverse function of a third-degree polynomial

is not so easy to compute; fx̂2 = 3x2, this is also easy to generate, but we do not
care. We write then the identity fx̂(x) = p1fx̂1(x) + p2fx̂2(x) in the form:

2x =
1
3
6x(1− x) +

2
3
3x2 (3.38)

which identifies P (ẑ = 1) = p1 = 1
3 . Bayes theorem then tells us:

P (ẑ = 1|x) =
fx̂1(x)p1

fx̂(x)
=

6x(1− x) 1
3

2x
= 1− x. (3.39)
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Then, in order to generate fx̂1(x) = 6x(1 − x) we generate a value x according to
fx̂(x) = 2x using x =

√
u and then accept it with probability 1− x. The acceptance

is a Bernoulli process (either we accept or not) and we do it by comparing the ac-
ceptance probability 1 − x with a second uniform random number v: if v < 1 − x
we accept it. Or equivalently, if x < 1 − v ≡ v as 1 − v and v are both uniform
random numbers. In other words, if x > v we do not accept (we reject) the proposed
number x as it is not representative of fx̂1(x). When we reject, we need to repeat the
process again until we accept the proposed number. The final algorithm to sample
fx̂1(x) = 6x(1− x) is:

double precision function ran_f()
implicit none
double precision ran_u

do
ran_f=sqrt(ran_u())
if (ran_f.lt.ran_u()) exit

enddo

end function ran_f

This is a very simple algorithm. Its main problem is that the average acceptance
probability is p1 = 1/3, so we discard 2 out of every 3 random numbers generated.
This is an example of a rejection algorithm, where not all proposed values are kept.
General rejection algorithms will be analyzed later on and they constitute one of the
most powerful algorithms to generate very general probability distributions.

3.4
Multidimensional distributions

It is not easy to extend the previous techniques to the case of multidimensional dis-
tributions. The problem is to generate the values of a vector or random variables
(x̂1, x̂2, ...., x̂n) with joint probability density function fx̂1,...,x̂n

(x1, ..., xn). The
equivalent method to the inversion formula x̂ = F−1

x̂ (u) for one variable is based on
the splitting of the joint pdf in conditional probabilities:

fx̂1,...,x̂n
(x1, ..., xn) = fx̂1(x1)fx̂2(x2|x1) · · · fx̂n

(xn|x1, ..., xn−1). (3.40)

So what we do is to generate first an independent value of x̂1 according to fx̂1(x1);
given this value x1 we generate a value for x̂2 based on the conditional distribution
fx̂2(x2|x1); given x1 and x2 we generate a value for x̂3 based on fx̂3(x3|x1, x2)

and so on. The process starts by generating a value of the n-dimensional vector
(u1, ..., un) of independent uniform Û(0, 1) variables, and then find (x1, ..., xn) as
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the solution of the following system of equations:

Fx̂1(x1) =

Z x1

−∞

dx�1 fx̂1(x
�
1) = u1,

Fx̂2(x2|x1) =

Z x2

−∞

dx�2 fx̂2(x
�
2|x1) = u2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Fx̂n
(xn|x1, ..., xn−1) =

Z xn

−∞

dx�n fx̂n
(x�n|x1, ..., xn−1) = un. (3.41)

Neither the calculation of n cumulative distribution functions nor the solution of this
system of equations are easy to carry out in most cases of interest. Still we can give
some examples of the application of this procedure. We consider n = 2, and let the
random variables x̂1, x̂2 with joint pdf:

fx̂1,x̂2(x1, x2) =

(
2x1x2e−x1(1+x2

2), if x1 ≥ 0, x2 ≥ 0,

0, else.
(3.42)

We first compute fx̂1(x1) and the corresponding cumulative function Fx̂1(x1):

fx̂1(x1) =

Z ∞

−∞

dx2fx̂1,x̂2(x1, x2) = e−x1 , x1 ≥ 0, (3.43)

Fx̂1(x1) =

Z x1

−∞

dx�1fx̂1(x
�
1) = 1− e−x1 , (3.44)

an exponential distribution, generated by x1 = − log(u1). The conditional probabil-
ity fx̂2(x2|x1) is

fx̂2(x2|x1) =
fx̂1,x̂2(x1, x2)

fx̂1(x1)
= 2x1x2e−x1x2

2 (3.45)

and the cumulative conditional probability:

Fx̂2(x2|x1) =

Z x2

−∞

dx�2fx̂2(x
�
2|x1) = 1− e−x1x2

2 . (3.46)

The solution of Fx̂2(x2|x1) = u2 is x2 =
q
−

log(1−u2)
x1

≡

q
−

log u2
x1

. We imple-
ment this in the following program listing.

double precision function ran_f()
implicit none
double precision :: ran_u
double precision, dimension(2):: ran_f

ran_f(1)=-log(ran_u())
ran_f(2)=sqrt(-log(ran_u())/ran_f(1))

end function ran_f
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Of course, one can interchange the role of x̂1 and x̂2 and compute first fx̂2(x2) and
then fx̂1(x1|x2). In this case this would give:

fx̂2(x2) =

Z ∞

−∞

dx2fx̂1,x̂2(x1, x2) =
2x2

(1 + x2
2)

2
, x1 ≥ 0, (3.47)

Fx̂2(x2) =

Z x2

−∞

dx�2fx̂2(x
�
2) =

x2
2

1 + x2
2

. (3.48)

Hence the solution of Fx̂2(x2) = u is x2 =
q

1−u
u . For x̂1 we compute:

fx̂1(x1|x2) =
fx̂1,x̂2(x1, x2)

fx̂2(x2)
= (1 + x2

2)
2x1e−x1(1+x2

2). (3.49)

To make things clearer, let us define a = 1 + x2
2. The distribution is fx̂1(x1|x2) =

a2x1e−ax1 . So ax1 is a Γ̂(2) variable that we already know that can be generated as
the sum of two independent exponential variables: ax1 = − log(u1) − log(u2). As
a = 1 + x2

2 = 1/u, the final algorithm can be written as:

double precision function ran_f()
implicit none
double precision :: u,ran_u,a
double precision, dimension(2):: ran_f

u=ran_u()
ran_f(2)=dsqrt((1.0d0-u)/u)
ran_f(1)=u*(-log(ran_u())-log(ran_u()))

end function ran_f

In this example, it was possible to find first fx̂1(x1) and then fx̂2(x2|x1) or to
reverse the order and find first fx̂2(x2) and then fx̂1(x1|x2). Sometimes the order in
which we consider the variables does matter. Consider the distribution

fx̂1,x̂2(x1, x2) =

8
<

:
C x1

x2
1+x2

2+1
, 0 ≤ x1 ≤ 1, x2 ≥ 0,

0, else.
(3.50)

The normalization constant is C = 2(
√

2+1)
π . We first compute fx̂1 :

fx̂1(x1) =

Z ∞

−∞

dx2fx̂1,x̂2(x1, x2) = (
√

2 + 1)
x1q

1 + x2
1

, (3.51)

and the cumulative distribution:

Fx̂1(x1) =

Z x1

−∞

dx�1fx̂1(x
�
1)

=

Z x1

0
(
√

2 + 1)
x�1q

1 + x�21

= (
√

2 + 1)(
q

1 + x2
1 − 1), (3.52)
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and the solution of Fx̂1(x1) = u1 is x1 =

„
u1

√
2 + 1

+ 1

«2

− 1. Once x1 has been

found, we find fx̂2(x2|x1). Indeed it is not necessary to actually compute the ratio
fx̂1,x̂2(x1, x2)/fx̂1(x1). All we effectively need to do is to consider that x1 is now
known. The distribution of x̂2 given that x̂1 takes the value x1 is

fx̂2(x2|x1) =
2A
π

1

x2
2 + A2

, x2 ≥ 0, (3.53)

with A2 = x2
1 + 1. The cumulative function is Fx̂2(x2|x1) = 2

π arctan
`x2

A

´
and

the solution of Fx̂2(x2|x1) = u2 is x2 = A tan
`π

2 u2
´
. If, on the other hand we

compute first fx̂2 we obtain:

fx̂2(x2) =

Z ∞

−∞

dx1fx̂1,x̂2(x1, x2) =

√
2 + 1
2

log

»
2 + x2

2

1 + x2
2

–
, (3.54)

and the cumulative distribution is:

Fx̂2(x2) =

√
2 + 1
2

„
−2 arctan(x2) + 2

√
2 arctan

„
x2
√

2

«
+ x2 log

»
2 + x2

2

1 + x2
2

–«
,

(3.55)

and it is not easy to solve Fx̂2(x2) = u2 and find x2.
As a final example, let us consider an innocent-looking distribution again in two

dimensions:

fx̂1,x̂2(x1, x2) =

(
1
π , if x2

1 + x2
2 ≤ 1,

0, else.
(3.56)

This is an uniform distribution in the circle of radius 1. If we follow our general
setup, we first compute fx̂1(x1) and the corresponding cumulative function Fx̂1(x1):

fx̂1(x1) =

Z ∞

−∞

dx2fx̂1,x̂2(x1, x2)

=

Z +
√

1−x2
1

−
√

1−x2
1

dx2
1
π

=
2
π

q
1− x2

1, for − 1 ≤ x1 ≤ 1, (3.57)

Fx̂1(x1) =

Z x1

−∞

dx�1fx̂1(x
�
1) =

Z x1

−∞

dx�1
2
π

q
1− x�21

=
1
2

+
1
π

„
x1

q
1− x2

1 + arcsin x1

«
, (3.58)

and solving Fx̂1(x1) = u1 might require some work (maybe use Newton-Raphson
algorithm). However, once x1 has been found the pdf for x̂2 is not difficult:

fx̂2(x2|x1) =
fx̂1,x̂2(x1, x2)

fx̂1(x1)
=

1

2
q

1− x2
1

, for |x2| ≤

q
1− x2

1, (3.59)
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nothing but a uniform distribution in the interval (−
q

1− x2
1,
q

1− x2
1) obtained by

x2 = (2u2 − 1)
q

1− x2
1. We will not write the corresponding program as there are

more efficient methods to generate this distribution. For example, we might go to
polar coordinates, as given by (3.5) to find that the joint pdf for (r̂, θ̂) is particularly
simple (if we do not forget the Jacobian of the transformation):

fr̂,θ̂(r, θ) = rfx̂1,x̂2 = r
1
π

, if r ≤ 1 (3.60)

This is now the product of two independent distributions: fr̂,θ̂(r, θ) = fr̂(r)fθ̂(θ),
with fr̂(r) = 2r and fθ̂(θ) = 1

2π . Hence θ̂ is uniformly distributed in (0, 2π) or
θ = 2πu1, and r is obtained from the solution of Fr̂(r) = r2 = u2 or r =

√
u2. The

algorithm can be written as:

function ran_f()
implicit double precision(a-h,o-z)
double precision,dimension(2)::ran_f
data /pi/ 3.14159265359
theta=2.0*pi*ran_u()
r=dsqrt(ran_u())
ran_f(1)=r*cos(theta)
ran_f(2)=r*sin(theta)
end function ran_f

The same idea can be applied to the generation of points distributed uniformly in
a 3-dimensional sphere of radius 1. The pdf is:

fx̂1,x̂2,x̂3(x1, x2, x3) =

(
3
4π , if x2

1 + x2
2 + x2

3 ≤ 1,

0, else.
(3.61)

We change to spherical coordinates (r, φ, θ), with φ ∈ (0, π), θ ∈ (0, 2π) defined by:

x1 = r sin φ sin θ,

x2 = r cos φ sin θ,

x3 = r cos θ. (3.62)

The Jacobian is J = r2 sin φ, and the pdf in polar coordinates is:

fr̂,φ̂,θ̂(r, φ, θ) =
3
4π

r2 sin φ (3.63)

Which can be written as product of independent distributions:

fr̂,φ̂,θ̂(r, φ, θ) = fr̂(r)fφ̂(φ)fθ̂(θ)

= 3r2
×

1
2

sin(φ)×
1
2π

. (3.64)

It is simple now to obtain (r, φ, θ) from values (u1, u2, u3) independently taken from
an uniform Û(0, 1) random variable:

r = u
1/3
1 , (3.65)

φ = arccos(2u2 − 1) ⇒ cos φ = 2u2 − 1, sin φ = 2
p

u2(1− u2), (3.66)
θ = 2πu3. (3.67)
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However, the change to spherical coordinates is not very useful for an n-
dimensional sphere for n > 3. The pdf is:

fx̂1,...,x̂n
(x1, · · · , xn) =

(
1/Vn, x2

1 + · · · + x2
n ≤ 1

0, otherwise,
(3.68)

with Vn = πn/2

Γ(n/2+1) the volume of the n-dimensional sphere of radius 1. In this
case, one can use a trick that can be applied to any multidimensional distribution
which only depends on the modulus fx̂1,...,x̂n

(x1, · · · , xn) = f(r) with r2 = x2
1 +

· · · + x2
n. In the previous example it is:

f(r) =

(
1/Vn, r ≤ 1

0, otherwise.
(3.69)

Using the change to spherical coordinates: modulus r and n−1 angles (φ1, . . . , φn−1)

we can write the pdf in these coordinates as:

fr̂,φ̂1,...,φ̂n−1
(r, φ1, . . . , φn−1) =

J

„
r, φ1, . . . , φn−1

x1, . . . , xn

«
fx̂1,...,x̂n

(x1, · · · , xn). (3.70)

As the Jacobian is nVnrn−1Ω(φ1, . . . , φn−1) with Ω(φ1, . . . , φn−1) the solid angle,
and fx̂1,...,x̂n

(x1, · · · , xn) = f(r), the pdf can be split as

fr̂,φ̂1,...,φ̂n−1
(r, φ1, . . . , φn−1) = Ω(φ1, . . . , φn−1)nVnrn−1f(r) (3.71)

≡ fr̂(r)fφ̂1,...,φ̂n−1
(φ1, . . . , φn−1), (3.72)

with fr̂(r) = Crn−1f(r), being C a normalization constant required to make fr̂(r)

a true pdf verifying
R∞
0 drfr̂(r) = 1. All we have to do now is to sample this one-

dimensional distribution fr̂(r) to obtain the modulus r. Concerning the generation
of the angles (φ1, . . . , φn−1), we notice that their pdf fφ̂1,...,φ̂n−1

(φ1, . . . , φn−1) =

AΩ(φ1, . . . , φn−1) (with A another normalization constant) is the same for all dis-
tributions of the form fx̂1,...,x̂n

(x1, · · · , xn) = f(r). Then, if we can find one
pdf fx̂1,...,x̂n

(x1, · · · , xn) which depends only on the modulus, and generate points
(x1, · · · , xn) according to this distribution then the obtained angles can be used in
any other pdf of the same form. One pdf that depends only on the modulus r and
that can be sampled easily is the product of Gaussian pdf’s:

fx̂1,...,x̂n
(x1, · · · , xn) =

nY

k=1

1
√

2π
e−x2

i /2 =
1

(2π)n/2
e−r2/2. (3.73)

Once the xi’s have been generated using this distribution, all that remain to do is to
correct for the modulus by generating a value of r with the correct distribution fr̂(r).

In summary, the procedure to generate an n-th dimensional distribution which only
depends on the modulus, fx̂1,...,x̂n

(x1, · · · , xn) = f(r), is the following:
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(i) Generate a value of the modulus r using the pdf fr̂(r) = Crn−1f(r), being C a
normalization constant found by imposing

R∞
0 drfr̂(r) = 1.

(ii) Generate n independent Gaussian Ĝ(0, 1) variables (x1, . . . , xn).
(iii) Use the modulus of (i) and the angles of (ii).

This las step can be done simply by rescaling all variables (x1, . . . , xn) obtained
in (ii) such that the resulting modulus is r, i.e setting xi →

xi√
x2
1+···+x2

n

r. Let us

give a computer program to implement this algorithm:

double precision function ran_f(x,n)
implicit none
dimension x(n)

q=0.0d0
do i=1,n
x(i)=ran_g()
q=q+x(i)*x(i)

enddo
q=dsqrt(q)
r=ran_fr()
x=x/q*r

end function ran_f

In this program, the line r=ran_fr() produces a values of the modulus according
to the distribution fr̂(r). For example, in the distribution (3.68) it is fr̂(r) = Crn−1

if r ≤ 1 and the normalization constant is C = n. The cumulative distribution is
Fr̂(r) = rn and this can be sampled by r = u1/n, being u a value of an uniform
Û(0, 1) distribution.

3.5
Gaussian distribution

One of the few n-dimensional distributions that can be generated without using the
rejection methods that we will explain later is the Gaussian distribution. The joint
pdf is (1.80) that we repeat here,

fx̂1,...,x̂n
(x1, x2, ..., xn) =

s
| A |

(2π)n
exp

2

4−1
2

nX

i=1

nX

j=1

(xi − µi)Aij(xj − µj)

3

5

(1.79)

where µi is the average of x̂i and the symmetric matrix A is the inverse of the
correlation matrix C:

µi = �x̂i�, (3.74)
Cij = �(x̂i − µi)(x̂j − µj)�. (3.75)

We take the set of numbers µi and Cij as the given parameters and we want to
generate n Gaussian distributed random variables (x̂1, x̂2, ...., x̂n) whose averages
and correlations are given by (3.74) and (3.75).
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The method resembles somehow Schmidt’s ortonormalization procedure and it is
based on the property that a linear combination of Gaussian random variables is
also a Gaussian random variable. We start from n independent Gaussian random
variables ẑ1, ..., ẑn of zero mean and variance one, i.e. �ẑi� = 0, �ẑiẑj� = δij . They
are generated by our favorite Gaussian random generator (for instance, Box-Muller-
Wiener). Then we start defining new random variables x̂i as linear combinations of
the ẑi’s in such a way that (3.74) and (3.75) are satisfied.

The first variable x̂1 is obtained as:

x̂1 = b11ẑ1 + µ1. (3.76)

As linear combination of a Gaussian variable, x̂1 is also Gaussian. Also, it is clear
that �x̂1� = µ1. To find b11 we use C11 = �(x̂1 − µ1)

2
� = b211�ẑ

2
1� = b211 or

b11 = C
1/2
11 .

Next we write the second variable as:

x̂2 = b21ẑ1 + b22ẑ2 + µ2. (3.77)

Again, it is a Gaussian random variable which, trivially, satisfies �x̂2� = µ2. Con-
stants b21 and b22 are determined by imposing the two conditions:

C12 = �(x̂1 − µ1)(x̂2 − µ2)� = b11b21,

C22 = �(x̂2 − µ2)
2
� = b221 + b222, (3.78)

which leads to

b21 =
C12

b11
, (3.79)

b22 =
“
C22 − b221

”1/2
. (3.80)

The process is iterated. To generate the j-th random variable x̂j we write:

x̂j =
jX

i=1

bjiẑi + µj (3.81)

and compute constants bij by the recurrence relations

bji =
Cji −

Pi−1
k=1 bikbjk

bii
, j = 1 . . . , n, i = 1, . . . , j − 1, (3.82)

bjj =

vuutCjj −

j−1X

k=1

b2jk. (3.83)

A possible program implementing this algorithm is:

subroutine generab(b,c,n)
implicit none
dimension c(n,n),b(n,n)
do j=1,n
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do i=1,j
z=c(j,i)
do k=1,i-1

z=z-b(j,k)*b(i,k)
enddo
if (i.lt.j) then

b(j,i)=z/b(i,i)
else

b(j,j)=sqrt(z)
endif

enddo
enddo
end subroutine generab

function ran_gn(n,mu,b)
implicit double precision(a-h,o-z)
double precision,dimension(n)::ran_gn
double precision,dimension(n)::mu
double precision,dimension(n)::z
double precision,dimension(n,n)::b

do j=1,n
z(j)=ran_g()
ran_gn(j)=mu(j)
do i=1,j

ran_gn(j)=ran_gn(j)+b(j,i)*z(i)
enddo

enddo

end function ran_gn

Where we first call the subroutine genera(b,c,n) to generate the matrix b from
the correlation matrix c and then we can call the vector function ran_gn(n,mu,b)
which returns the desired vector of Gaussian random numbers.

Note that the number of operations needed to carry on this process of generation of
n Gaussian random variables increases as n2. There are specific cases in which the
efficiency of the generation can be greatly improved. This is discussed in appendix
13.

3.6
Rejection methods

We have already seen in section 3.3 a rejection method at work. The procedure we
used was to propose a value of the random variable x̂ we wanted to sample and then
decide whether we keep this proposed value or not. We now study in more detail
some details of this kind of methods. We advance that rejection methods are the
ones that best suit the generation of highly (and not so highly) dimensional sets of
random variables. Still, for the sake of clarity, we analyze first an example with only
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one variable. Let us consider a random variable x̂ whose pdf is

fx̂(x) =

(
C exp(−x2

2 ), −1 ≤ x ≤ 1,

0, x /∈ (−1, 1).
(3.84)

A cut-off Gaussian distribution limited to the interval (−1, 1). It is possible to obtain
the normalization constant from:

1 =

Z ∞

−∞

dx fx̂(x) = C

Z 1

−1
dx exp(−

x2

2
) = C erf(1/

√
2)
√

2π, (3.85)

or C = (erf(1/
√

2)
√

2π)−1 = 0.584369 . . . . However, we do not need to know the
value of the normalization constant C. As we will see, this is one of the nice features
that make rejection methods so useful. Remember now what a pdf means: fx̂(x)

is a measure of the probability of finding a value of the random variable around x.
Hence, if e.g. fx̂(x1) = 2fx̂(x2), then x1 is twice as probable to appear as x2. What
we will do is to generate values uniformly in the interval (−1, 1) and accept the
proposed value, x, with a probability proportional to its pdf fx̂(x). It seems obvious
that those values that make fx̂(x) larger will be accepted more often than those that
make fx̂(x) small, what is, at least qualitatively, what we want to achieve. Summing
up, we propose the following steps:

1.- Propose a value x sampled from the Û(−1, 1), uniform distribution, i.e. x =

2u− 1.
2.- Accept that value with a probability, h(x), proportional to fx̂(x) ∝ exp(−x2

2 ).

In step 2, it is important to stress that the acceptance probability, h(x), must be
a number between 0 and 1. Recall that fx̂(x) is non-negative and normalized but,
otherwise, it might take any value between 0 and ∞. The acceptance probability is
αfx̂(x) with α a real number carefully chosen to ensure that the resulting probability
indeed does not exceed the value 1. Otherwise, α is arbitrary. In the example we are
considering, the resulting acceptance probability is αC exp(−x2

2 ). As exp(−x2

2 ) ≤

1, ∀x, all we need is that αC ≤ 1 and we take the simplest (and, as we will se, also
the more convenient) choice α = 1/C so the acceptance probability of a proposed
value x is h(x) = exp(−x2

2 ).
How is the acceptance process performed? This is a Bernoulli process: either we

accept the proposed value with probability exp(−x2

2 ) or we do not. This decision
is done by comparing a uniform Û(0, 1) random number with the acceptance prob-
ability. If the random number is smaller that this probability, the proposed value is
accepted. Otherwise, if the random number is larger than the acceptance probability,
it is rejected. What do we do if we reject the value? Answer: propose a new one.
This algorithm can be programmed as:

do
x=2*ran_u()-1
if(ran_u().lt.exp(-0.5*x*x)) exit

enddo
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We see in this simple example, the power of the rejection method. The algo-
rithm is really simple and requires only two lines of code. Try to do the same by
using the method based on the inversion of the cumulative function or x = F−1

x̂ (u).
The only problem with the rejection method could be that the rejection step is taken
too often, requiring a large number of trial proposals before a number is actually
generated. We will learn how to compute this average acceptance probability, or the
average number of proposals we must make before accepting one value.

Let us now define what we mean by a general rejection method. It is based upon
the two following steps:
1.- Propose a value x for the random variable distributed according to a given prob-
ability density function g(x).
2.- Accept that value x with a probability h(x). Recall that this probability must
satisfy 0 ≤ h(x) ≤ 1, ∀x.

To connect with the previous example, we had taken there:

g(x) =

(
1
2 , x ∈ (−1, 1)

0, x /∈ (−1, 1)
(3.86)

h(x) = exp

„
−

x2

2

«
(3.87)

For the acceptance step, we consider a Bernoulli random variable B̂ which takes
the value B̂ = 1 (acceptance) with probability h(x) and the value B̂ = 0 (rejection)
with probability 1−h(x). During the proposal and acceptance/rejection we generate
a two-dimensional random variable (x̂, B̂) with joint distribution fx̂,B̂(x, n). The
proposal g(x) can give rise to two values of B̂, this implies: g(x) = fx̂,B̂(x, B̂ =

0) + fx̂,B̂(x, B̂ = 1). We are interested on those values x which result after accep-
tance. They are distributed according to fx̂(x|B̂ = 1) which we want to be identical
to the given fx̂(x) we wish to sample. According to the definition of conditional pdf,
this distribution is given by:

fx̂(x|B̂ = 1) =
fx̂,B̂(x, 1)

Prob(B̂ = 1)
=

fx̂,B̂(x, 1)
R∞
−∞

fx̂,B̂(x, 1) dx
. (3.88)

According to our review for conditional pdf’s, we have:

h(x) = prob(B̂ = 1|x) =
fx̂,B̂(x, 1)

fx̂,B̂(x, 0) + fx̂,B̂(x, 1)
=

fx̂,B̂(x, 1)

g(x)
. (3.89)

Replacing fx̂,B̂(x, 1) = h(x)g(x) in (3.88) we obtain:

fx̂(x) = fx̂(x|B̂ = 1) =
h(x)g(x)R∞

−∞
h(x)g(x) dx

, (3.90)

as the pdf resulting of the double proposal/acceptance steps. As it should be, this pdf
is properly normalized.
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Summing up, to sample fx̂(x) we need to find two functions h(x) and g(x) such
that fx̂(x) can be split as fx̂(x) = Ag(x)h(x), being A a constant. Note that this
implies:

g(x)h(x)fx̂(y) = g(y)h(y)fx̂(x), ∀x, y, (3.91)

the so-called “detailed-balance condition”3)

The efficiency of a rejection method depends on the average probability of accep-
tance, �. If � is very small, then we need a large average number of trials to generate
a single value of x̂. The average acceptance probability can be computed using:

� =

Z ∞

−∞

P (B̂ = 1|x)g(x) dx =

Z ∞

−∞

h(x)g(x) dx = �h�. (3.92)

This implies that, given g(x) the efficiency increases with increasing h(x) and,
hence, it is convenient to take h(x) as large as possible, always keeping the condition
0 ≤ h(x) ≤ 1. The average acceptance probability is related to the normalization
constant. In the previous example, we have

� =

Z 1

−1

1
2

exp(−
x2

2
) dx =

1
2C

. (3.93)

If we know C = (erf(1/
√

2)
√

2π)−1 = 0.584369 . . . we get � = 0.855624 . . . , a
large average acceptance probability. If we did not know C we could derive from
the numerical estimation of �.

Once we have understood how rejection methods work, we could have generated
(3.84) using the splitting:

g(x) =
1
√

2π
exp(−

x2

2
), x ∈ (−∞,∞), (3.94)

h(x) =

(
1, if x ∈ (−1, 1),

0, if x /∈ (−1, 1).
(3.95)

If we multiply these two functions we obtain g(h)h(x) ∝ fx̂(x), which is all that we
need. To implement this option, we follow the next steps: (1) generate x according
to the usual (not truncated) Gaussian distribution Ĝ(0, 1) and accept it with proba-
bility 1 (i.e. accept it) if the proposed value for x belongs to the interval [−1, 1]. The
algorithm can be programmed as:

do
x=ran_g()
if(abs(x).lt.1.0d0) exit

enddo

3) The name is not by accident. As the generation of the different values of the random variable are done
independently of each other, it can be thought, formally, as a homogeneous Markov chain in which the
proposal pdf f(x|y) = h(x)g(x)R

∞
−∞

h(x)g(x) dx
is independent on y. The stationarity condition (1.141) then

leads trivially to the detailed balance condition.
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The average acceptance probability of this alternative method is:

� =

Z 1

−1

1
√

2π
exp(−

x2

2
) dx = erf

“
1/
√

2
”

= 0.682698 . . . , (3.96)

less than the previous algorithm. However, to see which method is more efficient
we would need to compute the average time needed to compute one random number
and to perform the comparison step.

Let us see another example. We want to generate values of a random variable x̂

whose pdf is:

fx̂(x) = C exp(−
x2

2
− x4), x ∈ (−∞,∞), (3.97)

being C an irrelevant normalization constant given by: C = 2
√

2e−1/32K1/4(1/32) =

0.643162 . . . . We need to split fx̂(x) ∝ g(x)h(x), being g(x) a pdf we know how to
sample numerically and 0 ≤ h(x) ≤ 1. The obvious choice is:

g(x) =
1
√

2π
exp(−

x2

2
), x ∈ (−∞,∞), (3.98)

h(x) = exp(−x4). (3.99)

So we propose a value x drawn from a Ĝ(0, 1) Gaussian distribution and accept it
with probability exp(−x4). The algorithm can be programmed as:

do
x=ran_g()
if (ran_u().lt.exp(-x**4) exit

enddo

The acceptance probability is

� =

Z ∞

−∞

dx g(x)h(x) =
1

C
√

2π
≈ 0.620283 . . . (3.100)

Let us see now an example with the two-dimensional distribution (3.56). We con-
sider the following functions:

g(x1, x2) = 1/4 if x1 ∈ (−1, 1), x2 ∈ (−1, 1), (3.101)

h(x1, x2) =

(
1, if x2

1 + x2
2 ≤ 1,

0, if x2
1 + x2

2 > 1.
(3.102)

g(x1, x2) is the pdf of a two-dimensional point (x1, x2) distributed uniformly
in the square x1 ∈ (−1, 1), x2 ∈ (−1, 1). This can be generated from two in-
dependent random variables u1, u2 uniformly distributed in the (0, 1) interval:
x1 = 2u1 − 1, x2 = 2u2 − 1. The proposed point is accepted (with probability 1)
if it belongs to the circle x2

1 + x2
2 ≤ 1 and rejected otherwise. The algorithm can be

implemented as:
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do
x=2*ran_u()-1
y=2*ran_u()-1
r2=x*x+y*y
if (r2.lt.1.0d0) exit

enddo
r=sqrt(r2)
c=x/r
s=y/r

We have added the last three lines that allow the calculation of the sine and cosine of
the angle θ in polar coordinates. We know that this angle is uniformly distributed in
the (0, 2π) interval. So these lines compute the sine and cosine of an angle uniformly
distributed in the (0, 2π) interval without ever calling the sin or cos functions. This
trick is sometimes used to replace the lines

v=pi2*ran_u()
ran_gbmw=u*cos(v)
ran_gbmw=u*cos(v)

of the Box-Muller-Wiener algorithm by

ran_gbmw=u*x/r
ran_gbmw=u*y/r

Let us now consider an n-dimensional example. Imagine we need to compute the
integral:

I(n) =

R∞
−∞

dx1 · · ·
R∞
−∞

dxne−(x2
1+···+xn)2/2−(x1···xn)4 cos(x1 · · ·xn)

R∞
−∞

dx1 · · ·
R∞
−∞

dxne−(x2
1+···+xn)2/2−(x1···xn)4

(3.103)

Obviously we interpret it as the average value �G(x1, . . . , xn)� with respect to the
pdf fx̂1,...,x̂n

(x1, . . . , xn), with

G(x1, . . . , xn) = cos(x1 · · ·xn), (3.104)

fx̂1,...,x̂n
(x1, . . . , xn) = Ce−(x2

1+···+xn)2/2−(x1···xn)4 , (3.105)

C is the normalization constant of the pdf. To generate values of the n-dimensional
random variable (x̂1, . . . , ŝn) we split the pdf as:

fx̂1,...,x̂n
(x1, . . . , xn) ∝ g(x1, . . . , xn)h(x1, . . . , xn) (3.106)

g(x1, · · · , xn) =
nY

i=1

»
1
√

2π
e−x2

i /2
–

(3.107)

h(x1, · · · , xn) = e−(x1···xn)4 . (3.108)

Note that indeed 0 ≤ h(x1, . . . , xn) ≤ 1. The proposal g(x1, . . . , xn) corresponds
to n independent Gaussian Ĝ(0, 1) distributions. The program to implement the
rejection algorithm to compute this integral is:

begin program rejection
n=4
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data pi/3.14159265/
call ran_ini(12345)
M=10000000
r=0.0
s=0.0
na=0

do ij=1,M
do b=1.0d0

do i=1,n
b=b*ran_g()

enddo
na=na+1
if (ran_u().lt.exp(-b**4)) exit

enddo
g=cos(b)
r=r+g
s=s+g*g

enddo
p=dble(M)/na
r=r/M
s=sqrt((s/M-r*r)/M)
write(6,*)n, r,s,p

end program rejection

Note that, besides the value of the integral and its error, we also write the average
acceptance probability. This program runs without problems for arbitrary value of n.
Some results: I(n = 2) = 0.922467±0.000037, I(n = 10) = 0.993885±0.000011,
I(n = 40) = 0.99999666 ± 0.00000024, strongly suggest limn→∞ I(n) = 1, a re-
sult that can be confirmed analytically. The average acceptance probability increases
with n as �(n = 2) = 0.748, �(n = 10) = 0.977, �(n = 40) = 0.999987. This in-
crease of � with n, unfortunately, is not a typical feature of rejection methods. On the
contrary, usually the average acceptance probability decreases with n and becomes
very small for the values of n of interest. For instance, consider the n-dimensional
random variable (x̂1, · · · , x̂n) uniformly distributed inside the n-dimensional sphere
of radius 1 whose pdf is given in 3.68. If we use a simple rejection method where
we propose a value for the i-th coordinate xi taken independently from a uniform
distribution in (−1, 1), and accept the proposed vector (x1, · · · , xn) only if it satis-
fies x2

1 + · · · + x2
n ≤ 1, then the average acceptance probability is �(n) = Vn/2n

as 2n is the volume of the n-dimensional hypercube [−1, 1]n. This takes values
�(n = 2) = 0.7854 . . . , �(n = 10) = 2.49× 10−3, �(n = 100) = 1.87× 10−70. We
see that, for n = 100, we need to make, on average, 1070 proposals to accept one!
This is clearly not useful. The method of rejection needs to be modified in order to
be able to deal with distributions like this one.

Let us see another example for which the performance of rejection methods greatly
decreases with the number of variables. We consider the so-called φ4 distribution of
interest in the field of statistical mechanics of phase transitions as we will discuss
in detail in chapter 5. In the particular version we consider here, we have n random
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variables (x̂, . . . , x̂n) whose joint pdf is:

fx̂1,...,x̂n
(x1, · · · , xn) = C exp[−V (x1, · · · , xn)] (3.109)

with4)

V (x1, · · · , xn) =
nX

i=1

»
1
2

“
(xi+1 − xi)

2 + ax2
i

”
+ bx4

i

–
. (3.110)

To sample this distribution one might be tempted to split the pdf as:

fx̂1,...,x̂n
(x1, · · · , xn) = C exp[−L0(x1, · · · , xn)]× exp[−b

nX

i=1

x4
i ], (3.111)

and then generate a set of correlated Gaussian variables with pdf

g(x1, . . . xn) = C exp[−L0(x1, · · · , xn)] (3.112)

using the quadratic form (called the “free Lagrangian” in some contexts):

L0(x1, . . . , xn) =
1
2

nX

i=1

h
(xi+1 − xi)

2 + ax2
i

i
. (3.113)

using the method explained in subsection 3.5 (or the more sophisticated one devel-
oped in the Appendix 13), and then accept that proposal with probability

h(x1, . . . , xn) = exp[−b
nX

i=1

x4
i ]. (3.114)

The problem with this procedure is that the average acceptance probability greatly
decreases exponentially with n (see exercise 18). For moderate values of n (say
n = 100), this acceptance probability is so small that not a single value is effectively
accepted in the lifetime of the person running the simulation.

As in previous cases, it is possible to generalize the rejection methods to discrete
distributions. If we propose values of a random variable distributed according to a
discrete pdf:

g(x) =
X

i

giδ(x− xi) (3.115)

and then accept the proposed value xi with probability hi (fulfilling, of course, the
condition 0 ≤ hi ≤ 1, ∀i), then the resulting distribution of this proposal/acceptance
method is:

fx̂(x) =

P
i higiδ(x− xi)P

i higi
. (3.116)

So if we want to sample a discrete distribution fx̂(x) =
P

i piδ(x− xi) we can split
pi ∝ higi with the conditions 0 ≤ hi ≤ 1 and

P
i gi = 1. We then propose a value

xi according to the distribution g(x) and accept it with probability hi.

4) In the sum we use the “periodic boundary conditions” convention, by which xn+1 is equivalent to x1.
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Let us see an example. We want to generate values of a discrete random variable
x̂ that takes integer values with probability:

Prob(x̂ = i) = pi =
− log(1− a)

a
ai

1 + i
, i = 0, 1, 2, . . . (3.117)

being 0 < a < 1 a given number. The obvius split in this case is gi = (1 − a)ai,
a geometric distribution N̂G(p) of parameter p = 1 − a, and hi = (1 + i)−1 which
fulfills 0 ≤ hi ≤ 1. The algorithm would be

integer function iran_f(a)

do
iran_f=dlog(ran_u())/dlog(a)
if (ran_u().lt.1.0d0/(1.0d0+iran_f)) exit

enddo

end function iran_f

Unfortunately, not many discrete distributions gi can be generated easily and serve
as proposal for the rejection step. A simple idea, though, allows us to use a continu-
ous random variable as a proposal suitable for the generation of a discrete distribu-
tion. The point is to relate the discrete variable x̂ we want to sample to a suitable
continuous variable x̂c. For the sake of concreteness we assume that x̂ takes only
non-negative integer values 0, 1, 2, . . . and let pi = Prob(x̂ = i). We define a con-
tinuous random variable x̂c via the pdf defined as fx̂c

(x) = p[x], being, as usual,
[x] the integer part of x. For instance, if pi = 6

π2 (1 + i)−2 for i = 0, 1, 2, . . . ,
we define fx̂c

(x) = 6
π2 (1 + [x])−2, x ≥ 0. It should be clear now that fx̂c

(x) is
properly normalized and that the corresponding cumulative function Fx̂c

(x) satisfies
Fx̂c

(i + 1)− Fx̂c
(i) = pi. The relation between the two random variables is simply

x̂ = [x̂c], as can be seen by checking that Prob(x̂ = i) = Prob(i ≤ x̂c < i + 1) =

Fx̂c
(i + 1)− Fx̂c

(i) = pi, see figure 3.2
Therefore, in order to obtain values of the discrete random variable x̂, all we need

to do is to generate values of the continuous random variable x̂c and set x̂ = [x̂c].
If we use a rejection method for the generation of x̂c, the process proceeds as for
any standard continuous distribution: propose a value x from a pdf g(x) and accept
it with probability h(x) = Cfx̂c

(x)/g(x), choosing C such that 0 ≤ h(x) ≤ 1. If
accepted, the integer value [x] of the obtained variable will yield us values of the
discrete random variable x̂.

Let us give an example. Consider again the integer distribution pi = 6
π2 (1 + i)−2

for i = 0, 1, 2, . . . . This was done before using a direct method. We introduce the
random variable x̂c whose pdf is fx̂c

(x) = 6
π2 (1 + [x])−2, x ≥ 0. For the proposal

distribution we choose a pdf g(x) as close as possible to fx̂c
(x) but such that it

can be easily generated. A natural choice (but not the only possible one) is g(x) =

(1 + x)−2, x ≥ 0. The cdf is Gx̂c
(x) =

x
1 + x

and the solution of Gx̂c
(x) = u is

x = u
1−u . This proposed value is accepted with a probability h(x) = Cfx̂c

(x)/g(x).
It turns out that C = 1/4 keeps the limits 0 ≤ h(x) ≤ 1, so we choose:

h(x) =
1
4

„
1 + x
1 + [x]

«2

,
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Figure 3.2 Top: piece-wise linear approximation Fx̂c (x) (dotted line) to the true cdf (solid line)

of the discrete variable Fx̂c (x). Bottom: corresponding fx̂c (x)

if x is accepted, then its integer part i = [x] is distributed according to pi. The
function can be implemented as:

integer function iran_pot2()
implicit none
double precision :: ran_u,u,x,h,acc

do
u=ran_u()
x=u/(1.0d0-u)
h=0.25d0*((1.0d0+x)/(1.0d0+int(x)))**2
if (ran_u().lt.h) exit

enddo
iran_pot2=int(x)

end function iran_pot2

Let us apply this method to the discrete Poisson distribution pi = e−λ λi

i!
. We

begin by defining a continuous random variable x̂c whose pdf is

fx̂c
(x) = e−λ λ[x]

[x]!
. (3.118)
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Now we need a good proposal g(x). We know that g(x) has to be as close as possible
to fx̂c

(x). We focus now on the case of large λ for which previous algorithms were
not so efficient. In this case, fx̂c

(x) comes close to a Gaussian distribution of mean
and variance equal to λ. It would seem that a good choice would be the Gaussian
distribution

g(x) =
1

√
2πλ

e−
(x−λ)2

2λ . (3.119)

However, it turns out that the acceptance probability h(x) = Cfx̂c
(x)/g(x) can not

satisfy the condition h(x) ≤ 1 as the ratio fx̂c
(x)/g(x) tends to infinity with x.

Instead, and based on the shape of fx̂c
(x) we propose the Cauchy distribution

g(x) =
1

π
√

λ

1

1 +
“

x−λ
√

λ

”2 . (3.120)

which has a maximum at x = λ and a width of the order of λ1/2. The acceptance
probability is

h(x) = Ce−λ λ[x]

[x]!
π
√

λ

 
1 +

„
x− λ
√

λ

«2
!

, x ≥ 0. (3.121)

The constant C is chosen under the condition h(x) ≤ 1, ∀x. Based on the Stirling
approximation at x = λ, λ! ≈ e−λλλ

√
2πλ, we adopt C = 1/

√
π which a simple

graphical analysis shows that indeed fulfills the condition h(x) ≤ 1 if λ ≥ 20. In the
cases of λ < 20 we can use other methods for the Poisson distribution. To generate
a value x from the above written Cauchy distribution we set x = λ + λ1/2z with
z = tan(πu). It is convenient to write the acceptance probability as:

h(x) = (1 + z2)
√

πλ exp [−λ + [x] log λ− log([x]!)] , (3.122)

since good routines exist for the calculation of the logarithm of the factorial5). The
acceptance probability of this algorithm is C ≈ 0.564. A possible implementation
is:

integer function iran_poisson(lambda)
implicit none
double precision :: ran_u,lambda,h,z

do
z=dtan(3.141592653589793d0*ran_u())
iran_poisson=lambda+sqrt(lambda)*z
if (iran_poisson.ge.0) then
h=(1.0d0+z*z)*sqrt(pi*lambda)*&

dexp(-lambda+iran_poisson*dlog(lambda)-&
gammln(dble(iran_poisson+1)))

if (ran_u().lt.h) exit
endif

enddo

end function iran_poisson

5) For example, one could use the function gammln(x+1) from the Numerical Recipes book.
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Further Reading

An explicit algorithm to generate Gaussian random numbers using a numerical in-
version method was provided in [5].
Zigurat
A distribution similar to (3.34) was actually needed in a problem related to field
theories for systems with absorbing states[6].
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Exercises

1) Check that the transformation x = − log(u) generates random numbers with pdf
fx̂(x) = exp(−x), x ≥ 0, if u is uniformly distributed in the (0, 1) interval.
Do this by generating M random numbers and approximating the pdf fx̂(x) by a
histogram of width ∆x. Use M = 104 and ∆x = 0.01 and check the dependence
on M and ∆x.

2) Repeat the previous exercise for the Gaussian Ĝ(0, 1) distribution using (i) the
Box-Muller-Wiener algorithm (ii) the approximate algorithm inverse error func-
tion and (iii) the linear interpolation approximation. Check in each case the quality
of the obtained distribution and the computer time needed.

3) Use the numerical inversion method to generate random numbers according to the
pdf fx̂(x) = 3

4 (1 − x2), x ∈ (−1, 1). Compare the pdf with the histogram of the
obtained numbers.

4) For the pdf fx̂(x) = nxn−1, x ∈ (0, 1) compare the efficiency of the algorithms
x = max(u1, . . . , un) and x = u1/n as a function of n.

5) Use a rejection method to sample the pdf fx̂(x) = Ce−
1
2 x2

, x ∈ (0, 1) and use
the result to evaluate the integral of exercise 2.10 with the sampling method.

6) Let x1, . . . , x6 be Gaussian random numbers of zero mean and correlations Cij =
1
2δi−1,j + δi,j + 1

2δi+1,j (assume periodic boundary conditions, i.e. replace 7

by 1 and 0 by 6 whenever these numbers appear). Generate 6-dimensional num-
ber using this distribution and use those numbers to compute the average value
�x1x2x3x4x5x6�, comparing with the exact result given by Wick’s theorem.

7) Plot pairs of numbers (x, y) obtained as x = r cos(θ), y = r sin(θ) being r and θ

randoms variables uniformly distributed in the (0, 1) and (0, 2π) intervals respec-
tively and check graphically that these numbers are not uniformly distributed in
the unit circle of center (0, 0) and radius 1. Design a rejection algorithm that does
produce points uniformly distributed in the unit circle.

8) Design a rejection algorithm that yields random numbers uniformly distributed in
the surface of an n-dimensional sphere of radius 1. Compute the rejection proba-
bility of the algorithm as a function of n.

9) Design a rejection method to generate values of a random variable x̂ distributed
according to the pdf

fx̂(x) =
xα−1e−x

Γ(α)
, , x ≥ 0

valid for 0 < α < 1.
10) Use a rejection method to generation values of the random variable x̂ distributed

according the pdf fx̂(x) = C exp(− 1
2x2

− x4). Computer numerically, from the
acceptance probability, the normalization constant C.

11) Repeat the previous problem for the pdf fx̂(x) = C exp(1
2x2

− x4).
12) Use the numerical inversion of the cumulative distribution function to generate

values of a discrete Poisson random variable of parameter λ. How long does it
take to generate 106 numbers for λ=0.5, 1, 2, 5 and 10?
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13) Repeat the previous problem using a rejection method using a convenient geomet-
ric distribution as proposal.

14) Generate the binomial distribution using (i) the numerical inversion of the distri-
bution function and (ii) a rejection method.

15) Implement a numerical inversion method to generate values of the two-dimensional
random variable (x̂, ŷ) distributed according to

fx̂ŷ(x, y) =

(
6x, if x + y ≤ 1, x ≥ 0, y ≥ 0,

0, otherwise.

16) Repeat the previous exercise using a rejection method.
17) Use a rejection technique with the proposal choice

gx̂c
(x) =

1
√

2aλ
e
−

q
2

aλ |x−λ|
,

and a suitable value of a to generate Poisson distributed random numbers. Com-
pare its efficiency with the Cauchy proposal given in the main text.

18) Measure the acceptance probability of the rejection method proposed to sample
the multidimensional pdf (3.109-3.110) and study its dependence with the number
of variables n. Get a rough estimate of that dependence by replacing

Pn
i=1 x4

i by
its average value

Pn
i=1�x

4
i � = n�x4

� = 3n�x2
�
2 assuming a Gaussian approxi-

mation.


