
Chapter 6

Numerical simulations of master
equations

6.1 The first reaction method.

Given the di�culties one encounters for the analytical treatment of master equations, it
is common to resort to numerical simulations of the underlying stochastic process. We
will expose in this chapter the basic principles of such a procedure. We first begin by
the simple example of a two-state system with constant rates. If we denote by X and
Y the possible states there will be jumps from X to Y at a rate !

1!2

and from Y to
X at a rate !

2!1

. Remember that, besides being both non-negative numbers, the rates
!

1!2

and !
2!1

need not to have any relation amongst them. The process has been
schematized in (4.1).

The stochastic process consists in a series of jumps from one of the two states to the
other. Our numerical simulation in this simple case will consist precisely in the generation
of these trajectories that jump from X to Y at the adequate times. Imagine that at the
initial time t

0

we are at state X. We now need to find the time t
1

at which the particle
will jump to Y for the first time. We have already proven in section 4.1 that this time
t
1

of the first jump follows the distribution (4.21)

f 1st

(2, t
1

|1, t
0

) = !
1!2

e

�!1!2(t1�t0). (6.1)

In other words, t
1

�t
0

follows an exponential distribution. We learnt in section ?? how to
generate values of a random variable distributed according to an exponential distribution.
Simply generate a ˆ

U(0, 1) random number u
0

uniformly distributed in the interval (0, 1)

and use t
1

� t
0

= � ln u
0

!
1!2

, or

t
1

= t
0

� ln u
0

!
1!2

. (6.2)

Now we are in state Y and want to determine the time t
2

of the next jump to state X.
The time t

2

of the first jump follows the distribution (4.22):

f 1st

(1, t
2

|2, t
1

) = !
2!1

e

�!2!1(t2�t1). (6.3)

114 Numerical simulations of master equations

Therefore, we can generate t
2

by drawing a ˆ

U(0, 1) random number u
1

from a uniform
distribution in (0, 1) and obtain

t
2

= t
1

� ln u
1

!
2!1

. (6.4)

Now we are again in state X. To find the time t
3

of the next jump we use the transition
rate !

1!2

and set

t
3

= t
2

� ln u
0

!
1!2

, (6.5)

and so on, alternating between the rates !
1!2

and !
2!1

. In this way we can simulate
a stochastic trajectory according to the rules of the rates of the process. The next
program listing can be used to generate trajectories according to this basic algorithm up
to a maximum time tmax. The program sets the initial state, 1 or 2, randomly with
probability 1/2, the call to the function i ran(2).

program rate2
implicit double precision(a-h,o-z)
tmax=50.0d0
t=0.0d0
w12=0.5d0
w21=1.0d0

i=i_ran(2)
write(66,*) t,i
do while (t < tmax)

if (i == 1) then
tn=-dlog(ran_u())/w12
in=2

else
tn=-dlog(ran_u())/w21
in=1

endif
t=t+tn
write(66,*) t,i
i=in
write(66,*) t,i

enddo

end program rate2

The program output (in file 66) is prepared such that a direct plot of this file will show
the random trajectories. In figure 6.1 we plot a sample output of this program.

We now consider the more general case that there are M possible individual states
labeled by 1, 2, . . . ,M . Imagine that at time t

0

we are at state i
0

. Now there can be
jumps to M�1 di↵erent states with rates !

i0!j

for j = 1, . . . ,M , j 6= i
0

. If !
i0!j

= 0,

6.1 The first reaction method. 115

 1

 2

 10 20 30 40 50
t

Figure 6.1: Typical trajectory of a stochastic system that jumps between 2 states using
the rates !

1!2

= 0.5, !
2!1

= 1.0.

then the corresponding jump i
0

! j is not permitted. The idea is to generate M � 1

independent ˆ

U(0, 1) random numbers uj

0

for j = 1, . . . ,M , j 6= i
0

and compute the
jumping times to every one of these states as:

t
i0!j

=

� ln uj

0

!
i0!j

, j = 1, . . . ,M, j 6= i
0

. (6.6)

t
i0!j

is the time at which the transition i
0

! j would occur if there were no other
states to which to jump to1. Which transition would actually occur first? Simple: the
one with the smallest time t

i0!j

. This is called the “first reaction method”. Let i
1

be the state with the minimum transition time: t
i0!i1 = min(t

i0!1

, t
i0!2

, · · · , t
i0!M

).
Then, at time t

1

= t
0

+ t
i0!i1 we jump from i

0

to i
1

. Now that we are at state i
1

and
to determine the state and the time of the next jump. For that, we generate M � 1

independent ˆ

U(0, 1) random numbers uj

1

for j = 1, . . . ,M , j 6= i
1

and compute the
times of possible jumps

t
i1!j

=

� ln uj

1

!
i1!j

, j = 1, . . . ,M, j 6= i
1

. (6.7)

The actual jump i
1

! i
2

is the one that occurs at the earliest of those times:

1Note that if !

i0!j

= 0, the corresponding jumping time is t

i0!j

= 1, which is another way of
saying that the jumping from i0 to that particular value of j will never occur. In the programming of
this algorithm one needs to avoid the calculation of jumping times for the transitions that are known
not to occur, otherwise annoying overflow errors will appear.

116 Numerical simulations of master equations

t
i1!i2 = min(t

i1!1

, t
i1!2

, · · · , t
i1!M

). Then, at time t
2

= t
1

+ t
i1!i2 the state jumps

from i
1

to i
2

. The process starts again at state i
2

at time t
2

.
Here comes a program listing that implements this numerical method. We have

decided to use as an example the rates !(i ! j) = |i � j|, which fulfill the necessary
condition !(i! i) = 0. The rates are now stored in the vector w(M,M).

program ratem
implicit double precision(a-h,o-z)
parameter (M=1000)
dimension w(M,M)
do i=1,M
do j=1,M
w(i,j)=abs(i-j)

enddo
enddo
tmax=10.0d0

i=i_ran(M)
t=0.0d0
write(66,*) t,i
do while (t < tmax)

tn=1.0d16
do j=1,M

if (w(i,j) > 1.0d-8) then
t1=-dlog(ran_u())/w(i,j)
if (t1 < tn) then
tn=t1
in=j

endif
endif

enddo
t=t+tn
write(66,*) t,i
i=in
write(66,*) t,i

enddo

end program ratem

In this program, in order to avoid using rates !(i ! j) which are equal to 0, the time
of the next jump is not computed if !(i ! j) < 10

�8 (a reasonable small number
which might need to be checked in other cases) and we set first a big time tn= 10

16 to
determine the minimum jumping time in the assumption that it will be smaller than this
big amount (again a reasonable assumption whose validity might need to be checked in
one particular application). A simple output of this program for M = 10 is plotted in
figure 6.2

Let us now go back to the case of M = 2 states. If we are interested in the numerical
determination of P

1

(t), the probability that the particle is in state 1 at time t 2 (t
0

, t
max

),

6.1 The first reaction method. 117

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5
t

Figure 6.2: Typical trajectory of a stochastic system that jumps between 10 states using
the rates !

i!j

= |i� j|.

we would generate a large number N of those individual trajectories and determine in
how many of them the particle is in state 1 at time t. As particles are independent, we
can as well take a global point of view. Instead of running the above programs N times,
we run a system consisting of N particles. In order to compute P

1

(t) we would count
how many particles n(t) there are in state 1 at time t and set P

1

(t) = n/N .

There are two ways in which we could simulate the simultaneous trajectories of N
particles. In the first one we determine for each one of the N particles the time of the
next jump. So, if we start at t = t

0

with all particles at state 1 (because we have chosen
the initial condition P

1

(t
0

) = 1), then we compute the times of the next jump tk
1

for

k = 1, . . . , N . Each of these times is computed as tk
1

= t
0

� log uk

0

!
1!2

, where uk

0

are a

set of N independent ˆ

U(0, 1) uniform random numbers. Next we find the minimum of
all these times t

1

= min(t1
1

, t2
1

, . . . , tN
1

), say it is tk1
1

. At this time t
1

= tk1
1

we place
particle k

1

in state 2. We now proceed by computing again the jumping times tk
2

for all

k = 1, . . . , N particles using tk
2

= t
1

� log uk

1

!
i!j

where for each particle k = 1, . . . , N we

have to set the correct rate !
1!2

or !
2!1

depending on which state this particle is at
time t

1

. Once we have determined the minimum time t
2

= min(t1
2

, . . . , tN
2

), say t
2

= tk2
2

we let particle k
2

jump from the state it is to the other. The process continues until the
time t

j

reaches the desired maximum time.

We now describe the second, more convenient, way of generating trajectories for
the N -particle system. As all we need for the calculation of P

1

(t) is the number of

118 Numerical simulations of master equations

particles n(t) in state 1 at time t, we adopt the “occupation numbers” point of view and
characterize the ensemble not by the state every particle is in, but directly by the number
n of particles in state 1 (and N � n particles in state 2). From this alternative point of
view, the variable n can take any of the N + 1 values n = 0, 1, . . . , N . So, we consider
that the whole ensemble can be in any of N + 1 states labeled by the value of n. The
situation is formally similar to the M -states case explained before (program ratem),
but now the M = N + 1 possible states are collective states of the whole system of
N particles, instead of individual state. Furthermore, the problem is simpler than the
general M -state case explained before, as the only possible transitions allowed are those
that increase (resp. decrease) in one unit the value of n, corresponding to transitions
from one particle from 2 to 1 (resp. from 1 to 2). As found in section 4.1.2, eqs.
(4.27-4.28) the rate of the transition from n to n + 1 is ⌦(n! n + 1) = (N � n)!

2!1

and the rate of the transition from n to n � 1 is ⌦(n ! n � 1) = n!
1!2

. Then,
if at time t

0

we are in a global state characterized by n particles in state 1, we have

to compute only the time t
n!n+1

= � log u1

0

⌦(n! n + 1)

of the next jump n ! n + 1

and the time t
n!n�1

= � log u2

0

⌦(n! n� 1)

of the next jump to n ! n � 1, using two

independent ˆ

U(0, 1) uniform random numbers u1

0

, u2

0

, and implement the action implied
by the minimum of these two times, t

1

= t
0

+ min(t
n!n+1

, t
n!n�1

), setting n! n + 1

or n! n� 1 accordingly. The process then repeats itself starting at time t
1

finding the
time t

2

and the state of the next jump. We now give an example of a program listing
that implements this numerical method. In this listing, we have used that if n = 0 (all
particles are in state 2) then the only possible transition is towards n = 1 and that if
n = N (all particles in state 1) the only possible transition is to n = N �1 (the number
N is indicated in the program by the variable N0 as capital and lower-case letters are be
mistaken by the compiler) . We have also chosen the initial state with a random number
of particles in state 1: the function i ran(N0+1)-1 returns a number between 0 and
N0.

program rate2b
implicit double precision(a-h,o-z)
N0=1000
tmax=100.0d0
t=0.0d0
w12=0.5d0
w21=1.0d0
n=i_ran(N0+1)-1
write(66,*) t,n

6.1 The first reaction method. 119

do while (t < tmax)
if (n == 0) then

tn=-dlog(ran_u())/(N0*w21)
in=1

elseif (n == N0) then
tn=-dlog(ran_u())/(N0*w12)
in=N0-1

else
tn1=-dlog(ran_u())/((N0-n)*w21)
tn2=-dlog(ran_u())/(n*w12)
if (tn1 < tn2) then
tn=tn1
in=n+1

else
tn=tn2
in=n-1

endif
endif
t=t+tn
write(66,*) t,n
n=in
write(66,*) t,n

enddo

end program rate2b

In figure 6.3 we plot one output of this program. There is one obvious “practical”
advantage of the simulation of the N particles running simultaneously, namely, that it
is much easier to perform the averages over the N particles. For example, it is obvious
from this figure that a steady state is reached in which P

1

(t) (given by the ratio of n(t)
to the number of particles, N = 1000) fluctuates around value equal to the theoretical

prediction
!

2!1

!
1!2

+ !
2!1

.

When the N particles are not independent, i.e when the individual transition rates
!

i!j

depend on the state of the other particles, the simultaneous running of the N
particles has another big advantage, namely, that the number of particles in each state
is easily accessible. Consider, for example, the chemical reaction discussed in section 4.3.
In that example the individual rate for a Na atom to react (to go from state 1, unbound
or free, to state 2, bounded to the molecule) depends on the number n of Cl atoms (we
take the simplifying assumption that the number n of Na atoms is equal to the number
n of Cl atoms at all times): !

1!2

[n] = k
12

V �1n. It would be very di�cult to program
this by finding the times at which individual atoms combine to form a molecule and
keeping track of how many atoms n there are bounded at a given time t. Instead, we
take the occupation numbers point of view and use the global rates given in (4.56-4.57):
⌦(n! n + 1) = (N � n)!

21

and ⌦(n! n� 1) = k
12

V �1n2. In the previous program
listing all we need is to modify the relevant lines to:

if (n == 0) then

120 Numerical simulations of master equations

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100
t

Figure 6.3: Number of particles in state 1 for an ensemble of N = 1000 particles that
can jump between states 1 and 2 with rates !

1!2

= 0.5, !
2!1

= 1.0. The horizontal
dashed line is the steady state value n

st

N

=

!2!1
!1!2+!2!1

, as found in (4.11).

6.1 The first reaction method. 121

 0.4

 0.5

 10 20 30

x(
t)

t

Figure 6.4: Fraction x(t) = n(t)/V of unbound A atoms in the chemical reaction
A + B �! �AB. Parameters: N = 10

4, k
12

= 0.5, V/N ⌘ v = 2, !
21

= 1. The initial

condition is n
0

/V = 0.5. The analytical line is the result of the mean-field theory, see
exercise 4.6.

tn=-dlog(ran_u())/(N0*w21)
in=1

elseif (n == N0) then
tn=-dlog(ran_u())/(N0**2*k12/V)
in=N0-1

else
tn1=-dlog(ran_u())/((N0-n)*w21)
tn2=-dlog(ran_u())/(n**2*k12/V)

..............

and define k12 and V somewhere at the beginning of the program. In figure 6.4 we plot
the result of this program and compare with the predictions of the mean-field theory
(see exercise 4.6).

A simple extension of this algorithm can be used in the case that an individual particle
can be in M > 2 states. All we need to do is to specify the occupation numbers for
particles in each state (n

1

, . . . , n
M

) and the possible rates (n
1

, . . . , n
M

)! (n0
1

, . . . , n0
M

).
As the individual rate to go from state i to state j is !

i!j

, the rate at which the
global transition (n

1

, . . . , n
i

, . . . , n
j

, . . . , n
M

) ! (n
1

, . . . , n
i

� 1, . . . , n
j

+ 1, . . . , n
M

)

occurs is n
i

!
i!j

as any of the n
i

particles in state i can make the jump to state j.

122 Numerical simulations of master equations

The total number of possible transition rates ⌦((n
1

, . . . , n
M

) ! (n0
1

, . . . , n0
M

)) for the
global system is M(M � 1), which can be a very large number. In practice, however,
not all transitions are permitted by the rules of the process. Instead of giving now a
specific example, we will explain first a modification that leads to a much more e�cient
programming of the numerical simulations.

6.2 The residence time algorithm.

There is a very simple but very e↵ective modification of the numerical algorithm to simu-
late a stochastic process and it associated master equation. It bears di↵erent names (res-
idence time, kinetic Monte Carlo, n-fold way or Bortz-Kalos-Lebowitz, dynamic Monte
Carlo or Gillespie algorithm, etc.) as it has been derived independently a number of
times with minor variations and emphasizing di↵erent applications in each case.

We first take the point of view of considering only one particle. It can be in any of
M states and we need to determine the state to which it will jump next and the time
of jump. Assume that, as before, the particle is in the state i

0

at time t
0

. First, one
computes the rate of escape from this state i

0

to any other state j 6= i
0

. This is
nothing but W

i0 =

P
j 6=i0

!
i0!j

. Then one computes the time interval to the next jump
t
i0!i1 using this total rate:

t
i0!i1 =

� ln u
0

W
i0

. (6.8)

Once the time of the next jump has been determined as t
1

= t
0

+ t
i0!i1 then we

have to determine where to jump, or which is the final state i
1

. Recall that !
i!j

dt
is the probability of jumping from i to j in the time interval (t, t + dt) whereas W

i

dt
is probability of jumping to any state during that same time interval. Therefore the
probability p

i0!j

, of reaching state j 6= i
0

knowing that there has been a jump is the
conditional probability

p
i0!j

=

!
i0!j

W
i0

. (6.9)

In order to determine the final state i
1

according to these probabilities, we use the general
technique explained in section ?? to generate the discrete distribution (1.18): draw a
random number v

0

uniformly distributed in the interval (0, 1) and find the smallest i
1

that satisfies
i1X

j=1

p
i0!j

> v
0

, or equivalently,
i1X

j=1

!
i0!j

> v
0

W
i0 .

All these ideas can be implemented using the following program, where we use again,
as an specific example, the rate !

i!j

= |i� j|.

program ratemg
implicit double precision(a-h,o-z)
parameter (M=10)
dimension w(M,M),wt(M)
do i=1,M

6.2 The residence time algorithm. 123

wt(i)=0.0d0
do j=1,M

w(i,j)=abs(i-j)
wt(i)=wt(i)+w(i,j)

enddo
enddo
tmax=10.0d0
t=0.0d0
i=i_ran(M)
write(66,*) t,i

do while (t < tmax)
tn=-dlog(ran_u())/wt(i)
p=0.0d0
j=0
r=ran_u()*wt(i)
do while (r > p)
j=j+1
p=p+w(i,j)
enddo
t=t+tn
write(66,*) t,i
i=j
write(66,*) t,i

enddo

end program ratemg

We store in vector wt(i) the total rate W
i

to scape from state i. The results of this
program look, as they should, similar to those displayed in figure 6.2. Again, in order
to obtain meaningful statistics to compute, for example the probability P

1

(t) of being
in state 1, we should run that program a large number N of times and average results.
Alternatively, we could the residence time algorithm to run the N independent particles
simultaneously, as we did before.

The second option is to consider the occupation numbers. This method has the
advantage that it can also be used if particles are interacting such that the rates depend
on the state of other particles. We take now the point of view that there are N (pos-
sibly interacting) particles and to consider the full set of occupation numbers variables
(n

1

, . . . , n
M

) that give the number of particles n
k

which are on each of the possible
states k = 1, . . . ,M . These variables will change (typically by a small amount) and
the rates of the transitions (n

1

, . . . , n
M

) ! (n0
1

, . . . , n0
M

) will depend on the variables
(n

1

, . . . , n
M

) themselves, although, typically, not many of these transitions will be al-
lowed. We will give details of the method by using the example of the Lotka-Volterra
prey-predator model introduced in section 4.3.

In the Lotka-Volterra model the required variables are the number n
1

of live prey
and the number n

2

of live predators. In the space (n
1

, n
2

), and according to the rules
of the model, there are three possible transitions whose rates are given in (4.74-4.76).

124 Numerical simulations of master equations

For a given state (n
1

, n
2

) we compute the total scape rate

W (n
1

, n
2

) = ⌦ ((n
1

, n
2

)! (n
1

+ 1, n
2

))

+⌦ ((n
1

, n
2

)! (n
1

, n
2

� 1))

+⌦ ((n
1

, n
2

)! (n
1

� 1, n
2

+ 1)) .
(6.10)

As discussed before, the time to the next transition will be � log(u)/W (n
1

, n
2

) being u a
ˆ

U(0, 1) random number. Once this transition time has been found, next step is to decide
which one of the three possible transitions will happen. Each one has a probability:

p
1

= ⌦ ((n
1

, n
2

)! (n
1

+ 1, n
2

)) /W, (6.11)

p
2

= ⌦ ((n
1

, n
2

)! (n
1

, n
2

� 1)) /W, (6.12)

p
3

= ⌦ ((n
1

, n
2

)! (n
1

� 1, n
2

+ 1)) /W, (6.13)

and we chose transitions 1, 2 or 3 according to these probabilities. Here comes a full
program that implements this algorithm for the Lotka-Volterra model.

program LotkaVolterra
implicit double precision(a-h,o-z)
double precision k1
tmax=100.0d0
t=0.0d0
V=1000
w0=0.5d0
k1=1.0d0
a=k1/V
w2=0.5d0
dt=0.1d0
n1=0.5d0*V
n2=0.25d0*V
write(66,*) t,dble(n1)/V,dble(n2)/V

6.2 The residence time algorithm. 125

tw=0.0d0
do while (t < tmax)

omega1=w0*n1
omega2=w2*n2
omega3=a*n1*n2
omega=omega1+omega2+omega3
tn=-dlog(ran_u())/omega
t=t+tn
r=ran_u()*omega
if (r < omega1) then

n1=n1+1
else if (r < omega1+omega2) then

n2=n2-1
else

n1=n1-1
n2=n2+1

endif
if (t-tw > dt) then

write(66,*) t,dble(n1)/V,dble(n2)/V
tw=t

endif
enddo

end program LotkaVolterra

In this particular code, the initial condition is set to n
1

(0) = 0.5V, n
2

(0) = 0.25V . Note
the presence of the variable dt which controls the minimum time between the writing
of the values of the variables in unit 66. The only reason to include this variable is
that the time between transitions tn is very small, mainly for large values of V , and
hence we end up with a lot of data that has too much detail. It is enough for most
applications to have data spaced a larger time dt. The results of this program can be
seen in figure 6.5 for increasing values of the volume V . Note how both variables giving
the concentration of prey x

1

(t) = n
1

(t)/V and predator x
2

(t) = n
2

(t)/V oscillate, but
there is a delay between them. This is because when the density of prey is very large,
the predators find a lot of food and can increase their o↵spring by eating the prey. This
decreases the density of prey and induces that some time later, the predator will find
less food and will start decreasing in number. Then, as there are less predators, the prey
can increase again. These oscillations in the numbers of prey-predators are well known
in ecological populations.

The results of the simulation are compared against the result of the mean-field theory,
Eqs. (4.107)-(4.108). These equations can not be solved explicitly in terms of simple
functions to give x

1

(t) and x
2

(t), but it is not so di�cult to prove that there is a constant
of motion, see exercise 47, which allows one to obtain the closed curve in the (x

1

, x
2

)

plane, as depicted in the right panels of figure 6.5. For large volume V the mean-field
solution represents well the simulation results, but as V decreases the trajectories, while
still oscillatory, depart more and more from the mean-field solution.

126 Numerical simulations of master equations

t!

x1, x2!
!

V=1000!

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100
x1!

x2!
V=1000!

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t!

x1, x2!
!

V=10000!

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100
x1!

x2!
V=10000!

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t!

x1, x2!
!

V=100000!

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100
x1!

x2!
V=100000!

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 6.5: Trajectories obtained from the application of the residence time algorithm to
the Lotka-Volterra model. In the left panels, we plot the prey variable x

1

(t), dashed line
and the predator variable x

2

(t), solid line. In the right panels we plot the trajectories
in the (x

1

, x
2

) phase space, indicating by a solid thick line the result of the mean-field
theory. Top row V = 10

3, middle row V = 10

4, bottom V = 10

5. Parameters:
!

0

= 0.5, !
1

= 0.5, k
1

= 1, initial condition x
0

= 0.5, y
0

= 0.25.

6.2 The residence time algorithm. 127

6.2.1 SIR

A simple model for the spread of an epidemics is the so-called SIR model: S (for sus-
ceptible), I (for infectious) and R (for recovered). In its simplest form a population of
N individuals is splitted into these three groups: susceptible people can get the disease,
infectious people have the disease and can hence pass the infection to susceptible people.
Infected people cure and then they become immune to antoher infection. In this simple
version, there are no death or birth of individuals and their total number remains con-
stant. If n

S

, n
I

, n
R

are, respectively, the number of susceptible, infected and recovered
individuals, they verify n

S

+ n
I

+ n
R

= N the basic ingredients of the model are:
1) A susceptible gets infected after being in contact with an infected. The contact of
a susceptible with an infected will occur with probability proportional to n

I

/⌦, being ⌦

a parameter that determines the spatial extension of the population. If we call � the
rate at which a given susceptible people gets infected after a contact with an infected
people, the overall rate at which one susceptible people will get infected is �n

I

/⌦. The
rate at which any susceptible will get infected is then �n

S

n
I

/⌦.
2) An infected individual gets cured and becomes recovered. This happens, for an
individual infected, at rate ⌫.

In step (1), when a susceptible gets infected the numbers vary as: n
S

! n
S

�1, n
I

!
n

I

+ 1. In step (2), recovery of an infected, the numbers vary as: n
I

! n
I

� 1, n
R

!
n

R

+1. It is possible (and convenient) to introduce more steps in the process, such as the
death (possibly with di↵erent rates) of susceptible, infected and recovered individuals;
the birth of susceptible individuals and the entrance of infected individuals from another
town. However, for the sake of clarity, we only consider the two previous basic ingredients.

Now it is easy what to do: at the population level, the two jumps are (1) n
S

!
n

S

� 1, n
I

! n
I

+ 1 with rate �n
S

n
I

/⌦ and (2) n
I

! n
I

� 1, n
R

! n
R

+ 1 with
rate ⌫n

I

. The reader might find interesting to write down the master equation of the
model and to derive the corresponding mean-field equations for the densities s = n

S

/⌦,
i = n

I

/⌦, r = n
R

/⌦:

ds

dt
= ��si (6.14)

di

dt
= �si� ⌫i (6.15)

dr

dt
= ⌫i (6.16)

The following program implements Gillespie’s algorithm for this model:

c /home/raul/COHERENCE/epidemics.f
implicit double precision(a-h,o-z)
doube precision nu
N=10000
tmax=10000.0d0
t=0.0d0
nu=0.5d0

128 Numerical simulations of master equations

beta=1.0d0
Omega=100.0d0
call dran_ini(12345)
ni=i_dran(N+1)-1
ns=N-ni
nr=0
write(66,*) t,ns,ni,nr
do while (t.lt.tmax)

if (ni.eq.0) stop
w1=beta*ns*ni/Omega
w2=nu*ni
w=w1+w2
tn=-dlog(dran_u())/w
t=t+tn
write(66,*) t,ns,ni,nr
if (dran_u().lt.w1/w) then

ns=ns-1
ni=ni+1

else
ni=ni-1
nr=nr+1

endif
write(66,*) t,ns,ni,nr

enddo
end

