
Chapter 5

Master equations II.

5.1 More on master equations

5.1.1 Birth and death processes

An important class of master equations respond to the birth and death scheme. Let us
assume that “particles” of a system can be in the state X or Y . For instance, we could
think of a person who is either sane or ill. The rates of going from X to Y is !

1

while
the rate from Y to X is !

2

. Recall that both rates !
1

and !
2

are independent of each
other. The process is indicated schematically as:

X
!1

�!
 �
!2

Y (5.1)

Let n
1

be the number of particles in the state X while n
2

is the number of particles
in the state 2. The total number of particles is N = n

1

+ n
2

, constant. We ask for the
probability P (n; t) of having n particles in state X (and, consequently, N � n in state
Y ) at time t. The equation satisfied by P (n; t), the master equation, can be obtained
by considering all transitions that can occur during the time interval (t, t+�t) and that
lead that at time t + �t there are n particles in X. They are:
(1) There were n + 1 particles at X at time t and one of them jumped to Y during the
time interval (t, t + �t). Since each one of the n + 1 particles can make the transition
independently of the others with a probability P (n; t + �t|n + 1; t) = !

1

�t + O(�t)2,
the total probability that any particle jumps is (n + 1)!

1

�t. We exclude the possibility
that two (or more particles) made the transition X ! Y since this is of order (�t)2 or
larger.
(2) There were n � 1 particles at X at time t and one of the N � n + 1 particles at
Y made a jump to X. This occurs with probability P (n; t + �t|n � 1; t) = (N � n +

1)⌦

2

�t + O(�t)2, again neglecting higher order terms.
(3) There were n particles at X at time t and no particle made a jump from X to
Y o from Y to X. The probability that this happened is 1 � P (n; t + �t|n; t), being
P (n; t+�t|n; t) = n!

1

�t�(N�n)!
2

�t+O(�t)2, the probability of the complementary
event (a particle jumped from X to Y or a particle jumped from Y to X) happened.
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No other possiblities can occur, according to the rules of the process. Putting all bits
together we get:

P (n; t + �t) =

X

k=�1,0,1

P (n + k; t)P (n; t + �t|n; t) (5.2)

= P (n; t)[1� n!
1

�t� (N � n)!
2

�t] + P (n + 1; t)(N � n + 1)⌦

2

�t

+P (n� 1; t)(n + 1)!
1

�t + O(�t)2 (5.3)

Arranging conveniently and taking the limit �t ! 0 we arrive at the desired master
equation:

@P (n; t)

@t
= !

1

(n+1)P (n+1; t)+!
2

(N�n+1)P (n�1; t)�[!
1

n+!
2

(N�n)]P (n; t)

(5.4)

or generalizing the definition of the step operator to Ek

[f(n)] = f(n + k):

@P (n; t)

@t
= (E � 1)[!

1

nP (n; t)] + (E�1 � 1)[!
2

(N � n)P (n; t)] (5.5)

Next, we need to solve this master equation. We use the generating function G(s, t),
defined by (4.77). It is a matter of simple algebra to obtain:

@G(s, t)

@t
= (1� s)


(!

1

+ !
2

s)
@G(s, t)

@s
� !

2

NG(s, t)

�
. (5.6)

The solution to this di↵erential equation with the initial condition G(s, t = 0) = G
0

(s),
can be found by the method of the characteristics:

G(s, t) =


!

1

+ !
2

s + !
2

e�(!1+!2)t

(1� s)

!
1

+ !
2

�
N

G
0

✓
!

1

+ !
2

s� !
1

e�(!1+!2)t

(1� s)

!
1

+ !
2

s + !
2

e�(!1+!2)t

(1� s)

◆

(5.7)

with ! ⌘ !
1

+ !
2

. If initially there are no “life” particles, it is P (n, t = 0) = �
n,0

and
G

0

(s) = 1 which leads to

G(s, t) =


!

1

+ !
2

s + !
2

e�!t

(1� s)

!

�
N

(5.8)

a binomial distribution:

P (n, t) =

✓
N

n

◆
p(t)n

(1� p(t))N�n, with p(t) =

!
2

!

�
1� e�!t

�
. (5.9)

If, on the other hand, at t = 0 all N particles are alive, then p(n, t = 0) = �
n,N

,
G

0

(s) = sN and:

G(s, t) =


!

1

+ !
2

s� !
1

e�!t

(1� s)

k

�
N

(5.10)
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again, a binomial distribution, but with p(t) =

!2+!1e

�!t

!

. Other initial distributions do
not yield in general a binomial form for p(n, t). Note, however, that for t !1 it is

G
st

(s) = lim

t!1
G(s, t) =


!

1

+ !
2

s

!

�
N

(5.11)

which is the generating function of a binomial distribution with p
st

=

!2
!

.
The evolution of the average number of particles and their variance can be found

from Eq.(??) and Eq.(??), with the result:

hn(t)i = N
!

2

!

�
1� e

�!t

�
+ hn(0)ie�!t, (5.12)

and:

�2

[n(t)] = �2

[n(0)]e

�2!t

+(1� e

�!t

)


hn(0)i!1

� !
2

!
e

�!t

+

!
2

!2

N
�
!

2

e

�!t

+ !
1

��
.

(5.13)

5.1.2 Birth and death from a reservoir

This is similar to the previous case, but now the particles are born out of a “reservoir”. A
reservoir is an unlimited source of particles. The reservoir is so large that the rate !

A

at
which X particles are born out of the reservoir is suposed to be constant, independent on
how many particles have been born already. Each X particle can “die” into the reservoir
A at a rate !

1

.

¯A
!A

�!
 �
!1

X (5.14)

(following Gillespie, the bar on top of the A means that its population is assumed to
remain unchanged). If the (very large) number of particles of the reservoir is n

A

we
can think that the rate !

A

is proportional to the density nA
⌦

, being ⌦ a measure of the
volume of the reservoir, rather that to the number n

A

. We write then, !
A

= !
2

n
A

/⌦.
The problem is then formally equivalent to the previously considered birth and death
with a number of particles N ! 1 and a vanishing rate !

2

such that !
A

= !
2

N is
finite. Its solution can be obtained using that limit, but we will start from scratch.

We want to find the master equation for the probability P (n; t) that there are n
particles left in X at time t. We have now three elementary contributions to P (n; t+dt)
according to what happened in the time interval (t, t+dt): (i) X had n particles at time
t and none was lost to the bath and none was obtained from the bath; (ii) X had n + 1

particles in time t and one particle was lost to the bath; (iii) X had n� 1 particles and
one was transferred from the bath. Combining the probabilities of these four events we
get the evolution equation:

P (n; t + dt) = P (n; t)[1� n!
1

dt][1� !
A

dt] case (i)

+ P (n + 1; t)!
1

(n + 1)dt case (ii)

+ P (n� 1; t)!
A

dt + o(dt)2

case (iii)

(5.15)
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or, taking the limit dt ! 0:

dP (n; t)

dt
= �(!

1

n + !
A

)P (n; t) + !
1

(n + 1)P (n + 1; t) + !
A

P (n� 1; t). (5.16)

Again, this can be written using the step operator E as:

dP (n; t)

dt
= (E � 1)[!

1

nP (n; t)] + (E�1 � 1)[!
A

P (n; t)]. (5.17)

This equation is solved again by introducing the generating function G(s, t). The
resulting partial di↵erential equation is:

@G

@t
= !

A

(s� 1)G� !
1

(s� 1)

@G

@s
. (5.18)

The method of Lagrange gives us the general solution satisfying the initial condition
G(s, t = 0) = G

0

(s):

G(s, t) = e

!A
!1

(s�1)(1�e

�!1t
)

G
0

(1 + (s� 1)e�!1t

) (5.19)

If initally, there are no X particles, then P (n, t = 0) = �
n

, G
0

(s) = 1 and the corre-
sponding solution is:

G(s, t) = e

�(t)(s�1), �(t) ⌘ !
A

!
1

(1� e�!1t

), (5.20)

which corresponds to a Poisson distribution P (n, t) = e

��(t)

�(t)

n

n!

. This has first moment
and variance:

hn(t)i = �(t),
�2

[n(t)] = �(t).
(5.21)

Whatever the initial condition, in the stationary limit t !1 we have from Eq.(5.19):

G
st

(s) = G(s, t !1) = e

!A
!1

(s�1) (5.22)

A Poisson distribution of parameter � =

!A
!1

.

5.1.3 Reproduction and death

Particles reproduce at a rate ! and die at a rate �. The schematic reactions are:

X !

�! 2X

X �

�! ;
(5.23)

The reproduction rate is C�1

(n) = !n and the annihilation rate is C
1

(n) = �n. We
write down directly the equation for the generating function G(s, t) =

P1
n=0

P (n, t)sn:

@G

@t
= (s�1 � 1)�s

@G

@s
+ (s� 1)!s

@G

@s
= (1� s)(� � !s)

@G

@s
(5.24)
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If � 6= ! the solution of this partial di↵erential equation with the initial condition
G(s, t = 0) = G

0

(s) is:

G(s, t) = G
0

✓
� � !s + �(s� 1)e��t

� � !s + !(s� 1)e��t

◆
, (5.25)

with � = ��!. The mean value and the variance can be obtained from the derivatives
of G:

hn(t)i = hn(0)ie��t (5.26)

and

�[n(t)]2 = �[n(0)]

2

e

�2�t

+ hn(0)i� + !

� � !
e

��t

(1� e

��t

). (5.27)

If � > !, the mean value and the fluctuations decay to 0 indicating that all particles
eventually disappear. If � < !, both increase exponentially. The case � = ! can be
treated as a limiting case, and it yields:

hn(t)i = hn(0)i (5.28)

and

�[n(t)]2 = �[n(0)]

2

+ hn(0)i(� + !)t. (5.29)

It is interesting to solve the case � = ! directly. The di↵erential equation for G(s, t)
has the solution:

G(s, t) = G
0

✓
1 + (�t� 1)(1� s)

1 + �t(1� s)

◆
(5.30)

from where hn(t)i and �[n(t)]2 follow readily as before. If we take G
0

(s) = sN , cor-
responding to a situation in which there are exactly N particles at time t = 0, it is
possible to expand this function in power series of s to find the time evolution of the
probabilities:

P
N

(0, t) =

b(t)N

[1 + b(t)]N
, (5.31)

P
N

(n, t) =

b(t)n�N

[1 + b(t)]N+n

N�1X

`=0

✓
N

`

◆✓
n� 1

N � `� 1

◆
b(t)2`, n � 1, (5.32)

being b(t) = �t. This shows an interesting behavior: as lim

t!1 P
N

(0, t) = 1 it means
that eventually all particles disappear, but as the variance increases linearly �[n(t)]2 =

2N�t, it means that there is a large tail in the distribution of P
N

(n, t). From

P
N

(0, t)� P
N

(1, t) =

b(t)N�1

[1 + b(t)]N+1

(b(t)2

+ b(t)�N) (5.33)
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we derive that the collapse time t
c

at which the probability at n = 0 begins to overcome
the one at n = 1 is the solution of b(t

c

)

2

+ b(t
c

) = N or t
c

⇠ ��1N1/2 for large N .
The probabilities can be written in the alternative form:

P
N

(n, t) =

8
>>>><

>>>>:

b(t)n�N

[1 + b(t)]n+N

✓
n� 1

N � 1

◆
2

F
1

(�N, 1�N ; n�N + 1; b(t)2

), if n � N,

b(t)N�n

[1 + b(t)]n+N

✓
N

n

◆
2

F
1

(�n, 1� n; N � n + 1; b(t)2

), if n  N.

(5.34)

It is very easy to add immigration to this process, i.e. to consider:

X !

�! 2X

X �

�! ;

; a

�! X

(5.35)

The creation rate is now C�1

(n) = !n + a and the generating function satisfies the
equation:

@G

@t
= (s�1�1)�s

@G

@s
+(s�1)(!s

@G

@s
+aG) = (1�s)


(� � !s)

@G

@s
� aG

�
(5.36)

The solution is:

G(s, t) =


� � s! + !(s� 1)e

��t

� � !

��a/!

G
0


� � s! + �(s� 1)e

��t

� � s! + !(s� 1)e

��t

�
(5.37)

The mean value:

hn(t)i = hn(0)ie��t

+

a

�

(1� e

��t

). (5.38)

If � > 0 there is a limit distribution:

G
st

(s) =


� � s!

� � !

��a/!

=

✓
1� !

�

◆
a/!

✓
1� !

�
s

◆�a/!

(5.39)

from where:

P
st

(n) =

✓
1� !

�

◆
a/!

�

�
a

!

+ n
�

�

�
a

!

�
n!

✓
!

�

◆
n

(5.40)

a negative-binomial distribution. The variance is �
st

[n]

2

=

a�

(� � !)

2

. For � = ! this

distribution is not normalizable. In fact, in this case, the population grows without limit
as hn(t)i = hn(0)i+ at.
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5.1.4 The autocatalitic reaction

The process represents the birth of a particle from a reservoir mediated by the presence
of another particle. Schematically:

¯A + X
!2

�!
 �
!1

2X (5.41)

The rate at which one particle reproduces when in contact with the reservoir is !
2

.
However, the destruction of one particle requires that it finds another particle. If there
are n particles, the rate at which one particle then dies is !

2

(n�1) since it can meet any
of the other n� 1 particles. Consequently, the rate at which n particles become n + 1

is !
1

n since any particle can interact with the reservoir. The rate at which n particles
become n� 1 is !

1

n(n� 1). We can now reason as we did in the previous examples to
find the master equation for the probability of having n particles at time t:

dP (n; t)

dt
= (E � 1)[!

1

nP (n; t)] + (E�1 � 1)[!
2

n(n� 1)P (n; t)]. (5.42)

The generating function satisfies the di↵erential equation:

@G

@t
= s(1� s)

@

@s


!

2

@G

@s
� !

1

G

�
. (5.43)

which should be solved with the initial condition G(s, t = 0) = G
0

(s), but I am unable

to find this general solution. The stationary solution can be found by setting
@G

@t
= 0.

This yields: G
st

(s) = c
1

e

�s

+ c
2

with � =

!1
!2

and c
1

, c
2

integration constants. To find
them we use the general relation G(s = 1, t) = 1 and, in this case, we note that the
probability that there are n = 0 particles is exactly equal to 0, as particles meet in pairs
but only one gets annihilated. This means that G

st

(0) = P
st

(0) = 0. Implementing
these two conditions we find:

G
st

(s) = 1 +

e

�(s�1) � 1

1� e

��

=

1

e

� � 1

1X

n=1

�n

n!

sn, (5.44)

which implies that

P
st

(n) =

1

e

� � 1

�n

n!

, n � 1, (5.45)

almost a Poisson distribution.

5.1.5 Gene transcription

A modification of the above death and birth process has been proposed as a very simple
and crude model for gene transcription. The model assumes that a gene A (a portion
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of DNA) is copied into a messenger-RNA (mRNA) at a rate !
T

. The mRNA then
degradates at a rate �. The schematic reactions are:

A !T

�! mRNA
mRNA �

�! ; (5.46)

The master equation describing this process of creation and degradation of mRNA is:

@P (n; t)

@t
= !

T

P (n� 1; t)� !
T

P (n; t) + �(n + 1)P (n + 1; t)� �nP (n; t) (5.47)

This equation can be solved using the generating function technique to find that in the
steady state the probability of finding n mRNA’s is a Poisson distribution of parameter
!

T

/�. Hence, the average number of mRNA’s molecules is hni = !
T

/�. Typically, a
gen of about 1500 base pairs will take 60s for transcription. That gives us an idea of
the order of magnitude of !

T

⇡ 1/60s. The degradation rate is of the order of 4 times
smaller, � ⇡ 1/240s. Hence the average number of mRNA’s transcribed by a particular
gene is of the order of hni ⇡ 4. This is correct experimentally, but the model has a
problem: the variability is too high. This is because the fluctuations in the Poisson
distributions, as measured by the root mean square � =

p
hni ⇡ 2, which is a variability

of the 50% in the number of mRNA molecules. This is too high.

We might want to include some other e↵ects present in gene expression. We know
that mRNA is translated into proteins inside the ribosomes. A codon is a sequence of
three nucleotides (Adenin, Thymin, Cytosin or Guanin) and each codon is translated
into one of the possible 20 aminoacids (this is the genetic code). This translation is
mediated by 20 di↵erent tRNA’s. Each tRNA couples to the right codon to generate the
aminoacid. The sequence of aminoacids Hence we have the following process1: genes
create mRNA molecules at a rate !

r

. An mRNA molecule can either degradate at a rate
� of produce a protein at a rate !

p

. The protein finally degradates at a rate �.

If we introduce the probability P (r, n; t) of having r mRNA’s, n proteins at time t,
we can write the master equation of the standard dogma as:

@P (r, n; t)

@t
= !

r

P (r � 1, n; t)� !
r

P (r, n; t) transcription

+ !
p

rP (r, n� 1; t)� !
p

rP (r, n; t) translation

+ �
r

(r + 1)P (r + 1, n; t)� �
r

rP (r, n; t) degradation of mRNA

+ �
p

(n + 1)P (r, n + 1; t)� �
p

nP (r, n; t) degradation of protein

(5.48)

We can use now the generating function technique to compute the mean values and the

1This whole process is known as the standard dogma of molecular biology.
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fluctuations in the steady state. The result is

hri =

!
r

�
r

(5.49)

�2

[r] = (5.50)

hni =

!
r

!
p

�
r

�
p

(5.51)

�2

[n]

hni = 1 +

!
p

�
r

+ �
p

(5.52)

The last equation shows that in this model the distribution of proteins is super-Poissonian,
since the fluctuations are larger that in the Poisson distribution. This has been named as
noise amplification. The situation is then even worse that it was in the previous model,
as far as the magnitude of the variability is concerned. It is believed that the number of
proteins is regulated by a feedback mechanism between di↵erent genes. A gene B can
regulate the production of gene A by producing proteins that bind to the promotors of
gene A.

A recent modification of this model [A. Oudenaidon, PNAS 98, 8614 (2001)], in-
cludes the presence on inhibitory circuits in gene expression. Basically it amounts to
replacing !

r

by !
r

(1 � ✏n) with ✏ a small number (a more realistic approach could be
to include some non-linear saturation terms). One can now solve the master equation
and after a lengthy calculation find that the average number of proteins decreases to

hni =

!r
�r

⇣
1� ✏!r

�r

⌘
. The variance is then reduced to:

�2

[n]

hni = 1 +

!
p

�
r

+ �
p

� ✏
!

r

!
p

�
r

�
p

(5.53)

5.1.6 The prey-predator Lotka-Volterra model

Rate and master equations are commonly used in other fields, such as population dy-
namics and the kinetics of chemical reactions (including those occuring in living beings).
However, some sort of approximation is usually needed to derive them.

Let us start with the Lotka-Volterra model. We consider an animal species X (the
prey, think on rabbits) which reproduces by eating grass, A. The schematic reaction is
as follows:

¯A + X ! 2X (5.54)

with some rate !
0

. We’ll use the notation !
A

= !
0

n
A

. At the same time, the species
Y (the predator, think on foxes) reproduces by eating species X. Again schematically:

X + Y ! 2Y (5.55)

with a rate !
1

. Finally, the species Y can die of natural causes at a rate !
2

:

Y ! ; (5.56)
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Of course, this is a very simplified model of population dynamics, but let us analyze it
in some detail.

We denote by P (n
1

, n
2

; t) the probability that there are n
1

animals of species X and
n

2

animals of species Y at time t. The master equation can be obtained by enumerating
the elementary processes occuring in the time interval (t, t + dt) that might contribute
to P (n

1

, n
2

; t + dt) namely:
(i) The population was (n

1

, n
2

) at time t and no rabbit reproduced and no rabbit was
eaten and no fox died.
(ii) The population was (n

1

� 1, n
2

) at time t and a rabbit reproduced.
(iii) The population was (n

1

, n
2

+ 1) at time t and a fox died.
(iv) The population was (n

1

+1, n
2

�1) at time t and a fox ate a rabbit and reproduced.

The contributions to the probability are, respectively:

P (n
1

, n
2

; t + dt) = P (n
1

, n
2

; t)[1� !
A

n
1

dt][1� !
1

n
1

n
2

dt][1� !
2

n
2

dt] case (i)

+ P (n
1

� 1, n
2

; t)!
A

(n
1

� 1)dt case (ii)

+ P (n
1

, n
2

+ 1; t)!
2

(n
2

+ 1)dt case (iii)

+ P (n
1

+ 1, n
2

� 1; t)!
1

(n
1

+ 1)(n
2

� 1)dt case (iv)

(5.57)

Taking the limit dt ! 0 we obtain the desired master equation:

@P (n
1

, n
2

; t)

@t
= �(!

A

n
1

+ !
1

n
1

n
2

+ !
2

n
2

)P (n
1

, n
2

; t) + !
A

(n
1

� 1)P (n
1

� 1, n
2

; t)

+ !
2

(n
2

+ 1)P (n
1

, n
2

+ 1; t) + !
1

(n
1

+ 1)(n
2

� 1)P (n
1

+ 1, n
2

� 1; t)

(5.58)

In deriving this equation we have made a very strong assumption: that all foxes eat
all rabbits with the same rate. Hence the term !

1

n
1

n
2

which is directly proportional
to the number of pairs of rabbits and foxes. However, this is unlikely to be true in a
real situation. Some rabbits will be closer to some foxes and those pairs will have an
enhanced probability of leading to the loss of a rabbit and the birth of a fox. This is
a homogeneity assumption in the sense that the spatial distribution of the animals is
completely neglected2 in which. It might be close to true in a case in which there is a
fast movement, migration, of animals from a place to another, but in general it has to be
seen as an unjustified approximation. In any event, it is not reasonable to assume that a
prey can be eaten with equal probability by all possible predators, so the corresponding
term is proportional to !

1

n
1

n
2

. It is more likely that this terms is proportional to the
local density of predators, n

2

/⌦, being ⌦ a measure of the volume of the system where
prey and predator live. Hence, we correct this term by writing it as !

1

n
1

n
2

/⌦. Now !
1

is the rate per unit volume and has units of volume/time. Similarly the corresponding
rate for the eating of grass by the prey is proportional to tle local concentration of grass,

2It can also be considered as a kind of mean field approach, since spatial inhomegeneities are
not considered. However, we will using shortly the name mean-field to denote a situation in which
correlations between the populations of prey and predators are neglected.
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not to the total amount of grass, ans we write the corresponding term as !
A

n
A

/⌦, or
!

A

c
A

being c
A

the concentration of grass. We will use the notation !̄
1

= !
1

/⌦ and
and !̄

A

= !
A

/⌦. We will see that only with this rescaling is possible to recover the
determistic equations in the limit of ⌦ large.

One might try to solve the master equation by introducing the generating function:

G(s
1

, s
2

, t) =

1X

n1=�1

1X

n2=�1
sn1
1

sn2
2

P (n
1

, n
2

; t) (5.59)

5.2 General results

The most general master equation appears to be of the form:

@P (n, t)

@t
=

X

k

(Ek � 1) [C
k

(n)P (n, t)] , (5.60)

begin C
k

(n) some coe�cients and E the linear step operator such that Ek

[f(n)] ⌘
f(n + k) and k runs over the integer numbers. The k-th term of this sum corresponds
to the process in which �k particles are created (hence destroyed if k > 0) at a rate C

k

.
It is possible to obtain the general form of the equation for the generating function

G(s, t) =

P
n

snP (n; t), starting from:

@G

@t
=

X

k

(s�k � 1)

X

n

snC
k

(n)P (n, t). (5.61)

If we now assume the Taylor expansion C
k

(n) =

P
a

Ca

k

na and use that sn+a

=�
s @

@s

�
a

sn, we arrive at:

@G

@t
=

X

k

(s�k � 1)C
k

✓
s

@

@s

◆
G(s, t). (5.62)

From (5.61) we get the (exact) equations for these first two moments, as:

dhni
dt

= �
X

k

hkC
k

(n)i , dhn2i
dt

=

X

k

hk(k � 2n)C
k

(n)i . (5.63)

5.3 The mean-field theory

The mean-field theory is interested in the evolution of the mean values, neglecting
fluctuations. In some cases, it is possible to obtain exact equations for the evolution of
the mean values, but in most cases the evolution equations will necessarily involve some
sort of approximation. Let us begin by the radiactive substance. Let us call X(t) the
average value of the number of radiactive atoms remaining:

X(t) =

X

n

nP (n; t) (5.64)
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We know that X(t) = X(0)e

�!t, but we want to obtain directly from the master
equation a di↵erential equation for X(t). Taking the derivative of the previous equation
and substituting Eq.(??):

dX(t)

dt
=

X

n

n
@P (n; t)

@t
=

X

n

n [�!nP (n; t) + !(n + 1)P (n + 1; t)] (5.65)

we now make changes of variables n + 1 ! n in the second term of the sum to obtain:

dX(t)

dt
= �!

X

n

nP (n; t) (5.66)

or

dX(t)

dt
= �!X(t) (5.67)

the desired mean-field equation, exact in this case.
If we do the same for the birth and death process, we obtain again an exact equation

for the mean value:

dX(t)

dt
= �!

1

X(t) + !
A

(5.68)

whose solution is

X(t) = X(0)e

�!1t

+

!
A

!
1

�
1� e

�!1t

�
(5.69)

in agreement with the previous treatment.
Example which is not linear.
We turn now to the pre-predator Lotka-Volterra model. We need to compute two

averages X(t) = hn
1

(t)i and Y (t) = hn
2

(t)i. After some careful calculation one obtains:

dX(t)

dt
= !̄

A

X(t)� !̄
1

hn
1

(t)n
2

(t)i
dY (t)

dt
= !̄

1

hn
1

(t)n
2

(t)i � !
2

Y (t)
(5.70)

And the equations are not closed. This is typical of non-linear problems. We could now
compute the evolution of hn

1

(t)n
2

(t)i but then it would be coupled to higher and higher
order moments, a complete mess! Mean-field approach assumes that the populations
are independent and hence hn

1

(t)n
2

(t)i = hn
1

(t)ihn
2

(t)i = X(t)Y (t). This is simply
not true, but ...

dX(t)

dt
= !̄

A

X(t)� !̄
1

X(t)Y (t)

dY (t)

dt
= !̄

1

X(t)Y (t)� !
2

Y (t)
(5.71)
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Now we can derive the evolution equation for the density of species x(t) =

X(t)

⌦

,

y(t) =

Y (t)

⌦

. With the above definitions we get:

dx(t)

dt
= !

A

c
A

x(t)� !
1

x(t)y(t)

dy(t)

dt
= !

1

y(t)y(t)� !
2

y(t)

(5.72)

being c
A

= n
A

/⌦ the concentration of food. Now all the parameters in the equations
are intensive. These are the celebrated Lotka-Volterra equations.

5.3.1 The enzimatic reaction

We now look at a very simple enzymatic reaction, where one substrate molecule S binds
to the enzyme E which then decays into one product P plus an uncombined enzyme,
one might write

S + E �!
 �ES �! � P + E . (5.73)

In 1913 the two scientists Maud L. Menten (1879-1960) and Leonor Michaelis (1875-
1949) published a famous work on the function of invertase (or saccharase). Invertase is
an enzyme, found for example in yeast, which catalyses the breakdown of sucrose. What
Menten and Michaelis postulated and reasoned was the following: the reaction starts
with the relatively fast combination of the complex

S + E
!1

�!
 �
!�1

ES (5.74)

and is followed by a rather slow decay into the product and the enzyme

ES
!2

�!
 �
!�2

P + E . (5.75)

By assuming a high energy barrier for the combination of a product with an enzyme
the backwards rate !�2

can be neglected. In this way one can write down a set of
di↵erential equations for the dynamical variables s(t), e(t), c(t) and p(t), resembling
substrate, enzyme, complex and product concentration respectively:

ṡ(t) = !�1

c(t)� !
1

s(t)e(t) (5.76)

ė(t) = (!�1

+ !
2

)c(t)� !
1

s(t)e(t) (5.77)

ċ(t) = �(!�1

+ !
2

)c(t) + !
1

s(t)e(t) (5.78)

ṗ(t) = !
2

c(t) (5.79)

After a short time of rapid complex building the rates of complex formation and
breakdown will be in a steady state of flow, leading to a constant concentration c(t)
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meaning ċ(t) = 0. The sum of bound and unbound enzyme molecules is constant
c(t) + e(t) = e

0

and one can eliminate e(t) in (5.79). The steady state concentration
of complexes is

c(t) =

e
0

s(t)

s(t) +

!�1+!2

!1

⌘ e
0

s(t)

s(t) + K
M

(5.80)

and K
M

is called the Michaelis-Menten constant. When this equation is substituted into
the dynamics of the product one finds:

ṗ(t) =

!
2

e
0

s(t)

s(t) + K
M

⌘ V
max

s(t)

s(t) + K
M

, (5.81)

which is a form that can easily be compared with an experiment. For large substrate
concentrations the production velocity saturates at V

max

whereas low substrate con-
centrations lead to velocities of V

max

s/K
M

. The constants K
M

and V
max

have been
determined for many enzymes.

5.4 The ⌦ expansion of the master equation

The exact solution of the master equation for the probabilities P (n; t) is very di�cult in
the vast majority of cases. If we are just interested in the evolution of the mean value
hn(t)i we can use the mean-field approach. Unfortunately, this does not give us neither
the standard deviation �[n(t)] of the process, neither the evolution of the probabilities
P (n; t). By considering that n is a continuous variable we obtained a way of reducing the
(infinite) set of di↵erential equations (master equation) to a partial di↵erential equation
(Fokker-Planck) equation. However, the way we derived the Fokker-Planck equation was
very unsatisfactory as it was based on an uncontrolled Taylor expansion cut o↵ at second
order without much justification. In this section we present a method developed by van
Kampen which uses the large parameter ⌦ of the problem to derive a systematic series
expansion in powers of ⌦. As a general exposition is quite complicated, we develop the
formalism for a specific example and let the reader to refer to the book by van Kampen
for a more systematic exposition of the theory including problems with more than one
variable.

We consider then, as an example, the autocatalytic reaction:

A k

�! X,

X + X k

0

�! B.

(5.82)

The number of A is considered to be constant (reservoir) and equal to n
A

= �
A

⌦, being
⌦ a measure of the (macroscopic) size of the reservoir. If n is the number of X’s, the
reaction rates are, in the notation of the previous chapters,

⌦(n ! n + 1) = kn
A

= k�
A

⌦, ⌦(n ! n� 2) =

k0

⌦

n(n� 1). (5.83)
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The master equation is then

@P (n; t)

@t
= k�

A

⌦(E�1 � 1)P (n; t) +

k0

⌦

(E2 � 1)[n(n� 1)P (n; t)]. (5.84)

If we record the variable n as a function of time it will oscillate around a well defined
average value, say �(t). The basic idea of van Kampen’s expansion is to split the
evolution variable in a time-dependent determinist component plus fluctuations and to
assume that the deterministic component is proportional to ⌦ while the fluctuating part
is of order ⌦

|/2, namely:

n = ⌦�(t) + ⌦

1/2⇠. (5.85)

Alternatively, we could understand this as a change of variables from the stochastic
variable n to the new stochastic variable ⇠ = ⌦

�1/2n�⌦

1/2�(t). We introduce the pdf
⇧(⇠; t) of the variable ⇠. The relation between the two probability functions is

P (n; t) = ⇧(⇠; t)

����
@⇠

@n

���� = ⌦

�1/2

⇧(⇠; t). (5.86)

We are going now to replace P (n; t) by ⇧(⇠; t) in the master equation. For this we need
to compute the time derivative as taking into account that the change of variables from
n to ⇠ is time dependent (through the dependence on �(t)). Hence:

@P (n; t)

@t
=

@

@t

h
⌦

�1/2

⇧(⇠; t)|
⇠=⌦

�1/2�⌦

1/2
�(t)

i
(5.87)

= ⌦

�1/2

✓
@⇧(⇠; t)

@⇠

@⇠

@t
+

@⇧(⇠; t)

@t

◆
(5.88)

= ⌦

�1/2

✓
@⇧(⇠; t)

@⇠
(�⌦

�1/2

˙�(t)) +

@⇧(⇠; t)

@t

◆
(5.89)

= � ˙�(t)
@⇧(⇠; t)

@⇠
+ ⌦

�1/2

@⇧(⇠; t)

@t
, (5.90)

being ˙� =

d�(t)

dt
. For the step operators we use

@

@n
=

@⇠

@n

@

@⇠
= ⌦

�1/2

@

@⇠
, (5.91)

which allows to write the step operator as E = e
@
@n

= e⌦

�1/2 @
@⇠ and expanding the

exponential:

E�1 � 1 = �⌦

�1/2

@

@⇠
+

⌦

�1

2

@2

@⇠2

+ O(⌦

�3/2

), (5.92)

E2 � 1 = 2⌦

�1/2

@

@⇠
+ 2⌦

�1

@2

@⇠2

+ O(⌦

�3/2

). (5.93)
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We now replace these results in the master equation after replacing P (n; t) = ⌦

�1/2

⇧(⇠; t),
to obtain:

� ˙�(t)
@⇧(⇠; t)

@⇠
+ ⌦

�1/2

@⇧(⇠; t)

@t
= (5.94)
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+ O(⌦

�3/2

)

�
[⌦
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+

k0

⌦


2⌦

�1/2

@

@⇠
+ 2⌦

�1

@2

@⇠2

+ O(⌦

�3/2

)

� �
(⌦� + ⌦

1/2⇠)(⌦� + ⌦

1/2⇠ � 1)⌦

�1/2

⇧(⇠; t)
�
, .

Expanding carefully and arranging in powers of ⌦ we get:

⌦

0 ) � ˙�
@⇧

@⇠
= �k�

A

@⇧

@⇠
+ 2k0�2

@⇧

@⇠
, (5.95)
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Or,

⌦

0 ) @

@⇠

h
(� ˙� + k�

A

� 2k0�2

)⇧

i
= 0, (5.97)

⌦
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◆
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@⇠2

. (5.98)

From the first equation (order ⌦

0) we get

(� ˙� + k�
A

� 2k0�2

)⇧(⇠; t) = constant, (5.99)

imposing boundary conditions ⇧(⇠ ! ±1; t) = 0, the constant is equal to zero and we
find the equation for the deterministic part of the trajectory:

d�(t)

dt
= k�

A

� 2k0�2, (5.100)

whose solution is

�(t) =

�(0) +

k�A

2k

0 tanh(2k0t)
2k

0

k�A
�(0) tanh(2k0t) + 1

. (5.101)

Note that, independently on the initial condition, it is �(t !1) =

k�a

2k

0 .
Equation (5.97) is closed in ⇧(⇠; t). However, since there are further equations to

lower orders ⌦

�1, ⌦�3/2, . . . involving ⇧(⇠; t) we still need to assume the expansion
⇧(⇠; t) = ⇧

0

(⇠; t) + ⌦

�1/2

⇧

1

(⇠; t) + . . . . At the lowest order given by (5.97) we have:

@⇧

0

@t
= 4k0�

@(⇠⇧
0

)

@⇠
+

✓
k�

A

2

+ 2k0�2

◆
@2

⇧

0

@⇠2

. (5.102)
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This complicated partial di↵erential equation accepts a simple answer: if the initial
condition ⇧

0

(⇠; 0) is a Gaussian function, then ⇧

0

(⇠; t) is a Gaussian function for all
values of t. The proof is valid for a slightly more general equation of the form:

@⇧

0

@t
= a(t)

@(⇠⇧
0

)

@⇠
+ b(t)

@2

⇧

0

@⇠2

, (5.103)

for arbitrary functions a(t), b(t). The proof consists in assuming the Gaussian ansatz

⇧

0

(⇠; t) =

1

�(t)
p

2⇡
e
� (⇠�µ(t))2

2�(t)2 . (5.104)

As µ(t) is the mean value of ⇠ it can be computed from

µ(t) = h⇠(t)i =

Z
d⇠ ⇠⇧

0

(⇠; t). (5.105)

Taking the time derivative and replacing (5.104) we obtain:

dµ
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=

Z
d⇠ ⇠

@⇧
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(⇠; t)

@t
=
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0
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@2

⇧

0

@⇠2

�
. (5.106)

Integration per parts (including the boundary conditions ⇧

0

(⇠ ! ±1; t) = 0) gives

dµ(t)

dt
= �a(t)µ(t), (5.107)

of solution

µ(t) = µ(0)e�
R t
0 ds a(s) (5.108)

It is also possible to derive the equation for the second moment µ
2

(t) = h⇠(t)2i =R
d⇠ ⇠2

⇧

0

(⇠; t) as

dµ
2

(t)

dt
= �2a(t)µ

2

+ 2b(t) (5.109)

and for the variance �2

= µ
2

� µ2

1

,

d�(t)

dt
= �a(t)�(t) +

b(t)

�(t)
, (5.110)

of solution:

�(t) = e�
R t
0 ds a(s)

s

�(0)

2

+ 2

Z
t

0

dt0 b(t0)e
R t0
0 ds a(s) (5.111)


