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14
Calculation of the correlation function of a series

Let us consider a series of (real) numbers Gi, i = 1, . . . ,M . They could be numbers
coming out from measurements in a Monte Carlo simulation or any other source. We
want to determine its normalized correlation function

⇢G(j) =
hGiGi+ji � hGi2

hG2i � hGi2 , (14.1)

with hGi = 1

M

PM
i=1

Gi, hG2i = 1

M

PM
i=1

G2

i . Note that, by definition, ⇢G(0) = 1.
We assume that the series is stationary, this means that the correlation function ⇢G(j)

defined above does not depend on i. We first make a straightforward simplification.
If we define

zi =
Gi � hGip
hG2i � hGi2

, (14.2)

it can be easily proved that the correlation function ⇢G(j) of the series Gi is equal to
that of the series zi,

⇢z(j) = hzizi+ji. (14.3)

As we have assumed that the series is stationary, we could compute this average di-
rectly including all the possible values of i. So, to compute ⇢z(1) we would include
the M � 1 contributions z
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z
2

+ z
2

z
3

+ · · ·+ zM�1

zM , to compute ⇢z(2) we would
include the M�2 contributions z

1

z
3

+z
2

z
4

+ · · ·+zM�2

zM , and so on. In general,
we have

⇢z(j) =
1

M � j

M�jX

i=1

zizi+j , j = 0, . . . ,M � 1. (14.4)

Note that there are M � j values contributing to ⇢G(j), and for j close to M the
statistical errors are large. For instance, for j = M�1, there is only one contribution
to ⇢z(j), namely z

1

zM . On top of this, when M is large, the direct calculation of
⇢z(j) using (14.4) could be slow as it takes of the order of M2 operations. We now
show that it is possible to greatly reduce the time needed to compute a correlation
function by using the discrete Fourier transform.
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As explained in appendix 18, the discrete Fourier transform x̂ = FD[x] of an
arbitrary set of numbers (x

1

, . . . , xn) is defined as1):

x̂k =

n�1X

j=0

e
2⇡i

n

jkxj+1

, k = 0, 1, . . . , n� 1, (14.5)

and the inverse relation, indicated as x = F�1

D [x̂],

xj+1

=

1

n

n�1X

k=0

e�
2⇡i

n

jkx̂k, j = 0, . . . , n� 1. (14.6)

With the help of (18.10) it is possible to prove the identity:

nX

i=1

xixi+j =

1

n

n�1X

k=0

e

� 2⇡i

n

jk|x̂k|2, (14.7)

which, given (14.4), seems to imply that F�1

D [|x̂|2], the inverse discrete Fourier trans-
form of the series (|x̂

0

|2, . . . , |x̂n�1

|2), is related in some way to the correlation func-
tion ⇢x(j) of the series x. This is true, but one has to be careful. The point is that for
the previous formula (14.7) to be exact, one has to assume periodic boundary condi-
tions, i.e. whenever xi+j appears in the left hand side of this formula with i+ j > n,
it has to be understood as xi+j�n. This property, namely xj = xj�n for j > n,
which derives directly from the extension of (14.6) to values j > n, is not present in
the original series as it runs from x

1

to xn, and xj does not even exist for j > n. Note
that in (14.4), for example, one never uses zi with i � M . With a small trick, we can
relate exactly the correlation function ⇢z(j) to an inverse discrete Fourier transform.
The trick is to introduce a new series x = (x

1

, . . . , xn) of length n = 2M , twice the
length of the original z series. The new series is defined as

xi =

(
zi, i = 1, . . . ,M,

0, i = M + 1, . . . , 2M.
(14.8)

It is a straightforward consequence of this definition that the sum needed in (14.4) for
the calculation of ⇢z(j) can be written as

M�jX

i=1

zizi+j =

nX

i=1

xixi+j , j = 0, 1, . . . ,M � 1 (14.9)

with periodic boundary conditions now assumed in the sum of the right hand side2).
Finally, using (14.4), (14.8) and the identity (14.7) with n = 2M , we get

⇢z(j) =
1

M � j

"
1

n

n�1X

k=0

e

� 2⇡i

n

jk|x̂k|2
#
, j = 0, 1, . . . ,M � 1, (14.10)

1) For the di�erence in notation with respect to appendix 18 we refer to the foonote 13.2.
2) The reader might find it useful to check by himself (14.7) and (14.9).
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showing that it is possible to obtain, after multiplication by the factor 1

M�j , the cor-
relation function ⇢z(j) from the inverse discrete Fourier series of |x̂k|2, being x̂k the
direct discrete Fourier series of xi. The big advantage of this procedure is that the use
of fast Fourier routines allows one to implement this algorithm in a time that scales as
M logM , much smaller for large M than the time of order M2 needed by the direct
algorithm.

Once we have computed ⇢G(j) we can compute the correlation time ⌧G, using
(4.23). Just a final word of warning. If you plot the resulting correlation function, it
will typically behave smoothly only for not too large values of j and it will have wild
oscillations for large j.The reason being that the larger j, the fewer values contribute
to its estimator and the error greatly increases. As a consequence, when computing
⌧G, using (4.23), do not extend the upper sum all the way to M � 1. Restrict the
sum to those values of j for which the correlation function, having decayed to a value
near zero, is still well behaved. In fact, if all you want is to have an estimate of the
correlation time ⌧G in order to determine faithfully the error of your estimator, it is
enough to know the characteristic decay time of the correlation function3).

Here comes a program listing that computes the correlation function of a given
series. Remember to read the instructions of the fast Fourier transform routines to
use to find out if you need to correct for any factors of M . In this subroutine, the
correlation function ⇢z(i) overwrites the input value xi. It returns also the mean xm
and the root-mean-square x2.

subroutine correla(x,m,xm,x2)
implicit double precision (a-h,o-z)
dimension x(0:m-1)
double complex z(0:2*m-1)

xm=sum(x)/m
x2=sqrt(sum(x**2)/m-xm*xm)
x=(x-xm)/x2
z(0:m-1)=dcmplx(x,0.0d0)
z(m:2*m-1)=dcmplx(0.0d0,0.0d0)
call fft1d(z,2*m,1)
z=dcmplx(abs(z)**2,0.0d0)
call fft1d(z,2*m,-1)
do j=0,m-1

x(j)=real(z(j))/(m-j)
enddo

end subroutine correla

3) There is another, deeper, reason not to sum all the way up to j = M � 1 to obtain the correlation time
as it can be shown that this procedure leads to ⌧

G

= �1/2 and hence a zero error in the estimator. The
reason is simple to understand, we are computing the error of an estimator using the own estimator as
the true value. In other words, we are taking formula (4.15) with I =

1

N

P
M

k=1 G
k

and hence the
error is 0.


