
IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 101

101

4
Dynamical methods

Simple rejection methods for high-dimensional probability distributions have, in
general, a low acceptance probability. So low, in fact, that it makes them unfea-
sible to sample most distributions of interest. In this chapter, we will develop a
variant of the rejection method that allows us, finally, to sample almost any proba-
bility distribution using simple rules. The method is that of rejection with repetition.
Of course, there is no free lunch, and there is an important price to be paid when us-
ing these methods: as they produce correlated (as opposed to independent) values of
the random variables, it turns out that the error of the estimate of the integral or sum
increases with N , the number of variables. We will see, though, that the increase of
the error with N is moderate as compared to the decrease of the average acceptance
probability would a simple rejection method be used.

4.1
Rejection with repetition: a simple case

Our goal here is, again, to devise methods to generate values xk that can be used in
a sampling method in order to compute a given integral:

I =

Z
dx fx̂(x)G(x) (4.1)

using the sample mean and variance, (2.11)-(2.12). For that purpose we need to
generate values xk of a random variable distributed according to the given pdf fx̂(x).
We propose now a modification of the rejection method that we name rejection with
repetition. The modification is such that every time a proposal is rejected, instead
of proposing a new value, we simply return the value that had been generated in the
previous step. We will explain exactly what we mean using an example. Imagine we
want to sample values from the one-variable pdf:

fx̂(x) = C exp[−
1
2
x2
− x4]. (4.2)

We know already how to do this using rejection methods: propose a value of x
according to a Gaussian Ĝ(0, 1) distribution and accept it with probability h(x) =

e−x4
. We even wrote a short program to do this:

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 102

102

1 x=ran_g()
if (ran_u().gt.exp(-x**4)) goto 1

The idea of the repetition is to avoid going back whenever a value is rejected at the
k-th trial, instead the previous value of the random variable, the one obtained at the
(k − 1)-th trial is kept. This can be programmed as:

xp=ran_g()
if (ran_u().lt.exp(-xp**4)) x=xp

Here xp is the proposed value that we accept with probability exp(-x**4). If
the value is not accepted, we do not try to propose a new value, but the current
value of x (the one obtained in the previous call) is not modified. We just need to
take into account that, just in case the trial at the first initial step fails, the value
of x should have been initialized following some distribution fx̂0(x) (for example
a Gaussian distribution), so we need to add, before the first attempt to generate a
random number and only then, a line like:

x=ran_f0()

where ran_f0() returns a random variable distributed according to some distribu-
tion fx̂0(x), or simply

x=x0

with x0 some initial value. This corresponds to taking fx̂0(x) = δ(x− x0).
How does the output of such a routine looks like? Since we are repeating values

when rejecting the proposed value, a typical output is:

k x_k
0 -0.38348165934483291
1 -0.38348165934483291
2 -0.38348165934483291
3 -0.38348165934483291
4 0.47884603175682383
5 0.47884603175682383
6 0.37469679082063412
7 0.35122027008152767
8 -0.44596168309186857
9 -0.44596168309186857
10 -0.44596168309186857

We do not need much knowledge of statistics to see that in this list some numbers
are not independent, in fact they are equal! The question is whether we can still use
this list of numbers in the estimation of the integral (4.1). Put in another way, is it
true that the series of numbers xk are still distributed according to fx̂(x) as given by
(3.90)? As one value xk+1 might be equal to the previous value xk, we need to find
the probability distribution that governs the outcome of the k-th step of this process.

Let x̂k be the random variable obtained during the k-step. Its precise form will
depend on the outcome of the acceptance process. As there are two options: ac-
cept/reject, we consider the acceptance step to be a Bernoulli variable ŷ that can
take two possible values ŷ = 1, accept, and ŷ = 0, reject. Direct application of
(1.135) leads to:

fx̂k
(x) = fx̂k

(x|accept)p(accept) + fx̂k
(x|reject)p(reject), (4.3)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 103

103

being p(accept) and p(reject) = 1 − p(accept) the probabilities of acceptance and
rejection, respectively, at step k. Now we can use the equivalent of (1.128) in the
case of a discrete random variable ŷ, to modify the first term of this sum:

fx̂k
(x) = Prob(accept|x)g(x) + fx̂k

(x|reject)(1− p(accept)), (4.4)

where we have used that g(x) is the pdf of proposing the value x at step k. The
probability of accepting a given value x is Prob(accept|x) = h(x). If we reject, the
pdf at step k is the same one valid at step k − 1: fx̂k

(x|reject) = fx̂k−1(x). Finally,
the acceptance probability is given by (3.92). This leads to:

fx̂k
(x) = h(x)g(x) + fx̂k−1(x)

»
1−

Z ∞

−∞

h(x)g(x) dx

–
. (4.5)

This recursion relation gives fx̂k
(x) in terms of fx̂k−1(x). We should not be con-

fused by this simple linear recursion relation. The solution, in terms of the initial
distribution fx̂0(x) is

fx̂k
(x) = (1− �)n

"
fx̂0 −

h(x)g(x)R∞
−∞

h(x)g(x) dx

#
+

h(x)g(x)R∞
−∞

h(x)g(x) dx
, (4.6)

where we have written � as the average acceptance probability. This relation can be
written in terms of the pdf fx̂(x) we want to sample from as given from 3.90:

fx̂k
(x) = (1− �)k

ˆ
fx̂0 − fx̂(x)

˜
+ fx̂(x). (4.7)

Then the answer to the question: are all the xk values distributed according to fx̂(x)?
is, generally, NO, as we can not conclude from this formula that fx̂k

(x) = fx̂(x), ∀k.
However, if the initial numbers are already distributed according to fx̂(x), i.e. if
fx̂0(x) = fx̂(x), then we find fx̂k

(x) = fx̂(x), ∀k and the numbers we obtain by
this procedure are indeed distributed according the desired distribution. If, on the
other hand, the initial pdf fx̂0(x) is not equal to the one we want to sample, the
situation is not so bad either. According to (4.7), the difference between the actual
distribution at step k, fx̂k

(x), and the one we want to sample, fx̂(x), monotonically
decreases with k. In fact, as 0 < � ≤ 1, we have the exact result, independently of
the initial distribution fx̂0 :

lim
k→∞

fx̂k
(x) = fx̂(x). (4.8)

Imagine � = 0.5. After k = 10 steps the factor (1 − �)k ≈ 10−3. If k = 100,
(1 − �)k ≈ 10−30, an absolutely negligible contribution in most cases. Even for a
low acceptance probability � = 10−2 it takes about k = 2300 steps to have (1−�)k ≈

10−10. Therefore, in order to ensure that the produced xk values satisfy the desired
distribution, we need to discard some steps at the beginning. This is the process
called thermalization. How many steps M0 we need to discard depends on the
distance between the initial and the desired distributions and the average acceptance
probability �.

The reader will have noticed that the process of generation of the numbers xk can
be understood in terms of a Markov chain, since the result at step k depends only on

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 104

104

the distribution at step k− 1. It is easy to write the recursion relation 4.5 in the form
of the recursion equation 1.140 for a homogeneous Markov chain

fx̂n
(x) =

Z ∞

−∞

f(x|y)fx̂n−1(y) dy, (4.9)

with a transition probability density function

f(x|y) = h(x)gx̂(x) +

»
1−

Z ∞

−∞

h(x)gx̂(x) dx

–
δ(x− y). (4.10)

The two terms of the sum in the right hand side correspond to the two possibilities:
acceptance of a proposed value or rejection.

4.2
Statistical errors

Remember the approximation consisting in replacing an average value by the sample
mean,

I =

Z ∞

−∞

G(x)fx̂(x) dx = µ̂M [G]± σ[µ̂M], (4.11)

with

µ̂M [G] =
1
M

MX

k=1

G(xk). (4.12)

As usual, as dictated by Chebycheff’s theorem, the error of the sample mean is mea-
sured by its standard deviation. However, we can not use now the relation:

σ2[µ̂M] =
σ2[G]

M
≈

σ̂2
M [G]

M
(4.13)

because the derivation of this formula assumes that all contributions to the sum in
(4.12) are independent from each other and we know this is not the case for the
rejection with repetition method. Let us get now an useful expression for the error in
the case of correlated values. We assume that we have thermalized conveniently the
algorithm by discarding the necessary steps at the beginning and the Markov chain
is in the steady state and, consequently, all variables xk are distributed according to
the same pdf fx̂(x).

The variance of the sample mean is defined as:

σ2[µ̂M] = �(µ̂M − I)2�, (4.14)

replacing µ̂M from (4.12) and writing Gk instead of G(xk) for brevity in the nota-
tion, we obtain:

σ2[µ̂M] =

*"
1
M

MX

k=1

(Gk − I)

#2+

=
1

M2

MX

k=1

MX

j=1

˙
(Gk − I)(Gj − I)

¸
. (4.15)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 105

105

In this double sum, we consider separately the terms with (i) k = j, (ii) k > j and
(iii) j > k. Due to the symmetry between k and j, the last two contributions are
equal and we can write

σ2[µ̂M] =
1

M2

NX

k=1

�(Gk − I)2�+
2

M2

M−1X

k=1

MX

j=k+1

�(Gk − I)(Gj − I)�. (4.16)

Expanding the product in the second sum and using that �Gi� = I, ∀i:

σ2[µ̂M] =
1

M2

MX

k=1

h
�G2

k� − I2
i

+
2

M2

M−1X

k=1

MX

j=k+1

h
�GkGj� − I2

i

=
σ2[G]

M

2

41 +
2
M

M−1X

k=1

MX

j=k+1

ρG(k, j)

3

5 , (4.17)

we have used that all Gk yield the same variance:

σ2[G] = �G2
i � − I2, (4.18)

and the definition of the normalized correlation between Gk and Gj :

ρG(k, j) =
�GkGj� − I2

σ2[G]
. (4.19)

Since we are in the steady state of a homogeneous Markov chain, the correlation
function depends only on the difference j − k ≡ i, ρG(k, j) = ρG(j − k) = ρG(i),
and we can write:

σ2[µ̂M] =
σ2[G]

M

"
1 +

2
M

M−1X

k=1

M−kX

i=1

ρG(i)

#
. (4.20)

Exchanging the summation order:
M−1X

k=1

M−kX

i=1

ρG(i) =
M−1X

i=1

M−iX

k=1

ρG(i) =
M−1X

i=1

(M − i)ρG(i), (4.21)

since the sum over k could be performed as ρG(i) does not depend on k. We have
now the final result:

σ2[µ̂M] =
σ2[G]

M

"
2

M−1X

i=1

„
1−

i
M

«
ρG(i) + 1

#
(4.22)

Let us now define the autocorrelation time τG as

τG =
M−1X

i=1

„
1−

i
M

«
ρG(i), (4.23)

we obtain the final expression for the variance of the sample mean, again replacing
the true variance σ2[G] by the sample variance σ̂2

M [G]

σ2[µ̂M] =
σ̂2

M [G]

M
(2τG + 1). (4.24)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 106

106

Let us stress that the only assumption in this definition is that the Markov chain
is in the steady state where variables at each step k have the same distribution and
correlations between steps k and j depend only of the difference j−k. For instance, if
all variables x̂k were independent we would have ρG(i) = δi,0, the autocorrelation
time would be 0 and the variance would simplify to the known result σ2[µ̂M] =

σ2[G]/M . In general, the autocorrelation function ρG(i) decays with i and tends to
0 as i →∞ (usually, but not always, the decay is exponential).

The autocorrelation time τG is a measure of the decay of the correlation function.
It can be defined, loosely speaking, as the number of steps that are needed for the
correlation to decay significantly from the initial value ρG(0) = 1. A more precise
definition is simply (4.23). For instance, if the decay is truly exponential ρG(i) =

[ρG(1)]i, with ρG(1) < 1, then according with the definition (4.23) the correlation
time is:

τG =
M−1X

i=1

„
1−

i
M

«
[ρG(1)]i =

ρG(1)
1− ρG(1)

−
ρG(1)(1− [ρG(1)]M)

(1− ρG(1))2M
, (4.25)

that can be reduced to

τG =
ρG(1)

1− ρG(1)
(4.26)

in the limit of large M . Indeed, in most cases, the correlation function decays rapidly
and, in the limit of large M we can neglect the factor i/M in the definition of τG and
write:

τG =
∞X

i=1

ρG(i). (4.27)

For the rejection with repetition method explained above, it is possible to compute
the correlation function. If the acceptance probability is � then either Gi+k = Gk

with probability (1− �)i (all i steps in going from k to i + k have been rejections) or
Gi+k is independent from Gk with probability 1− (1− �)i. This gives:

�GkGi+k� = (1− �)i�G2
k�+ [1− (1− �)i]�Gk��Gi+k�, (4.28)

which leads to ρG(i) = (1 − �)i, an exponential decay. The autocorrelation time is
independent of the function G and is given by τG =

1− �
�

, then 2τG + 1 =
2− �

�
and the correct expression for the estimator and its error is:

I = µ̂M [G]±
σ̂M [G]
√

M

r
2− �

�
(4.29)

Note that this is equivalent to have used an effective number Meff = M
�

2− �
≤

M of independent contributions to the estimator. If we wanted to have the same
error using a rejection method without repetition (i.e. trying again if the proposed
value is rejected), then we would need an average number Meff/� of proposals. As
2−�

� ≥
1
� , it turns out that the method of rejection with repetition needs to generate

more random numbers in order to yield the same statistical error. However, we will
see in the next section that this method is the one that can be generalized to high-
dimensional distributions while keeping a reasonable acceptance probability.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 107

107

4.3
Dynamical methods

Rejection methods, independently on whether we use repetition or not, can have a
very low acceptance probability. This is specially true if the proposal probability
g(x) is very distant from fx̂(x) and does not reflect the strong variations in value
that fx̂(x) might have, i.e. the ratio fx̂(xmax)/fx̂(xmin). This usually occurs when
we have no clue on how the pdf fx̂(x) we want to sample looks like, a problem par-
ticularly severe and common for distributions taking values in a high N -dimensional
space, x = (x1, . . . , xN).

Let us give an specific example. Consider the distribution:

fx̂(x1, . . . , xN) =

8
>><

>>:

C exp

0

@−
NX

i=1,j=i

xixj

1

A , if xi ∈ (−1, 1),

0, if xi /∈ (−1, 1).

(4.30)

One might be tempted to use a rejection method in which the proposal are inde-
pendent values x ≡ (x1, . . . , xN) each one drawn from a Û(−1, 1) or uniformly
distributed in the interval (−1, 1). This proposal would be accepted with a probabil-
ity h(x1, . . . , xN) proportional to fx̂(x1, . . . , xN). We note that the maximum value
of the distribution f(x1, . . . , xN) occurs for xi = 0, ∀i and there are two equivalent
minima for xi = 1, ∀i and xi = −1, ∀i1). As there are a total of N(N +1)/2 terms in
the sums of the exponential defining fx̂(x), the ratio between these two extreme val-
ues is fx̂(xmax)/fx̂(xmin) = eN(N+1)/2. The optimal acceptance probability would
be h(x1, . . . , xN) = exp

“
−
PN

i=1,j=i xixj

”
whose minimum and maximum val-

ues are e−N(N+1)/2 and 1, respectively. When N is large, it turns out that most
of the proposed values will belong to a region in which the acceptance probability
is very small. Hence the average acceptance probability is very small. This can be
checked with the program:

program average
implicit none
integer, parameter :: n=100
integer m,ijk,i,j
double precision :: x(n)
double precision :: averh,sum,ran_u
m=1000000
averh=0.0d0
do ijk=1,m
do i=1,n

x(i)=2.d0*ran_u()-1.0d0
enddo
sum=0.0d0
do i=1,n
do j=i,n

1) It might help to derive these results the identity
PN

i=1,j=i xixj = 1
2

“`PN
i=1 xi

´2
+

PN
i=1 x2

i

”
.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 108

108

sum=sum+x(i)*x(j)
enddo
enddo

averh=averh+dexp(-sum)
enddo
write(6,*) n,averh/m
end program average

Running this program with different values of N we obtain that the average accep-
tance probability � decreases with N . In fact, it is found that the average acceptance
probability decays exponentially with N (see problem 1). For example, for N = 10

it is � ≈ 0.105; for N = 20, � = 1.68×10−2; and for N = 100, � ≈ 3×10−8, which
means that we have to propose, on average, around 30 million numbers, in order to
accept one, a very inefficient procedure, indeed.

How can we avoid proposing values which have a very low acceptance probabili-
ty? The idea of the so-called dynamical methods is to use the information gathered
at previous proposals to make a new proposal. In this way, when by repeated trials
we reach the region in which the pdf is high, our proposals will not tend to abandon
this region. Let us explain these ideas using yet a simpler example than the N -
dimensional distribution 4.30. Consider the cut-off Gaussian probability distribution

fx̂(x) = C exp
“
−x2/2σ2

”
, x ∈ (−1, 1) (4.31)

for small values of the parameter σ2). If we propose “blindly” values uniformly
distributed according to a uniform distribution g(x) in the interval (−1, 1) and accept
this value with a probability h(x) = exp

“
−x2/2σ2

”
, most of the times we are

proposing values which have a very small acceptance probability3). However, when
we reach a value near x = 0 and note that there is a high acceptance probability,
what we should do is that the new proposed value is again close to 0, as we know
now (and did not know before) that x = 0 is the region of high probability. If xk is
the value obtained at the k-th step, then the new proposal at step k + 1 could be, for
example, a number xk+1 chosen uniformly in the interval xk+1 ∈ (xk − δ, xk + δ)

with δ a number comparable to σ, so we do not leave the region of large probability.
This is the basic principle behind the dynamical methods.

Summing up, in the static methods explained in chapter 3, the new value for the
random variable was chosen each time independently on previous values, whether
in the dynamical methods the proposal (and the acceptance probability as we will
see) depends on the previous values of the random variable. In other words, in the
static methods, if we denote by xn the value of the random variable generated at the
n-th step, then both the proposal g(x) and the acceptance h(x) are independent on
previous values (x1, . . . , xn−1). As a consequence, the pdf fx̂n

(x) at step n, was
independent on the previous steps. Being more precise, in the static methods:

fx̂n
(xn|x0, x1, . . . , xn−1) = fx̂n

(xn) = fx̂(xn), n = 0, 1, 2, . . . (4.32)

2) σ is not the rms, as the distribution does not extend for all real values of x.
3) The average acceptace probability is � =

p
π
2 σ erf(1/σ

√
2). This tends to � →

p
π
2 σ as σ → 0.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 109

109

and all random variables xn are independently distributed according to the same pdf
fx̂(x).

In a dynamical method, both the proposal and the acceptance probability depend
on the previous results. As a consequence, the pdf of the random variable xn ob-
tained in the n-th proposal/acceptance step depends on the previous values of the
random variables x0, x1, . . . , xn−1. The simplest way to implement this dependence
is via the latest result, i.e. take

fx̂n
(xn|x0, . . . , xn−1) = fx̂n

(xn|xn−1), (4.33)

defining our series of proposal/acceptance steps as a Markov chain. Again, the sim-
plest implementation uses a homogeneous Markov chain where the conditional prob-
abilities are independent on the step, or fx̂n

(xn|xn−1) = f(xn|xn−1).
Let us now go into the details of a dynamical method. We generate a realization

of the Markov chain generating values x0, x1, . . . , xn, . . . of the random variables .
The value xn is sampled from a distribution f(xn|xn−1). Ideally, we would like all
probability distributions fx̂n

(x) to be equal to the desired pdf fx̂(x). However, our
discussion of the simple dynamical method of rejection with repetition tells us that it
might be more reasonable to demand only that the asymptotic distribution reproduces
the desired pdf, limn→∞ fx̂n

(x) = fx̂(x). Our discussion about Markov chains in
section 1.9 tells us that a sufficient condition for this to happen is the detailed balance
condition:

f(y|x)fx̂(x) = f(x|y)fx̂(y). (4.34)

Usually (but not always), the generation of random variables distributed according
to f(x|y) uses a rejection method. This means that we propose a value x from a pdf
g(x|y) and then accept it with a probability h(x|y). As explained, both proposal and
acceptance of a number x at step n depend on the value y obtained in the previous
step. We now obtain the transition probability f(x|y) that corresponds to this pro-
posal/acceptance algorithm in the case of rejection with repetition. i.e. if the value x

is not accepted, then we keep the previous value y. It will be clear in a moment why,
of all possible rejection methods, we adopt this one. The derivation of the transition
pdf is similar to the one leading to 4.10, but now we have to take into account that
both the proposal pdf g(x|y) and the acceptance probability h(x|y) depend on y.

The transition pdf f(x|y) has two contributions corresponding to the acceptance
or not of the proposed value. Given a value y, the overall rejection probability is

P (rejection|y) = 1− P (acceptance|y)

= 1−

Z
h(z|y)g(z|y) dz ≡ 1− �(y), (4.35)

where we have used (3.92) with the only modification that both the proposal and
the acceptance probabilities now depend on the value y. If the proposal x is not
accepted, then the transition probability is the Dirac-delta δ(x − y), as we keep the
old value y. This leads to a transition probability:

f(x|y) = h(x|y)g(x|y) + δ(x− y) [1− �(y)] . (4.36)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 110

110

Similarly, we have:

f(y|x) = h(y|x)g(y|x) + δ(x− y) [1− �(x)] . (4.37)

Which functions h(x|y) and g(x|y) can be used? The only requirement is that
the stationary pdf of this Markov chain is the distribution fx̂(x). We enforce this
by imposing the sufficient condition of detailed balance4). Replacing f(x|y) and
f(y|x) in the detailed balance condition (4.34), the two terms with delta-functions
are identical as they force x = y, leading to

h(y|x)g(y|x)fx̂(x) = h(x|y)g(x|y)fx̂(y), (4.38)

as the equation to be satisfied by the proposal g(x|y) and the acceptance h(x|y) to
ensure that the stationary distribution of the Markov chain is indeed fx̂(x).

It is essential to return the value xn = xn−1 if the proposal x is not accepted
instead of keep on proposing new values until they get accepted as we used to do
in a standard rejection method. The reason is simple to understand. If we sampled
f(x|y) without repetition, i.e. trying new values until one is accepted, the same
argument that led to the distribution (3.90) tells us that the resulting pdf is

f(x|y) =
h(x|y)g(x|y)R
dz h(z|y)g(z|y)

, (4.39)

and similarly

f(y|x) =
h(y|x)g(y|x)R
dz h(z|x)g(z|x)

. (4.40)

The detailed balance condition to be satisfied by the proposal g(x|y) and the accep-
tance h(x|y) probabilities is

fx̂(y)h(x|y)g(x|y)R
dz h(z|y)g(z|y)

=
fx̂(x)h(y|x)g(y|x)R

dz h(z|x)g(z|x)
, (4.41)

and, due to the integrals, it is difficult to give general solutions for g(x|y) and h(x|y)

satisfying this equation.
We write now in full the recurrence relation of the Markov chain:

fx̂n+1(x) =

Z
f(x|y)fx̂n

(y) dy (4.42)

=

Z
h(x|y)g(x|y)fx̂n

(y) dy + fx̂n
(x)

»
1−

Z
dzh(z|x)g(z|x)

–

where

�(x) =

Z
dz h(z|x)g(z|x) (4.43)

is the acceptance probability given x. The overall average acceptance probability is

� = ��(x)� =

Z
dx �(x)fx̂(x). (4.44)

We will review now different solutions to the detailed balance condition in its
form (4.38). There are, mainly, two ways to find the solution of this equation: the
Metropolis et al. algorithm and the heat-bath algorithm.

4) The authors are not aware of any solution which does not use the detailed balance condition.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 111

111

4.4
Metropolis et al. algorithm

In the Metropolis et al. algorithm we fix the proposal distribution g(x|y) and solve
for the acceptance probability. We must find then a function h(x|y) satisfying:

0 ≤ h(x|y) ≤ 1 (4.45)
h(x|y)
h(y|x)

= q(x|y) (4.46)

where we have introduced

q(x|y) =
g(y|x)fx̂(x)
g(x|y)fx̂(y)

, (4.47)

which satisfies the condition:

q(y|x) =
1

q(x|y)
. (4.48)

All solutions of (4.46) can be found introducing the function ω(z) by means of

h(x|y) =
p

q(x|y)ω(x, y), (4.49)

which replaced in (4.46) requires the symmetry condition ω(x, y) = ω(y, x). Condi-
tion (4.45) is more delicate. A possibility is to demand that ω(x, y) depends on x and
y through the function q(x|y): ω(x, y) = ω(q(x|y)), with the symmetry condition
ω(x, y) = ω(y, x) being equivalent to ω(q) = ω(1/q). The requirement (4.45) then
leads to 0 ≤

√
qω(q) ≤ 1 or ω(q) ≤ 1/

√
q from where ω(q) = ω(1/q) ≤ 1/

p
1/q.

We are looking, then, for functions ω(q) satisfying:

ω(q) = ω(1/q), (4.50)
ω(q) ≤

√
q. (4.51)

The first solution is the one given by Metropolis et al.:

ω(q) = min (q, 1/q) . (4.52)

It satisfies trivially ω(q) = ω(1/q). For condition (4.51) we take separately the cases
q ≤ 1 and q ≥ 1. If q ≤ 1 then ω(q) = q ≤

√
q. For q ≤ 1, it is ω(q) = 1/

√
q ≤

√
q.

This leads to one of the most widely used solutions of the detailed balance condition:

h(x|y) = min (1, q(x|y)) . (4.53)

The second most widely used solution is that of Glauber,

ω(q) =
1

√
q +

p
1/q

, (4.54)

which trivially satisfies (4.50)-(4.51). In terms of the transition probability, we have:

h(x|y) =
q(x|y)

1 + q(x|y)
. (4.55)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 112

112

Another solution was used later by van Beijeren and Schulman. It is simply ω(q) =

C, constant. The constant has to be chosen such that C ≤ maxx,y
p

q(x|y), in order
to fulfill the condition h(x|y) ∈ [0, 1].

Let us now apply the Metropolis et al. algorithm to some specific examples.

Gaussian distribution We consider a random variable x̂ whose pdf is Gaussian:

fx̂(x) = A exp(−
x2

2
). (4.56)

The normalization constant C is irrelevant for the Metropolis algorithm. We take the
following proposal probability:

g(x|y) =

(
1

2∆ , |x− y| < ∆,

0, otherwise.
(4.57)

In other words, x is drawn from a uniform distribution in the interval (y−∆, y+∆).
The constant ∆ is arbitrary for now, but later we will determine which is the best
choice for it. Obviously, the proposal satisfies the symmetry condition

g(x|y) = g(y|x) (4.58)

so the function (x|y) is

q(x|y) =
g(y|x)fx̂(x)
g(x|y)fx̂(y)

= exp(
y2
− x2

2
). (4.59)

We now need an acceptance probability h(x|y). We will use Metropolis et al. choice
h(x|y) = min(1, q(x|y)). In our example, it is:

q(x|y) =

(
1, |y| > |x|,

exp(y2
−x2

2), |y| ≤ |x|.
(4.60)

As usual, the acceptance step is a Bernoulli process of probability q. We draw a
Û(0, 1) random number u and compare it with q. If u ≤ q we accept the proposal.
Note that if q = 1, the proposal is always accepted and there is no need to spend time
drawing a random number and comparing it to 1. The algorithm can be summarized
as follows:
1) Given y propose x uniformly from (y −∆, y + ∆).
2) If |x| ≤ |y|, accept x.
3) If |x| > |y|, accept x with probability q = exp(y2

−x2

2). If the value x is rejected,
return y as the value of the Gaussian variable.

The program could look like this:

double precision function ran_gauss_mc(y,delta)
x=y+delta*(2.0d0*ran_u()-1.0d0)
if(abs(x).gt.abs(y)) then
if (ran_u().gt.exp(0.5d0*(y-x)*(y+x))) then

! Reject. Do not accept the proposed value. Keep old one.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 113

113

ran_gauss_mc=y
return
endif

endif
y=x
ran_gauss_mc=y
end function ran_gauss_mc

Before the first call to this routine we need to set an initial value for y, for instance,
y = 0.

We can understand intuitively the way the algorithm works. If the proposal tends
to increase he probability, i.e. if fx̂(x) ≥ fx̂(y), then the new value is accepted. This
moves the Markov chain towards values of high probability. Still, if fx̂(x) < fx̂(y),
the new value is not systematically rejected, so there is a chance of visiting regions of
low probability. As we have shown, the resulting distribution of values of x coming
from these steps (unconditional acceptance of values with larger probability, and
conditional acceptance otherwise) is precisely fx̂(x).

There is still the issue of the parameter ∆. Notice, first, that whatever the value of
∆, the proposal g(x|y) given by (4.57) leads to an ergodic algorithm because it allows
each and every real value x to be proposed eventually and it can not be trapped in
loops. It is a random walk in the real space that does not have any forbidden region.
Certainly, some values will be accepted more often that others, but the proposal
probability is such that all values of x could be visited at one time or another. Note
that the average acceptance probability � depends on ∆. Using (4.44), and after a
lengthy calculation, we obtain:

� = 1− erf

„
∆

2
√

2

«
+

4

∆
√

2π

“
1− e−∆2/8

”
, (4.61)

which monotonically decreases to 0 as ∆ increases from its maximum value � = 1 at
∆ = 0. Based on this result, one might think, wrongly, that the smaller ∆ the more
efficient the algorithm is, as the acceptance probability is larger. However, it is clear
that for very small ∆, the proposed value x will be very close to the old value y, and
hence there will be a large correlation between x and y, the old and the proposed
(and very likely to be accepted) value. This induces a large correlation time and an
increase in the errors. Instead, we come to the general idea that in order to optimize
the algorithm, the parameter ∆ has to be chosen such that the correlation time τG

(and hence the statistical errors) reaches its minimum value. We will come to this
important point later.

Here we can check what would happen if we did not repeat the previous value in
case of rejection and insisted in proposing a new value until it got accepted, as we
used to do in a standard rejection method.

double precision function ran_gauss_mc_bad(y,delta)
1 x=y+delta*(2*ran_u()-1)
if(abs(x).gt.abs(y)) then
if (ran_u().gt.exp(0.5d0*(y-x)*(y+x))) goto 1

endif
y=x

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 114

114

ran_gauss_mc_bad=y
end function ran_gauss_mc_bad

The reader can check that tis routine does not produce numbers distributed according
to a Gaussian distribution (it becomes worse as ∆ increases).

Poisson distribution We give an example now of the application of the Metropolis
et al. algorithm to a discrete distribution. We consider a Poisson random variable
that takes integer values x̂ = k, k = 0, 1, 2, 3, . . . with probability

pk = e−λ λk

k!
. (4.62)

We shall proceed very similarly to the Gaussian distribution. Given a current value
k we must propose a new value k� sampled from a distribution g(k�|k). We propose
to use:

g(k�|k) =

8
>><

>>:

1/2, k� = k + 1,

1/2, k� = k − 1,

0, otherwise.
(4.63)

We only propose values k that differ from k in one unit. In this way, we obtain an
ergodic algorithm: all integer values have, in principle, the chance to be proposed
at one time or another. Note, furthermore, that this proposal satisfies the symmetry
condition g(k�|k) = g(k|k�).

With the choice (4.63), function q(k�|k)

q(k�|k) =
pk�

pk
= λk�−k k!

k�!
. (4.64)

And the acceptance probability h(k�|k) = min(1, q(k�|k) can take two possible val-
ues:
(a) If k� = k + 1 then:

q(k + 1|k) =
λ

k + 1
→ h(k + 1|k) =

(
1, λ ≥ k + 1,

λ
k+1 , λ < k + 1.

(4.65)

(b) If k� = k − 1 then:

q(k − 1|k) =
k
λ
→ h(k − 1|k) =

(
k
λ , λ ≥ k,

1, λ < k.
(4.66)

(Note, in particular, that h(−1|0) = 0. So, the value −1 can be proposed but will
never be accepted). The Metropolis et algorithm works in the following way:
– Chose randomly with probability 1/2, k� = k + 1 or k� = k − 1.
– If k� = k + 1, then if k� ≤ λ accept k�; if k� > λ accept k� with probability λ

k+1 .
– k� = k − 1, then if k ≥ λ accept k�; if k < λ accept k� with probability k

λ .

Here comes a possible version of the program:

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 115

115

integer function iran_poisson_mc(lambda)
implicit double precision(a-h,o-z)
double precision lambda
integer :: k=0
if (ran_u().gt.0.5d0) then
k1=k+1
if(k1.le.lambda) then
k=k1
iran_poisson_mc=k
return
elseif (ran_u().lt.lambda/k1) then
k=k1
iran_poisson_mc=k
return
endif

else
k1=k-1
if(k.ge.lambda) then
k=k1
iran_poisson_mc=k
return
elseif (ran_u().lt.k/lambda) then
k=k1
iran_poisson_mc=k
return
endif

endif
iran_poisson_mc=k
end function iran_poisson_mc

The average acceptance probability could be computed in principle, using the dis-
crete version of (4.44) with sums replacing integrals, but is is simpler to compute it
numerically using a simple modification of the previous program. A numerical fit
concludes that � ≈ 1− 0.4λ−1/2 is a good fit to the numerical data. Here, we do not
have any parameters than can be tuned, buy these could be introduced, for instance,
by setting a proposal distribution g(k�|k) = 1/(2L + 1) if |k� − k| ≤ L. The integer
number L could then be used to reduce the correlation time. We leave this as an
exercise to the reader.

4.5
Multidimensional distributions

The two previous applications have served as an introduction to the Metropolis et
al. algorithm. However, its real power lies in the sampling of high-dimensional
distributions where the random variable has N components, with N large. We will
use the notation x = (s1, s2, . . . , sN) to denote the N dimensional random variable

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 116

116

x̂ we need to sample. Let us begin by an explicit pdf for N = 4:

fx̂(s1, s2, s3, s4) = A exp
“
−s4

1 − s4
2 − s4

3 − s4
4 + s1s2 + s2s3 + s3s4 + s4s1

”

≡ Aed(x), (4.67)

where A is an irrelevant normalization factor and we have defined d(x) = −s4
1 −

s4
2 − s4

3 − s4
4 + s1s2 + s2s3 + s3s4 + s4s1. The dynamical method proposes a new

value x� = (s�1, s�2, s�3, s�4) drawn from a distribution g(x�|x) = g(x�|x) and accepts
it with probability h(x�|x). A simple extension of the previous examples suggests
the proposal:

s�1 = s1 + (2u1 − 1)∆,

s�2 = s2 + (2u2 − 1)∆,

s�3 = s3 + (2u3 − 1)∆,

s�4 = s4 + (2u4 − 1)∆, (4.68)

being u1, u2, u3, u4 independent Û(0, 1) variables. This means that each proposal
s�i is drawn from a uniform distribution in (si −∆, si + ∆). Note that this proposal
is symmetrical as g(x�|x) = g(x|x�). The acceptance probability can be chosen as
h(x|x�) = min(1, q(x|y) being:

q(x�|x) =
fx̂(x�)
fx̂(x)

= ed(x�)−d(x) (4.69)

Hence h(x�|x) = 1 if d(x�) > d(x), and h(x�|x) = ed(x�)−d(x), otherwise. A routine
to implement the generation of this 4-dimensional variable x̂ could be:

subroutine ran_f4(s1,s2,s3,s4,delta)
q1=s1+delta*(2*ran_u()-1)
q2=s2+delta*(2*ran_u()-1)
q3=s3+delta*(2*ran_u()-1)
q4=s4+delta*(2*ran_u()-1)
d1=-s1**4-s2**4-s3**4-s4**4+s1*s2+s2*s3+s3*s4+s4*s1
d2=-q1**4-q2**4-q3**4-q4**4+q1*q2+q2*q3+q3*q4+q4*q1
if(d2.lt.d1) then
if (ran_u().gt.exp(d2-d1)) return
endif
s1=q1
s2=q2
s3=q3
s4=q4
return
end

A call ran_f4(s1,s2,s3,s4,delta) returns in (s1, s2, s3, s4) a value of
the 4-dimensional random variable x̂. Obviously, it is possible to replace

if(d2.lt.d1) then
if (ran_u().gt.exp(d2-d1)) return
endif

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 117

117

by the single line

if (ran_u().gt.exp(d2-d1)) return

as the condition inside the if will never be satisfied for d1 < d2. However, this
replacement implies to compute every time an exponential and generate a random
number whether we need it or not, and the three-lines code is more efficient, albeit
not so clear. The average acceptance probability depends on ∆. It would be difficult
to compute it analytically, but the numerical results tell us that the average accep-
tance decays exponentially with the parameter ∆. This simply means again that the
farther we allow the proposal to be with respect to the actual value of the variable,
the smaller the acceptance error and, hence, the more often the routine will return
exactly the same value for the random number.

It should be clear now the great advantage of this algorithm: it can be easily gen-
eralized to the case in which the dimensionality N of the random variable x̂, or the
actual number of variables (s1, s2, . . . , sN) is large. And by large, we mean any
number that can be accommodated in the computer memory. Let us be more precise
and consider the pdf:

fx̂(s1, . . . , sN) = A exp

NX

i=1

[−s4
i + sisi+1]

!
. (4.70)

We have used the convention, named “periodic boundary conditions” that whenever
it appears, sN+1 must be replaced by s1, and (this will be needed later) s0 must be
replaced by sN , as if the variables were lying in a ring. It should be clear now the
generalization of the Metropolis et al. algorithm, as shown in the following program.

subroutine ran_fn(s,n,delta)
implicit double precision (a-h,o-z)
dimension s(n),q(n)
common /acc/ d
do i=1,n
q(i)=s(i)+delta*(2*ran_u()-1)

enddo
dn=0.0d0
do i=1,n
i1=i+1
if (i.eq.n) i1=1

dn=dn-q(i)**4+q(i)*q(i1)
enddo
if(dn.lt.d) then
if (ran_u().gt.exp(dn-d)) return
endif
s=q
d=dn
return
end

Notice that we keep the value of the function d(x) so we only need to compute its
new value.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 118

118

If we fix now the value of ∆, say ∆ = 0.1, the average acceptance decays with N .
For instance for N = 10, it is � ≈ 0.852, whereas for N = 103 it is � ≈ 4.8× 10−2

and for N = 104 it is � ≈ ×10−6. It is clear then, that the average probability can
become very small for N large. We could compensate this by decreasing ∆ with N

such that the average acceptance probability remains approximately constant.
It is true that a low acceptance probability is not, per se, a fundamental problem.

What we care about is the correlation time τG, as the error increases with τG ac-
cording to (4.24). But we believe, and we will sustain this belief later, that a small
acceptance probability implies a large correlation time, as may times the values of
the random variable will be identical, as the new proposals get rejected once and
again.

The standard way of having a constant average acceptance with N consists in
modifying the proposal g(x�|x) in such a way that only one of the N variables
(s1, . . . , sN) is proposed to change. Formally, we use a proposal pdf:

g(x�|x) =
NX

i=1

1
N

gi(s
�
i|si)

Y

j �=i

δ(s�j − sj). (4.71)

This means that we select randomly one of the si variables, i = 1, . . . , N (each one
with probability 1/N), propose a value s�i from a probability distribution gi(s

�
i|si)

and keep all other variables with j �= i unchanged. For the single-variable proposal
probability we take the same as before:

gi(s
�
i|si) =

1
2∆

, if |s�i − si| < ∆, (4.72)

or s�i chosen randomly and uniformly from the interval (si −∆, si + ∆). It is clear
that this proposal satisfies the symmetry condition g(x�|x) = g(x|x�) and hence the
function q(x�|x) is given by the ratio fx̂(x�)/fx̂(x). What is more interesting is
that the calculation of this ratio implies only a few variables since most of them are
unchanged and simplify in the numerator and denominator. Specifically, we have:

q(x�|x) =
fx̂(s1, . . . , s�i, . . . , sN)

fx̂(s1, . . . , si, . . . , sN)

= exp
h
−s�4i + s4

i + (si−1 + si+1)(s
�
i − si)

i
(4.73)

(recall our periodic boundary conditions convention: s0 ≡ sN and sN+1 ≡ s1).
Using the choice h(x�|x) = min(1, q(x�|x)) for the acceptance probability, the

algorithm would be:

subroutine ran_fn_1(s,n,delta)
implicit double precision (a-h,o-z)
dimension s(n)
do k=1,n
i=i_ran()
q=s(i)+delta*(2*ran_u()-1)
ip=i+1
if (i.eq.N) ip=1

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 119

119

im=i-1
if (i.eq.1) im=N
d=-q**4+s(i)**4+(s(im)+s(ip))*(q-s(i))
if(d.lt.0) then
if (ran_u().gt.exp(d)) cycle
endif
s(i)=q
enddo
return
end

When we take, for example, ∆ = 2.0, the average acceptance probability is � ≈ 0.43

independently on the value of N , whatever large this would be.
Note that in the previous program, we have repeated the basic proposal/acceptance

step N times using the loop do k=1,n. This makes sense, as in every single pro-
posal/acceptance step we only modify at most one of the N variables and the other
N − 1 remain unchanged. This repetition of N times the basic step is what is called
one Monte Carlo step or 1 MCS. A new value of the N -dimensional random variable
x̂ is only returned after each Monte Carlo step.

The choice (4.71), and, as it becomes clear in the previous program listing, implies
a random update. At each time, the variable to be updated is chosen randomly
amongst the set of N variables. It is possible to use the so-called sequential update in
which the variables are chosen one after the other: first s1, next s2, then s3, etc. From
the practical point of view it simply means to replace the line i=iran() by i=k,
or remove that line and change the loop variable to do i=1,n. There are several
advantages to this procedure. First, it is faster since it avoids calling the integer
random number routine. Second, it makes sure that every Monte Carlo step, each
and every variable has been selected one for updating. Note that in random update,
the probability that one variable has not been chosen after 1 MCS (N individual
proposals) is (1 − 1/N)N which tends to e−1 = 0.368 for large N . The most
notorious implication is that the Markov chain is not homogeneous as the transition
probability fx̂n

(x�|x) depends now on n. In a sequential update at the 1st trial we
chose variable s1, at second, s2 and so on, such at at trial n we chose variable sin

with in = n −
ˆn−1

N

˜
N , and the transition probability fx̂n

(x�|x) = fin(x�|x),
depends on the number in only. As before, once we have chosen variable sin for
updating, the proposal and acceptance probabilities are given by the corresponding
expressions gin(x|x�) and acceptance probabilities hin(x�|x) that now depend on in.
The evolution of the pdf for this non-homogeneous process is:

fx̂n+1(x) =

Z
fin(x|y)fx̂n

(y) dy (4.74)

=

Z
hin(x|y)gin(x|y)fx̂n

(y) dy

+fx̂n
(x)

»
1−

Z
dzhin(z|x)gin(z|x)

–
.

As we chose gin(x|x�) and hin(x�|x) to satisfy the detailed balance condition
gin(x|x�)hin(x�|x)fx̂(x) = gin(x�|x)hin(x|x�)fx̂(x�) for each value of in, then it is

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 120

120

easy to prove that the distribution fx̂(x) is still a stationary distribution for (4.74).
We need only to care about ergodicity and make sure that the sequential update
allows, in principle, any possible values for the variables to be reached to make sure
that fx̂(x) will be asymptotically sampled by the non-homogeneous Markov chain.

4.6
Heat-bath method

At variance with the previous methods, heat-bath is the first one that requires the
variable to sample to be N -dimensional x̂ = (̂s1, . . . , ŝN) with N > 1. The idea is
to solve the detailed balance condition (4.38) by (i) proposing transitions x → x� in
which only one variable changes, si → s�i, and (ii) taking an acceptance probability
equal to 1, h(x�|x) = 1. The detailed balance condition is reduced to:

g(x�|x)fx̂(x) = g(x|x�)fx̂(x�) (4.75)

with x = (s1, . . . , si, . . . , sN) and x� = (s1, . . . , s�i, . . . , sN). This equation is satis-
fied if we take:

g(x�|x) = f(s�i|s1, . . . , si−1, si+1, . . . , sN). (4.76)

This is easily checked by replacing

g(x�|x) = f(s�i|s1, . . . , si−1, si+1, . . . , sN) (4.77)

=
fx̂(s1, . . . , si−1, s�i, si+1, . . . , sN)

f(s1, . . . , si−1, si+1, . . . , sN)

and

g(x|x�) = f(si|s1, . . . , si−1, si+1, . . . , sN) (4.78)

=
fx̂(s1, . . . , si−1, si, si+1, . . . , sN)

f(s1, . . . , si−1, si+1, . . . , sN)

in (4.75).
In words, the heat-bath algorithm proceeds as follows:

(i) Chose a variable si. This step can be done either randomly ore sequentially.
(ii) Sample a new value s�i from a conditional distribution in which all other variables
(s1, . . . , si−1, si+1, . . . , sN) are fixed. The proposed value is always accepted. We
will see examples of the use of this algorithm when we discuss in next chapter 5
some applications to systems of interest in statistical mechanics.

4.7
Tuning the algorithms

Parameter tuning. In a Monte Carlo simulation, it is very clear what we mean
by the optimal algorithm: the one that gives the less error using the same computer

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 121

121

time. If we remember that the error of the estimator is σ[µ̂M] as given by (4.24), and
besides increasing the number of sample M (which obviously increases the comput-
er time), one should try to reduce the correlation time τG (without increasing the
computer time). For instance, when choosing the proposal probability (4.57) for the
Gaussian distribution (but similar arguments apply to other cases) ∆ is a parameter
that can be varied without variation of the computer time. It is clear that τG is a
function of ∆. If ∆ is very small, the proposal x� is very close to the actual value
x and will be accepted very often. A series of numbers Gk in which Gk+1 is very
close to Gk has a large correlation time. Similarly, when ∆ is very large, the accep-
tance probability is very small and most values are rejected. As a consequence, in
many occasions it is Gk+1 = Gk and, again, the correlation time is very large. Is
is expected, then, that there exists an optimal value of ∆ which yields the minimum
correlation time τG. Unfortunately it is usually not so easy to determine with preci-
sion the optimal value ∆. Analytically, the problem is very difficult. To know τG,
according to (4.19) and (4.23) we need to know the correlation function �GkGk��, an
average in the stationary distribution. This is difficult as the iteration equation (4.42)
can rarely be solved explicitly. It is possible to obtain an expression for the one-step
correlation using

�Gn+1Gn� =

Z
dx dy G(x)G(y)fx̂n+1,x̂n

(x, y)

=

Z
dx dy G(x)G(y)f(x|y)fx̂n

(y). (4.79)

Replacing f(x|y) from (4.36) and fx̂n
(y) for the stationary distribution fx̂(y), one

obtains after some straightforward algebra that the one-time normalized correlation
function is:

ρG(1) =
�Gn+1Gn� − �Gk�

2

σ2[G]

= 1−
1

2σ2[G]

Z
dx dy h(x|y)g(x|y)[G(x)−G(y)]2fx̂(y). (4.80)

To obtain from here the correlation time we make the approximation that the corre-
lation function decays exponentially ρG(i) ≈ [ρG(1)]i and use (4.26). Although this
approximation might not need necessarily accurate, it does give us an estimate for
the correlation time τG.

For the Metropolis et al. algorithm applied to the Gaussian distribution, it is pos-
sible to perform analytically the integrals (4.80) to obtain after a tedious calculation
that for G(x) = x the one-time correlation function is:

ρx(1) = 1−
∆2

6

»
1− erf

„
∆

2
√

2

«–
+

16

3∆
√

2π

»„
∆2

8
+ 1

«
e−∆2/8

− 1

–
(4.81)

where we can check that it has a minimum value at ∆ ≈ 3.70, which is hence the
optimal value for this parameter.

In general, it will not be possible to perform the integrals (4.80), but one can al-
ways compute the one-time correlation function ρG(1) from the numerical algorithm

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 122

122

and estimate numerically the correlation time τG using (4.26). This is relatively easy
to do. Alternatively, one could compute numerically the whole correlation function
ρG(k) and derive the correlation time from there. We have left for appendix 14 the
explanation of an efficient algorithm to compute the correlation time of a series.

If all the above seems too complicated (although it should not really be), there is
another strategy to determine the optimal value of the tunable parameters. We have
already commented on the fact that very large or very small acceptance probabilities
lead to large correlation times. The simple answer then is to chose parameters such
that the average acceptance probability is not very large, nor very small. Not very
large, nor very small for a number � which is bounded to be between 0 and 1 means ...
� = 1/2. This is a heuristic rule, with no much justification, but to chose parameters
using this criterion is usually better than not tuning parameters at all. For instance,
at the optimal value ∆ = 3.70 for the Gaussian distribution (the minimum of the
one-time correlation function), the acceptance probability (as given by (4.61)) is
� = 0.418, not equal to 1/2, but not too far from it either.

How often? The computer time spent in the calculation of the estimator µ̂M [G]

to the integral of the function G(x) can be divided in the time necessary, say t2,
to generate one value xk of the random variable and the time, say t1, it takes to
compute the function G(xk) and make the necessary sums, products and sums of
squares to compute the estimator, the error, the correlation function, and so on. If
the correlation time τG is small (of the order of 1) then there is little correlation
between all values of G(xk) and including them all in the averages makes perfect
sense. Imagine, however (and, alas!, this occurs more often that one desires), that the
correlation time τG is large. Then there is a large correlation between the different
values of G(xk) and it might not be useful to include all of them in the calculation
of the averages. This means to let pass a number of proposal/acceptance steps, say
K, between measurements. In this way, the correlation time of the new, decimated,
series of values G(xk) has a correlation time τG/K. Is there an optimal value for
K? The answer is yes, and a simple calculation of its optimal value can save us a lot
of computer time in complicated problems, where the calculation of G(xk) is time
consuming.

So, let us assume that we make M measurements and that there are K propos-
al/acceptance steps between measurements. The correlation time is τG/K, and the
variance of the estimator using these values is:

σ2[Ĝ] =
σ2[Ĝ]

M

“
2
τG

K
+ 1
”

(4.82)

and we would like to chose K to minimize this expression. The minimization has
to be performed under the condition that the total computer time is constant. The
total computer time is T2 = KMt2 (time needed to generate the KM steps) plus
T1 = Mt1 (measurement time). The minimization of

1
M

“
2
τG

K
+ 1
”

(4.83)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 123

123

with the constrain

Mt1 + KMt2 = t constant, (4.84)

yields

K =

r
2τGt1

t2
, (4.85)

as the optimal value of K. The ratio of the time spent in measuring to the one spent
in updating is:

T1

T2
=

Mt1
KMt2

=

r
t1

2τGt2
. (4.86)

This time does not seem to be an easy heuristic rule to replace this calculation.
Sometimes it is used the criterion of choosing K such that the ratio of measuring
to updating is T1/T2 = 1 or K = t1/t2, a criterion not sustained by this simple
calculation.

Thermalization. We reach now a delicate point. As mentioned in section 1.8 the
use by a dynamical methods of the adequate homogeneous Markov chain, and under
the assumption of ergodicity, ensures that the values of the random variable x̂ from
a pdf fx̂(x) are reached asymptotically. Namely,

lim
n→∞

fx̂n
(x) = fx̂(x). (4.87)

According to this criterion, we should wait an “infinite” number of steps before
reaching the stationary state and start the measurements.

We have already mentioned that, in practice “n → ∞” means that we have to
discard the first M0 steps of the algorithm, the first M0 values of the random variable
x̂. The problem is to determine faithfully the value of M0. We can affirm that
underestimating the value of M0 is the main source of uncontrolled mistakes in the
field of Monte Carlo simulations and there are many the published papers which are
wrong just because the authors did not wait long enough to reach the stationary state
of the Markov chain.

The process of discarding the first M0 steps is called thermalization. So, the
key question is how long should we thermalize? How to get an estimate of M0?
Obviously, one thing to do is to vary M0 and check that the results, without the un-
avoidable statistical errors, do not depend on M0. One can be a little bit more precise
and compute the time dependence of the averages. For that we need to compute the
so-called lineal relaxation function ρNL

G defined as:

ρNL
G (n) =

�Gn� − �G�st

�G0� − �G�st
. (4.88)

Here

�Gn� =

Z ∞

−∞

fx̂n
(x)G(x) dx (4.89)

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 124

124

denotes an average using the different values that are generated at step n using a
different value from the initial pdf fx̂0(x) and �G�st is the stationary value. The
thermalization time is related to the time it takes ρNL

G (n) to decay from ρNL
G (n) = 1

to its stationary value ρNL
G (n) = 0. This can be estimated similarly to the correlation

function introducing the non-linear correlation time:

τNL
G =

∞X

n=0

ρNL
G (n), (4.90)

and, finally, taking M0 as a number of times τNL
G , for example M0 ≥ 10τNL

G . It is
clear that the problem in this procedure is that the definition (4.88) depends on the
stationary value �G�st which can only be determined free of systematic errors if we
are sure that we are in the stationary state. There are examples (mostly in the field of
phase transitions, but not only there) in which the decay is very slow and it is difficult
to determine whether or not the system has reached indeed the stationary state.

There is one check, however, that can help us in this issue. There is a simple
relation

�q(y|x)�st = 1 (4.91)

that holds in the stationary state. The average has to be performed with respect to
the proposed values y (hence, distributed according to g(y|x)) over the allegedly
stationary distribution of x. Namely,

�q(y|x)�st =

Z
dy

Z
dxfx̂(x)g(y|x)q(y|x). (4.92)

The proof is simple, replace q(x|y) by its definition and manipulate:

�q(y|x)�st =

Z
dy

Z
dxfx̂(x)g(y|x)q(y|x)

=

Z
dy

Z
dxfx̂(x)g(y|x)

g(x|y)fx̂(y)
g(y|x)fx̂(x)

=

Z
dy

»Z
dxg(x|y)

–
fx̂(y)

=

Z
dyfx̂(y) = 1.

(4.93)

Therefore, if we are in the stationary state, we should verify (4.91). Unfortunately,
this is a necessary condition, but not sufficient and one cat get values of �q(x|y)�st

close to 1 and still not be in the stationary state. In practice, one should get a value of
�q(x|y)�st really close to 1, say a zero followed by a good number of nines (at least
three or four). Otherwise, you most probably have not yet reached the stationary
state.

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 125

125

Exercises

1) Sample the N -dimensional distribution (4.30) using a simple rejection method
with (x1, . . . , xN) independent and uniformly distributed in the interval [−1, 1]

and check that the average acceptance probability decays exponentially with N .
2) Prove that in a homogenous Markov chain, the correlation function ρ(i, j) depends

only on the difference |i− j|.
3) Use (4.44) with the proposal (4.57) and the Metropolis et al. choice h(x|y) =

min(1, q(x|y)), to reproduce expression (4.61). Check the correctness of this re-
sult by comparing with numerical simulations varying the parameter ∆. Compare
(numerically) with the average acceptance probability � obtained using Glauber

choice h(x|y) =
q(x|y)

1 + q(x|y)
. Which method has the largest acceptance probabili-

ty?
4) Continuing with the previous problem, compute numerically, both for Metropolis

et al. and Glauber acceptance probabilities, the correlation time in the stationary
state for the function G(x) = x2 as a function of the parameter ∆ and determine
the optimal values of ∆. Conclude which choice is more efficient (do not forget to
take into consideration the computer time needed by each algorithm).

5) Repeat the previous problem using the function G(x) = cos(x) and check that the
numerical value obtained for the integral

Z ∞

−∞

dx cos(x) exp(−
x2

2
)

using the Metropolis et al. algorithm for both choices of the acceptance probability
h(x|y) agrees within errors with the exact result

p
2π/e.

6) Compute as a function of λ the correlation time of the Metropolis et al. algorithm
applied to the generation of the Poisson distribution of parameter λ. Take λ =

0.5, 1.0, 2.0, 5.0, 10.0, 100.0

7) Program the Metropolis algorithm for the generation of the Poisson distribution
using a proposal g(k�|k) uniformly distributed in the interval (k−L, k+L). Com-
pute the correlation time τk associated to the function G(k) = k and find the value
of L that makes τG minimum and discuss its dependence on the parameter λ of
the Poisson distribution.

8) Consider a 3-dimensional discrete random variable x̂ that can take values in Ω =

{−1, 1}3. In other words, the possible values are: x1 = (1, 1, 1), x2 = (1, 1,−1),
x3 = (1,−1, 1), x4 = (1,−1,−1), x5 = (−1, 1, 1), x6 = (−1, 1,−1), x7 =

(−1,−1, 1), x8 = (−1,−1,−1). Writing xi = (si
1, si

2, si
3) we assign to each

possible value xi a probability pi:

pi = C exp[K(si
1si

2 + si
2si

3 + si
3si

1)]

where K is a given number, and C the normalization constant. Write programs that
implement Metropolis et al. algorithm with (i) Metropolis et al. (ii) Glauber and
(iii) van Beijeren and Schulman choices for the acceptance probability to generate

IFISC Master in Physics of Complex Systems: Stochastic Simulations Methods —
Chap. 4 — 2013/10/22 — 19:49 — page 126

126

values of x̂ distributed according to these probabilities. Use proposal probabilities
(i) in which only one of the si variables is proposed for change (which is the only
possible proposal?) and (ii) in which the proposed value is (s�1, s�2, s�3) is randomly
chosen from the 8 possible values.

9) Given the functions M(x) = (s1 +s2 +s3)/3 and E(x) = (s1s2 +s2s3 +s3s1)/3

defined on space Ω of the previous problem, compute the linear and non-linear
correlation times of the Metropolis et al. algorithm. Use this result to compute
�M�, �M2

�, �E�, �E2
� as a function of K (take K = 0.25, 0.5, . . . , 4.0). Com-

pare with the exact results obtained computing the averages summing over the 8

possible values of the variable x̂.
10) Repeat the two previous exercises for the space Ω = {−1, 1}1000. Which is the

only proposal that gives a non-vanishing acceptance probability now?
11) Consider the Metropolis et al. method applied to the distribution (4.70). Use a

proposal g(y|x) in which all variables si, i = 1, . . . , N are proposed a new value
in the interval (si −∆, si + ∆). Determine the dependence of ∆ with the number
of variables N such that the acceptance probability is constant and close to 0.5.
Using this value compute the correlation time as a function of N . Compare its
value with the one obtained by the method in which only one variable is chosen
for updating at a given step and ∆ does not depend on N . Which method is more
efficient?

12) Use the Glauber acceptance probability (4.55) to prove that, under the assumption
of a Gaussian distribution for the proposed changes of energy ∆H, the average ac-

ceptance probability decays as h(y|x) → e−
β�∆H�

4
√

β�∆H�
, still a exponential dependence

with the average change of energy proposal ∆H.
13) Prove that K given by (4.85) is the optimal choice for the number of updates

between measurements in order to minimize the computer time.
14) For the rejection with repetition method explained in section 4.1 compute analyt-

ically the correlation function Cst(n) =
�x̂nx̂0� − �x̂n��x̂0�

σ2[x̂0]
, in the steady state,

as well as the non-linear correlation function

Cnl(n) =
�x̂n� − �x̂∞�
�x̂0� − �x̂∞�

