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Raúl Toral

January 10, 2012



2



Contents

1 Rate equations. 5

1.1 The Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Rate equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Master equations. 13

2.1 Master equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Radioactive decay . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Birth and death processes . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Gene transcription . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 The autocatalitic reaction . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 The prey-predator Lotka-Volterra model . . . . . . . . . . . . . . 18

2.2 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The enzimatic reaction . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Beyond meand-field: The Gaussian approximation . . . . . . . . . . . . 23
2.5 The Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 The Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 The 1/⌦ expansion of the master equation . . . . . . . . . . . . . . . . 25

3 Numerical simulations of master equations: The Gillespie’s algorithm. 27

3.1 Numerical simulations of master equations. . . . . . . . . . . . . . . . . 27
3.2 The Gillespie’s algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 31





Chapter 1

Rate equations.

1.1 The Poisson distribution

Let us consider an experiment with two possible outcomes, A and ¯

A. The probability of
A is p and that of ¯

A is q = 1�p. We now repeat the experiment N times independently.
The binomial distribution gives the probablity that outcome A appears exactly k times:

p

N

(k) =

✓
N

k

◆
p

k

(1� p)

N�k

, k = 0, 1, . . . , N (1.1)

By using the Stirling approximation m! ⇡ m

m

e

�m

p
2⇡m, valid in the limit m !1, we

can derive the Poisson limit, defined as N !1, p ! 0 with Np ! �, finite:

p

�

(k) = e

��

�

k

k!

k = 0, 1, . . . ,1 (1.2)

This Poisson distribution is one of the most important distributions in nature, probably
second to the Gaussian distribution1. The Poisson distribution has both mean and
variance equal to the parameter �:

hki =

1X

k=0

kp

�

(k) = � (1.3)

�

2
= hk2i � hki2 = � (1.4)

So � =

p
hki, a typical property of the Poisson distribution.

We can think of the Poisson distribution simply as a convenient limit which simplifies
the calculations in many occasions. For instance, the probability that a person was born
on a particular day, say January 1st, is p = 1/365, approximately. Imagine that we have
now a large group of N = 500 people. Which is the probability that exactly 3 people
were born on January 1st? The correct answer is given by the binomial distribution by

1It is worth saying that in the limit � ! 1 the Poisson distribution can be itself approximated by

a Gaussian distribution 1
�
p

2⇡
e�

(k�µ)2

2�2 of mean µ = � and variance �2 = �.
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considering the events A=“being born on January 1st” with probability p ⇡ 1
365 and

¯

A=“not being born on January 1st” with probability 1� p ⇡ 364
365 :

p500(3) =

✓
500

3

◆ ✓
1

365

◆3 ✓
364

365

◆497

= 0.108919 . . . (1.5)

If we use the Poisson limit, � = pN ⇡ 500/365 = 1.37, we obtain:

p1.37(3) = e

�1.37 1.37

3

3!

= 0.108900 . . . (1.6)

which is good enough. Let us compute now the probability that at least two persons
were born on May 11th

p500(k � 2) = 1�p500(k  1) = 1�p500(0)�p500(1) = 1�e

���e

�

= 0.3977 . . . (1.7)

1. A typist makes on average 5 mistakes every 100 words. Find the probability that
in a text of 1000 words the typist has made (a) exactly 10 mistakes, (b) at least
10 mistakes.

2. Use the Gaussian approximation to the Poisson distribution to find the probability
that in a group of 10000 people, at least 10 people were born on January 1st.

3. Un estudio sobre la influencia de la pldora anticonceptiva sobre el cncer del cuello
de tero [El Pas, 28/11/2007, aparecido en Lancet el da anterior] analiza un grupo
de 52082 mujeres, 16573 de las cuales haban tomado la pldora anticonceptiva y
35509 haba usado otros mtodos de control de natalidad. El estudio muestra que la
incidencia del cncer de tero en el grupo de mujeres que toman la pldora es de 4.5
casos por 1000 mujeres, mientras que en el grupo de las que no toman la pldora es
de 3.8 casos por 1000. El artculo titula que ”la pldora aumenta el riesgo de cncer
de cuello uterino”, concretamente un 18% segn se detalla en el texto. Calcular la
tasa global de incidencia del cncer en el grupo de 52082 mujeres. Con ese dato,
calcular la probabilidad de que un grupo de 16573 mujeres tomadas al azar de un
conjunto de 52082 tenga una tasa de 4.5 por mil o mayor.

There are occasions in which the Poisson limit occurs exactly. Imagine we distribute
N dots randomly and uniformly in the interval [0, T ] (we will think immediately of this
as events occuring randomly in time with a uniform rate, hence the notation). We call
⇢ = N/T the rate at which points are distributed. We now ask the question: which is
the probability that exactly k of the N dots lie in the interval [t1, t1 + t]? The event

A=“one given dot lies in the interval [t1, t1 + t]” has probability p =

t

T

whereas the

event ¯

A=“the given dot does not lie in the interval [t1, t1 + t]” has probability q = 1�p.
It should be clear that the answer to the previous question is given by the binomial
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distribution, Eq.(1.1). We now make the limit N ! 1, T ! 1 but ⇢ = N/T finite.
This limit corresponds to the distribution in which the events occur uniformly in time
with a rate (frequency) ⇢. Let us give an example: consider, for instance, the atoms
of a �-radiactive substance. Each atom emits electrons independently of each other.
The probability that one given atom will desintegrate is constant with time and it is not
known which atom will desintegrate in a given time. All we observe is the emission of
electrons with a given, constant, rate. We can estimate the rate of emission ⇢ simply
by counting the number of electrons N emitted in a time interval T as ⇢ = N/T . The
larger T and N , the better our estimate for ⇢. Let us now consider the total number of
electrons k emitted in the time interval [t1, t1 + t]. As discussed above it follows exactly
the Poisson distribution of parameter � = pN =

t

T

N = ⇢t,

p

⇢,t

(k) = e

�⇢t

(⇢t)

k

k!

. (1.8)

A di↵erent, but related question, concerns the probability distribution of the waiting
time for the emission of an electron. We start by looking at the radiactive susbtance
at t = 0 an we ask the probability f(t)dt that a particle will be emitted in the time
interval [t, t + dt]. Hence, the probability that no particle is emitted in the interval [0, t]

is 1�
Z

t

0

f(t

0
)dt

0. This must coincide with p

⇢,t

(k = 0) = e

�⇢t:

1�
Z

t

0

f(t

0
)dt

0
= e

�⇢t (1.9)

Taking the time derivative we conclude that f(t) = ⇢e

�⇢t, the well known exponential
law for radiactive decay which allows to identify ⌧ = 1/⇢ = T/N as the average time
between emissions. Let us denote by ˆ

f(t)dt the probability that the next electron is
emitted in the interval (t, t + dt) giving that there was an emission at t = 0. That
implies that no other electron has been emitted in the interval (0, t). Let us denote by
X the event “an electron has been emitted in (t, t + dt)”, the probability of this event is
P (X) = f(t)dt. Let us denote by Y the event “an electron was emitted at t = 0 but no
other electron has been emitted in (0, t)”. We are asking for the conditional probability

ˆ

f(t)dt = P (X|Y ) =

P (X, Y )

P (Y )

(1.10)

but X and Y are independent events, since the probability of emission in the interval
(t, t+dt) does not depend on whether an electron has been emitted before in the interval
(0, t). Hence we have P (X, Y ) = P (X)P (Y ) and ˆ

f(t)dt = P (X) = f(t)dt. This leads
to ˆ

f(t) = f(t). In other words, the waiting time between two consequtive emissions
follows also the exponential law with the same rate ⇢.

1.2 Rate equations

Let us consider now a system that can switch between two states that we name “1”
and “2”. The event A is now the switching from 1 to 2, and we assume that those
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switches occur uniformly and randomly at a rate !(1 ! 2). The inverse process, that of
switching from 2 to 1 might or might not occur. If it occurs, its rate !(2 ! 1) has, in
principle, no relation whatosever with the rate !(1 ! 2). If we start at t = 0 in state 1,
we ask the probabilities P1(t) and P2(t) that the system is in state 1 or 2, respectively, at
time t. Obviously, they must satisfy P1(t)+P2(t) = 1. We will derive now a di↵erential
equation for P1(t). The probability that the system is in state 1 at time t + dt has two
contributions: that of being in 1 at time t and not having jumped to state 2 during the
interval (t, t + dt), and that of being at 2 at time t and having made a jump from 2 to
1 in the interval (t, t + dt). This leads to:

P1(t + dt) = P1(t)[1� !(1 ! 2)dt] + P2(t)!(2 ! 1)dt (1.11)

From where we get:

dP1(t)

dt

= �!(1 ! 2)P1(t) + !(2 ! 1)P2(t) (1.12)

The equivalent equation for P2(t) is:

dP2(t)

dt

= �!(2 ! 1)P2(t) + !(1 ! 2)P1(t) (1.13)

Notice that
d

dt

[P1(t) + P2(t)] = 0 (1.14)

since P1(t) + P2(t) = 1 at all times t. One defines the probability current, J(1 ! 2)

from state 1 to 2 as:

J(1 ! 2) = �!(1 ! 2)P1(t) + !(2 ! 1)P2(t) (1.15)

and a similar definition leads to J(2 ! 1) = �J(1 ! 2).
The generalization to the situation where the system can be in many states i =

1, 2, 3, . . . is straightforward:

dP

i

(t)

dt

=

X

j 6=i

[�!(i ! j)P

i

(t) + !(j ! i)P

j

(t)] (1.16)

Or in terms of the currents J(i ! j) = �!(i ! j)P

i

(t) + !(j ! i)P

j

(t):

dP

i

(t)

dt

=

X

j 6=i

J(i ! j) (1.17)

Although it is not very common in practice, nothing prevents us from considering the
more general case where the transition rates depend on time. Hence, the more general
rate equations are:

dP

i

(t)

dt

=

X

j 6=i

[�!(i ! j; t)P

i

(t) + !(j ! i; t)P

j

(t)] (1.18)
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Note that the sum can be replaced by
X

8j

since the term j = i does not contribute

to this sum. To find the solution of these rate equations we need to specify an initial
condition P

i

(t = t0).
We stress again that the rate coe�cients !

i!j

⌘ !(i ! j) do not need to satisfy any
relation amongst them2. Remember also that the rates !

i!j

are not probabilities and
do not need to be bounded to the interval [0, 1] (although they are positive quantities).
Moreover, w

ij

has units of time�1. It is easy now to verify that whatever the coe�cients
!

i!j

it is
d

dt

X

i

P

i

(t) = 0 (1.19)

and, again, we have the normalization condition
P

i

P

i

(t) = 1 for all times t provided
that

P
i

P

i

(t0) = 1.
It is usual to define the total escape rate ⌦

j

from state j as the sum of all rates to
all possible states:

⌦

j

=

X

i6=j

!

j!i

=

X

i6=j

!(j ! i). (1.20)

When the total number of states N is finite, it is possible, and useful sometimes, to
define the matrix ⌦ as

⌦

ij

= !(j ! i) if i 6= j

⌦

ii

= �
P

j 6=i

!(i ! j)

(1.21)

such that the rate equations admit the form:

dP

i

(t)

dt

=

X

j

⌦

ij

P

j

(t) (1.22)

The matrix ⌦ is such that the rows add to zero. This property ensures that the solutions
P

i

(t) respect the positivity condition P

i

(t) � 0 provided that P

i

(0) � 0. It can also be
proven that ⌦ has a zero eigenvalue �1 = 0 and the others ��2, . . . ,��

N

are real and
negative (maybe the real part is negative?). This ensures that the functions P

i

(t) can
be written as:

P

i

(t) = P

st

i

+

NX

k=2

C

ik

e

��kt (1.23)

with the stationary (or steady state) probabilities P

st

i

= lim

t!1 P

i

(t) are the elements
of the eigenvector corresponding to the zero eigenvalue. Irreducibility and ergodicity
should be discussed here. It seems that not all initial conditions P

i

(t0) must lead to the
stationary distribution unless the process is ergodic.

It would be nice to be able to give the stationary solution P

st

i

given the transition
rates coe�cients !

i!j

. However, this is not possible in general. A simple case in which

2The elements !(i ! i) are not defined and one usually takes !(i ! i) = 0 although their precise
value is irrelevant in the majority of formulas.
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this is possible is that of two states N = 2 (that we label as before by state 1 and state
2). In this case the solution is simply found as:

P1(t) = P1(t0)e
�(!2!1+!1!2)(t�t0)

+

!2!1

!2!1 + !1!2

⇥
1� e

�(!2!1+!1!2)(t�t0)
⇤

P2(t) = P2(t0)e
�(!2!1+!1!2)(t�t0)

+

!1!2

!2!1 + !1!2

⇥
1� e

�(!2!1+!1!2)(t�t0)
⇤

(1.24)
The stationary distribution is:

P

st

1 =

!2!1

!2!1 + !1!2

P

st

2 =

!1!2

!2!1 + !1!2

(1.25)

a particularly simple solution. Note that in this case the stationary distribution satisfies

!(1 ! 2)P

st

1 = !(2 ! 1)P

st

2 (1.26)

a property known as detailed balance condition. Unfortunately, there is no equivalent
explicit expression in the case of having more that 2 states.

An interesting quantity is the probability P (i, t|j, t0) that the system is in state i at
time t given that it was in state j at time t0. Do not confuse it with the probability
density f(i, t|j, t0) defined such that f(i, t|j, t0)dt is the probability that the system is at
state j at time t0 and stays there until it jumps to state i in the time interval (t, t+ dt),
with no intermediate jumps in the interval (t0, t). Since the total escape rate from state
j is ⌦

j

=

P
i

!(j ! i), the probability density function of the next jump from state
j is ⌦

j

e

�⌦j(t�t0). The probability that the system does not jump out of j in the time
interval (t0, t) is 1�

R
t

0 ⌦

j

e

�⌦jt

= e

�⌦j(t�t0). The probability that it jumps from j to i

in the time interval (t, t + dt) is !(j ! i)dt. Therefore, the required probability density
function is:

f(i, t|j, t0) = !(j ! i)e

�⌦j(t�t0) (1.27)

On the other hand, P (j, t|i, t0) is di�cult to compute because in the interval [t0, t]

there might have been many jumps to intermediate states. Again, an explicit formula
can only be given in the case N = 2 where we can reason as follows: the probability
that the system is in state 1 at time t is the probability that it was in state 1 at time t0

times the probability P (1, t|1, t0) plus the probability that it was in state 2 at t0 times
the probability P (1, t|2, t0):

P1(t) = P1(t0)P (1, t|1, t0) + P2(t0)P (1, t|2, t0)
= P1(t0)P (1, t|1, t0) + [1� P1(t0)]P (1, t|2, t0)
= P1(t0)[P (1, t|1, t0)� P (1, t|2, t0)] + P (1, t|2, t0)

(1.28)

comparing with Eq.(1.24) we get:

P (1, t|1, t0) =

!2!1 + !1!2e
�(!2!1+!1!2)(t�t0)

!2!1 + !1!2
(1.29)
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and, of course, P (2, t|1, t0) = 1�P (1, t|1, t0) and equivalent expressions for P (1, t|2, t0)
and P (2, t|2, t0). Let us stress, again, that no equivalent solution exists in the case of
having N � 3 states in the system.





Chapter 2

Master equations.

2.1 Master equations

2.1.1 Radioactive decay

We now consider the rate equations from a di↵erent point of view. Let us take as an
example the �-radiactive substance of the previous chapter. The events are the emission
of electrons. Schematically:

X

!

�!
Y (2.1)

where X denotes a radiactive atom and Y the product of the desintegration. Each
one of the N atoms of the substance can be in the state 1 (it has not yet emitted an
electron) or in state 2 (it has emitted an electron). The transitions are from state 1 to
state 2 at a rate ! ⌘ !(1 ! 2).The rate equations are (there are no transitions from 2
to 1):

dP1(t)
dt

= �!P1(t)
dP2(t)

dt

= +!P1(t)
(2.2)

Let n1(t) and n2(t) be the number of atoms in state 1 and 2 respectively at time t.
Since the particles that leave state 1 go to state 2, it is n1(t) + n2(t) = N . The values
of n1(t) and n2(t) are random variables that can take values with di↵erent probabilities.
Let us introduce the probability P (n1, n2; t) of finding n1 atoms in state 1 and n2 atoms
in state 2 at time t. We assume that the initial condition is that all N atoms are in
state 1 at time t0 = 0. Using Kronecker-delta functions, this initial condition is:

P (n1, n2; 0) = �

n1,N

�

n2,0 (2.3)

The condition n1(t) + n2(t) = N means that we can actually simplify notation and
focus on the probability P (n; t) of having n particles in state 1 at time t; the number
of particles in state 2 will be simply N � n. We now derive a di↵erential equation for
P (n; t).

The probability P (n; t) of having n particles is state 1 at time t can change because
one particle has left state 1 to go into state 2. A single atom can jump from 1 to 2 in the
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time interval (t, t + dt) with a probability !dt. Therefore, the probability of any atom
jumping from 1 to 2 is !ndt since the atoms jump independently one of the other. The
probability that there are n particles in state 1 at time t + dt has two contributions: (i)
the event they were n + 1 particles at time t and a jump occurred in (t, t + dt) or (ii)
they were n particles at time t and no jumps occured in (t, t + dt). Translated into an
equations:

P (n; t + dt) = P (n + 1; t)!(n + 1)dt + P (n; t)(1� n!dt) + o(dt)

2 (2.4)

or, taking the limit dt ! 0:

@P (n; t)

@t

= �!nP (n; t) + !(n + 1)P (n + 1; t) (2.5)

This is the master equation of the radiactive process. This is to be solved with the initial
condition P (n; 0) = �

n,N

. The solution can be found in this case (as well as in other
cases) with the help of the generating function G(s, t). This is defined as:

G(s, t) =

1X

n=�1
s

n

P (n; t) (2.6)

(note that in most cases the sum is limited to n � 0 since P (n; t) = 0 for n < 0).
Multiplying Eq.(2.5) by s

n and summing over n we get:

X

n

s

n

@P (n; t)

@t

= �!

X

n

ns

n

P (n; t) + !

X

n

(n + 1)s

n

P (n + 1; t) (2.7)

which after a simple manipulation replacing n + 1 ! n in the last terms leads to the
di↵erential equation:

@G(s, t)

@t

= !(1� s)

@G(s, t)

@s

(2.8)

The solution is found by Lagrange’s method:

G(s, t) = �

�
(s� 1)e

�!t

�
(2.9)

the arbitrary function �(x) is obtained using the initial condition G(s, 0) = s

N , or
�(x) = (x + 1)

N . This leads finally to:

G(s, t) = [(s� 1)e

�!t

+ 1]

N

= [se

�!t

+ 1� e

�!t

]

N (2.10)

Note that the condition G(1, t) = 1 is equivalent to the normalization condition
P

n

P

n

(t) =

1. Expanding in taylor series using the binomial expansion

G(s, t) =

NX

n=0

✓
N

n

◆
[se

�!t

]

n

[1� e

�!t

]

N�n (2.11)
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which, recalling the definition of the generation function, Eq.(2.6), gives the solution for
the probabilities:

P (n; t) =

✓
N

n

◆
e

�n!t

[1� e

�!t

]

N�n (2.12)

This is nothing by a binomial distribution of parameter p(t) = e

�!t, the expected result.
The mean value of particles in state 1 at time t is Np(t):

hn(t)i = Ne

�!t (2.13)

which is again the well known law of radiactive decay. Alternatively, the mean value can
be computed from the generating function as

hn(t)i =

@G(s, t

@s

����
s=1

(2.14)

The variance can be computed in a similar way using

hn(t)

2i =

@

@s

s

@G(s, t)

@s

����
s=1

(2.15)

with the well known result for a binomial distribution, �

2
[n(t)] = Np(1� p), or:

�

2
[n(t)] = Ne

�!t

(1� e

�!t

) (2.16)

We can make connection with the results of the previous chapter by noticing that
the number of electrons emitted is k = N � n and the probability P

e

�
(k, t) of emitting

k electrons in the interval (0, t) also follows a binomial distribution:

P

e

�
(k; t) =

✓
N

k

◆
e

�(N�k)!t

[1� e

�!t

]

k

, n = 0, 1, . . . , N (2.17)

of probability p = 1� e

�!t. In the large N limit, this reduces to the Poisson distribution
if we write ! =

⇢

N

such that Np ! ⇢t in the limit N ! 1. So everything agrees if
we used that the rate ⇢ of emission of N atoms is N times the rate of emission ! of a
single atom.

2.1.2 Birth and death processes

An important class of master equations respond to the birth and death scheme. Let us
assume that a system X can lose particles to a reservoir A. Let us call k1 at the rate at
which a particle goes from X to A. So far, this is similar to the previous example of the
radiactive substance, but now we include the possibility that particles from A go back
to X at a rate k2. To simplify matters, we assume that the number of particles of A,
n

A

, is kept constant (particles are removed or restored to A as necessary, A is a bath of
particles).

¯

A

k2

�!
 �
k1

X (2.18)
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(following Gillespie, the bar on top of the A means that its population is assumed to be
constant).

We want to find the master equation for the probability P (n; t) that there are n

particles left in X at time t. We have now three elementary contributions to P (n; t+dt)

according to what happened in the time interval (t, t+dt): (i) X had n particles at time
t and none was lost to the bath and none was obtained from the bath; (ii) X had n + 1

particles in time t and one particle was lost to the bath; (iii) X had n� 1 particles and
one was transferred from the bath. Combining the probabilities of these four events we
get the evolution equation:

P (n; t + dt) = P (n; t)[1� nk1dt][1� n

A

k2dt] case (i)

+ P (n + 1; t)k1(n + 1)dt case (ii)

+ P (n� 1; t)n

A

k2dt + o(dt)

2
case (iii)

(2.19)

or, taking the limit dt ! 0 and simplifying notation k

A

⌘ k2nA

:

dP (n; t)

dt

= �(k1n + k

A

)P (n; t) + k1(n + 1)P (n + 1; t) + k

A

P (n� 1; t) (2.20)

with the initial condition P (n; 0) = �

n,N

. This equation is solved again by introducing
the generating function G(s, t). The resulting partial di↵erential equation is:

@G(s, t)

@t

= k

A

(s� 1)G� k1(s� 1)

@G(s, t)

@s

(2.21)

Again, the method of Lagrange gives us the general solution:

G(s, t) = e

kA
k1

(s�1)
�((s� 1)e

�k1t

) (2.22)

with �(x) an arbitrary function. Implementing the initial condition G(s, 0) = s

N , we

obtain: �(x) = (x + 1)

N

e

� kA
k1

x and the final solution is:

G(s, t) = e

kA
k1

(s�1)[1�e�k1t]
[se

�k1t

+ 1� e

�k1t

]

N (2.23)

We could now expand in powers of s to get the probabilities P

n

(t). The first moments
are easily found from the derivatives of the generating function:

hn(t)i = Ne

�k1t

+ (1� e

�k1t

)

kA
k1

�

2
[n(t)] = Ne

�k1t

(1� e

�k1t

) + (1� e

�k1t

)

kA
k1

(2.24)

In the stationary limit t !1 we have:

G(s, t !1) = e

kA
k1

(s�1)
= e

� kA
k1

1X

n=0

✓
k

A

k1

◆
n

s

n

n!

(2.25)

hence

P (n; t !1) =

e

� kA
k1

n!

✓
k

A

k1

◆
n

(2.26)

nothing but a Poisson distribution of parameter � =

kA
k1

.
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2.1.3 Gene transcription

A modification of the above death and birth process has been proposed as a very simple
and crude model for gene transcription. The model assumes that a gene A (a portion
of DNA) is copied into a messenger-RNA (mRNA) at a rate k

T

. The mRNA then
degradates at a rate �. The schematic reactions are:

A

kT

�! mRNA

mRNA

�

�! ; (2.27)

The master equation describing this process of creation and degradation of mRNA is:

@P (n; t)

@t

= k

T

P (n� 1; t)� k

T

P (n; t) + �(n + 1)P (n + 1; t)� �nP (n; t) (2.28)

This equation can be solved using the generating function technique to find that in the
steady state the probability of finding n mRNA’s is a Poisson distribution of parameter
k

T

/�. Hence, the average number of mRNA’s molecules is hni = k

T

/�. Typically, a
gen of about 1500 base pairs will take 60s for transcription. That gives us an idea of
the order of magnitude of k

T

⇡ 1/60s. The degradation rate is of the order of 4 times
smaller, � ⇡ 1/240s. Hence the average number of mRNA’s transcribed by a particular
gene is of the order of hni ⇡ 4. This is correct experimentally, but the model has a
problem: the variability is too high. This is because the fluctuations in the Poisson
distributions, as measured by the root mean square � =

p
hni ⇡ 2, which is a variability

of the 50% in the number of mRNA molecules. This is too high.
We might want to include some other e↵ects present in gene expression. We know

that mRNA is translated into proteins inside the ribosomes. A codon is a sequence of
three nucleotides (Adenin, Thymin, Cytosin or Guanin) and each codon is translated
into one of the possible 20 aminoacids (this is the genetic code). This translation is
mediated by 20 di↵erent tRNA’s. Each tRNA couples to the right codon to generate the
aminoacid. The sequence of aminoacids Hence we have the following process1: genes
create mRNA molecules at a rate k

r

. An mRNA molecule can either degradate at a rate
� of produce a protein at a rate k

p

. The protein finally degradates at a rate �.
If we introduce the probability P (r, n; t) of having r mRNA’s, n proteins at time t,

we can write the master equation of the standard dogma as:

@P (r, n; t)

@t

= k

r

P (r � 1, n; t)� k

r

P (r, n; t) transcription

+ k

p

rP (r, n� 1; t)� k

p

rP (r, n; t) translation

+ �

r

(r + 1)P (r + 1, n; t)� �

r

rP (r, n; t) degradation of mRNA

+ �

p

(n + 1)P (r, n + 1; t)� �

p

nP (r, n; t) degradation of protein

(2.29)
We can use now the generating function technique to compute the mean values and the

1This whole process is known as the standard dogma of molecular biology.
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fluctuations in the steady state. The result is

hri =

k

r

�

r

(2.30)

�

2
[r] = (2.31)

hni =

k

r

k

p

�

r

�

p

(2.32)

�

2
[n]

hni = 1 +

k

p

�

r

+ �

p

(2.33)

The last equation shows that in this model the distribution of proteins is super-Poissonian,
since the fluctuations are larger that in the Poisson distribution. This has been named as
noise amplification. The situation is then even worse that it was in the previous model,
as far as the magnitude of the variability is concerned. It is believed that the number of
proteins is regulated by a feedback mechanism between di↵erent genes. A gene B can
regulate the production of gene A by producing proteins that bind to the promotors of
gene A.

A recent modification of this model [A. Oudenaidon, PNAS 98, 8614 (2001)], in-
cludes the presence on inhibitory circuits in gene expression. Basically it amounts to
replacing k

r

by k

r

(1 � ✏n) with ✏ a small number (a more realistic approach could be
to include some non-linear saturation terms). One can now solve the master equation
and after a lengthy calculation find that the average number of proteins decreases to

hni =

kr
�r

⇣
1� ✏

kr
�r

⌘
. The variance is then reduced to:

�

2
[n]

hni = 1 +

k

p

�

r

+ �

p

� ✏

k

r

k

p

�

r

�

p

(2.34)

2.1.4 The autocatalitic reaction

2.1.5 The prey-predator Lotka-Volterra model

Rate and master equations are commonly used in other fields, such as population dy-
namics and the kinetics of chemical reactions (including those occuring in living beings).
However, some sort of approximation is usually needed to derive them.

Let us start with the Lotka-Volterra model. We consider an animal species X (the
prey, think on rabbits) which reproduces by eating grass, A. The schematic reaction is
as follows:

¯

A + X ! 2X (2.35)

with some rate k0. We’ll use the notation k

A

= k0nA

. At the same time, the species Y

(the predator, think on foxes) reproduces by eating species X. Again schematically:

X + Y ! 2Y (2.36)

with a rate k1. Finally, the species Y can die of natural causes at a rate k2:

Y ! ; (2.37)
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Of course, this is a very simplified model of population dynamics, but let us analyze it
in some detail.

We denote by P (n1, n2; t) the probability that there are n1 animals of species X and
n2 animals of species Y at time t. The master equation can be obtained by enumerating
the elementary processes occuring in the time interval (t, t + dt) that might contribute
to P (n1, n2; t + dt) namely:
(i) The population was (n1, n2) at time t and no rabbit reproduced and no rabbit was
eaten and no fox died.
(ii) The population was (n1 � 1, n2) at time t and a rabbit reproduced.
(iii) The population was (n1, n2 + 1) at time t and a fox died.
(iv) The population was (n1 +1, n2�1) at time t and a fox ate a rabbit and reproduced.

The contributions to the probability are, respectively:

P (n1, n2; t + dt) = P (n1, n2; t)[1� k

A

n1dt][1� k1n1n2dt][1� k2n2dt] case (i)

+ P (n1 � 1, n2; t)kA

(n1 � 1)dt case (ii)

+ P (n1, n2 + 1; t)k2(n2 + 1)dt case (iii)

+ P (n1 + 1, n2 � 1; t)k1(n1 + 1)(n2 � 1)dt case (iv)

(2.38)
Taking the limit dt ! 0 we obtain the desired master equation:

@P (n1, n2; t)

@t

= �(k

A

n1 + k1n1n2 + k2n2)P (n1, n2; t) + k

A

(n1 � 1)P (n1 � 1, n2; t)

+ k2(n2 + 1)P (n1, n2 + 1; t) + k1(n1 + 1)(n2 � 1)P (n1 + 1, n2 � 1; t)

(2.39)
In deriving this equation we have made a very strong assumption: that all foxes eat
all rabbits with the same rate. Hence the term k1n1n2 which is directly proportional
to the number of pairs of rabbits and foxes. However, this is unlikely to be true in a
real situation. Some rabbits will be closer to some foxes and those pairs will have an
enhanced probability of leading to the loss of a rabbit and the birth of a fox. This is
a homogeneity assumption in the sense that the spatial distribution of the animals is
completely neglected2 in which. It might be close to true in a case in which there is a
fast movement, migration, of animals from a place to another, but in general it has to be
seen as an unjustified approximation. In any event, it is not reasonable to assume that a
prey can be eaten with equal probability by all possible predators, so the corresponding
term is proportional to k1n1n2. It is more likely that this terms is proportional to the
local density of predators, n2/⌦, being ⌦ a measure of the volume of the system where
prey and predator live. Hence, we correct this term by writing it as k1n1n2/⌦. Now k1

is the rate per unit volume and has units of volume/time. Similarly the corresponding
rate for the eating of grass by the prey is proportional to tle local concentration of grass,
not to the total amount of grass, ans we write the corresponding term as k

A

n

A

/⌦, or
k

A

c

A

being c

A

the concentration of grass. We will use the notation ¯

k1 = k1/⌦ and

2It can also be considered as a kind of mean field approach, since spatial inhomegeneities are
not considered. However, we will using shortly the name mean-field to denote a situation in which
correlations between the populations of prey and predators are neglected.
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and ¯

k

A

= k

A

/⌦. We will see that only with this rescaling is possible to recover the
determistic equations in the limit of ⌦ large.

One might try to solve the master equation by introducing the generating function:

G(s1, s2, t) =

1X

n1=�1

1X

n2=�1
s

n1
1 s

n2
2 P (n1, n2; t) (2.40)

The resulting equation for G(s1, s2; t) is

@G

@t

= �k

A

(1� s1)G + k2(1� s2)
@G

@s2
+

¯

k1s2(s1 � s2)
@

2
G

@s1@s2
(2.41)

but it is wrong, I am a little bit tired now. In any case, the solution looks hopeless (?).

2.2 General results

The most general master equation appears to be of the form:

@P (n, t)

@t

=

X

k

(E

k � 1) [C

k

(n)P (n, t)] , (2.42)

begin C

k

(n) some coe�cients and E the linear step operator such that E

k

[f(n)] ⌘
f(n + k) and k runs over the integer numbers. The k-th term of this sum corresponds
to the process in which �k particles are created (hence destroyed if k > 0) at a rate C

k

.
It is possible to obtain the general form of the equation for the generating function

G(s, t) =

P
n

s

n

P (n; t), starting from:

@G

@t

=

X

k

(s

�k � 1)

X

n

s

n

C

k

(n)P (n, t). (2.43)

If we now assume the Taylor expansion C

k

(n) =

P
a

C

a

k

n

a and use that s

n+a

=�
s

@

@s

�
a

s

n, we arrive at:

@G

@t

=

X

k

(s

�k � 1)C

k

✓
s

@

@s

◆
G(s, t). (2.44)

From (2.42) we get the (exact) equations for these first two moments, as:

dhni
dt

= �
X

k

hkC

k

(n)i , dhn2i
dt

=

X

k

hk(k � 2n)C

k

(n)i . (2.45)
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2.3 The mean-field theory

The mean-field theory is interested in the evolution of the mean values, neglecting
fluctuations. In some cases, it is possible to obtain exact equations for the evolution of
the mean values, but in most cases the evolution equations will necessarily involve some
sort of approximation. Let us begin by the radiactive substance. Let us call X(t) the
average value of the number of radiactive atoms remaining:

X(t) =

X

n

nP (n; t) (2.46)

We know that X(t) = X(0)e

�!t, but we want to obtain directly from the master
equation a di↵erential equation for X(t). Taking the derivative of the previous equation
and substituting Eq.(2.5):

dX(t)

dt

=

X

n

n

@P (n; t)

@t

=

X

n

n [�!nP (n; t) + !(n + 1)P (n + 1; t)] (2.47)

we now make changes of variables n + 1 ! n in the second term of the sum to obtain:

dX(t)

dt

= �!

X

n

nP (n; t) (2.48)

or
dX(t)

dt

= �!X(t) (2.49)

the desired mean-field equation, exact in this case.
If we do the same for the birth and death process, we obtain again an exact equation

for the mean value:
dX(t)

dt

= �k1X(t) + k

A

(2.50)

whose solution is

X(t) = X(0)e

�k1t

+

k

A

k1

�
1� e

�k1t

�
(2.51)

in agreement with the previous treatment.
Example which is not linear.
We turn now to the pre-predator Lotka-Volterra model. We need to compute two

averages X(t) = hn1(t)i and Y (t) = hn2(t)i. After some careful calculation one obtains:

dX(t)

dt

=

¯

k

A

X(t)� ¯

k1hn1(t)n2(t)i
dY (t)

dt

=

¯

k1hn1(t)n2(t)i � k2Y (t)

(2.52)

And the equations are not closed. This is typical of non-linear problems. We could now
compute the evolution of hn1(t)n2(t)i but then it would be coupled to higher and higher
order moments, a complete mess! Mean-field approach assumes that the populations
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are independent and hence hn1(t)n2(t)i = hn1(t)ihn2(t)i = X(t)Y (t). This is simply
not true, but ...

dX(t)

dt

=

¯

k

A

X(t)� ¯

k1X(t)Y (t)

dY (t)

dt

=

¯

k1X(t)Y (t)� k2Y (t)

(2.53)

Now we can derive the evolution equation for the density of species x(t) =

X(t)

⌦

,

y(t) =

Y (t)

⌦

. With the above definitions we get:

dx(t)

dt

= k

A

c

A

x(t)� k1x(t)y(t)

dy(t)

dt

= k1y(t)y(t)� k2y(t)

(2.54)

being c

A

= n

A

/⌦ the concentration of food. Now all the parameters in the equations
are intensive. These are the celebrated Lotka-Volterra equations.

2.3.1 The enzimatic reaction

We now look at a very simple enzymatic reaction, where one substrate molecule S binds
to the enzyme E which then decays into one product P plus an uncombined enzyme,
one might write

S + E

�!
 �ES

�!
 � P + E . (2.55)

In 1913 the two scientists Maud L. Menten (1879-1960) and Leonor Michaelis (1875-
1949) published a famous work on the function of invertase (or saccharase). Invertase is
an enzyme, found for example in yeast, which catalyses the breakdown of sucrose. What
Menten and Michaelis postulated and reasoned was the following: the reaction starts
with the relatively fast combination of the complex

S + E

k1

�!
 �
k�1

ES (2.56)

and is followed by a rather slow decay into the product and the enzyme

ES

k2

�!
 �
k�2

P + E . (2.57)

By assuming a high energy barrier for the combination of a product with an enzyme
the backwards rate k�2 can be neglected. In this way one can write down a set of
di↵erential equations for the dynamical variables s(t), e(t), c(t) and p(t), resembling
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substrate, enzyme, complex and product concentration respectively:

ṡ(t) = k�1c(t)� k1s(t)e(t) (2.58)

ė(t) = (k�1 + k2)c(t)� k1s(t)e(t) (2.59)

ċ(t) = �(k�1 + k2)c(t) + k1s(t)e(t) (2.60)

ṗ(t) = k2c(t) (2.61)

After a short time of rapid complex building the rates of complex formation and
breakdown will be in a steady state of flow, leading to a constant concentration c(t)

meaning ċ(t) = 0. The sum of bound and unbound enzyme molecules is constant
c(t) + e(t) = e0 and one can eliminate e(t) in (2.60). The steady state concentration
of complexes is

c(t) =

e0s(t)

s(t) +

k�1+k2

k1

⌘ e0s(t)

s(t) + K

M

(2.62)

and K

M

is called the Michaelis-Menten constant. When this equation is substituted into
the dynamics of the product one finds:

ṗ(t) =

k2e0s(t)

s(t) + K

M

⌘ V

max

s(t)

s(t) + K

M

, (2.63)

which is a form that can easily be compared with an experiment. For large substrate
concentrations the production velocity saturates at V

max

whereas low substrate con-
centrations lead to velocities of V

max

s/K

M

. The constants K

M

and V

max

have been
determined for many enzymes.

2.4 Beyond meand-field: The Gaussian approxima-

tion

2.5 The Fokker-Planck equation

2.6 The Langevin equation

The mean-field equations give us information only about the average values (with the
limitations expressed before in the case of nonlinear terms). There have been some
atempts to modify the mean-field equations by including stochastic terms. However, this
is not an easy task and some recent papers have addressed this problem [for instance,
Aparicio and Solari, “Population dynamics: Poisson approximation and its relation to
the Langevin process Phys. Rev. Lett. 86, 4183 (2001)]. Let us consider first the
simple radiactive decay. The basic question is: is it possible to modify equation (2.49)
to reproduce not just the mean value but also the fluctuations of the original process?
In other words, could we write something like:

dn(t)

dt

= �!n(t) + G⇠(t) (2.64)
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where ⇠(t) is white noise h⇠(t)⇠(t0)i = �(t � t

0
) and G is a function to be determined.

We would like that the solution of this equation to have the exact mean and variance
for the process n(t), namely:

hn(t)i = n(0)e

�!t

hn(t)

2i � hn(t)i2 = n(0)e

�!t

(1� e

�!t

)

(2.65)

Let us assume first that G = G(t) is a function of time. The solution of equation (2.64)
is in this case:

n(t) = n(0)e

�!t

+ e

�!t

Z
t

0

dse

�!s

G(s)⇠(s) (2.66)

From where it follows:

hn(t)i = n(0)e

�!t

+ e

�!t

Z
t

0

dse

�!s

G(s)h⇠(s)i = n(0)e

�!t (2.67)

and

hn(t)

2i�hn(t)i2 = h
�
n(t)� n(0)e

�!t

�2i = e

�2!t

Z
t

0

ds

Z
t

0

due

!(s+u)
G(s)G(t)h⇠(s)⇠(u)i

(2.68)
replacing h⇠(t)⇠(t0)i = �(t�t

0
) and the left hand side by the desired variance, we obtain:

n(0)(e

!t � 1) =

Z
t

0

dse

2!s

G(s)

2 (2.69)

and taking the derivative with respect to time it is:

G(t)

2
= !n(0)e

�!t (2.70)

We conclude that the stochastic di↵erential equation:

dn(t)

dt

= �!n(t) +

p
!n(0)e

�!t

⇠(t) (2.71)

has the same moments hn(t)i and hn(t)

2i than the original master equation and is,
hence, an improvement upon the simple equation (2.49). However, we do not quite like
this equation since the initial condition n(0) appears explicitely in it. We can write it in
the equivalent way:

dn(t)

dt

= �!n(t) +

p
!hn(t)i⇠(t) (2.72)

which do not like either because the average value is not known a priori. Finally, we try
the following version:

dn(t)

dt

= �!n(t) +

p
!n(t)⇠(t) (2.73)

This equation has a multiplicative noise and needs an interpretation rule. It turns out
that only in the Itô interpretation, the first two moments coincide with the original
process. Hence, we conclude that equation (2.73), interpreted in the Itô sense, is the
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stochastic equation that improves upon the mean-field approximation Eq.(2.49). This
equation has the same first two moments that the master equation of the radiactive
process (see the 4th exercise in page 252 of van Kampen’s book).

We apply now the same ideas to modify the mean-field equation (2.50) for the birth
and death process. We look to modify it by adding some stochastic terms in such a way
that the mean value and the variance coincide with the ones obtained from the master
equation. We try:

dn(t)

dt

= �k1n(t) + k

A

+ G⇠(t) (2.74)

It is easy to arrive at:

�

2
[n(t)] = e

�2k1t

Z
t

0

dsG(s)

2
e

2k1s (2.75)

and comparing with the desired correlations as given by Eq.(2.24). The result is that
G(t)

2
= Nk1e

�k1t

+ k

A

+ k

A

(1 � e

�k1t

) = k1hn(t)i + k

A

. Again, we do not like
this expression and we try: G(t)

2
= k1n(t) + k

A

. The resulting stochastic di↵erential
equation

dn(t)

dt

= �k1n(t) + k

A

+

p
k1n(t) + k

A

⇠(t) (2.76)

has the same first and second moments than the master process, Eqs.(2.24), when it is
interpreted in the Itô sense, as a somewhat lengthy calculation shows.

2.7 The 1/⌦ expansion of the master equation





Chapter 3

Numerical simulations of master

equations: The Gillespie’s algorithm.

3.1 Numerical simulations of master equations.

Given the di�culties one encounters for the analytical treatment of master equations, it
is common to resource to numerical simulations of the underlying stochastic process. Let
us learn how to proceed. We first begin by the simple example of a two-state syste. If we
denote by A and B the possible states there will be jumps from A to B at a rate !

A!B

and from B to A at a rate !

B!A

. Remember that, besides being both non-negative
numbers, the rates !

A!B

and !

B!A

have no relation amongst them. The process is
schematized by:

A

!A!B

�!
 �

!B!A

B (3.1)

The stochastic process is a series of jumps from one of the two states to the other.
Imagine that at time t0 we are at state A. The jump to state B will happen randomly
with a probability density function f

A!B

(t) such that f

A!B

(t)dt is the probability that
the system remains at state A for a time t and then jumps to state B in the time interval
(t, t+dt). This is equal to the probability that no jump occured in the interval (t0, t0+t)

which, according to the discussion in section 1.2, is e

�!A!Bt, times the probability that
a jump does occur in the interval (t, t + dt), which is !

A!B

dt, or:

f

A!B

(t)dt = e

�!A!Bt

!

A!B

dt, (3.2)

or
f

A!B

(t) = e

�!A!Bt

!

A!B

. (3.3)

This is nothing but an exponential distribution. Next thing we have to do is to generate a
time of jump t

A!B

using this distribution. This is done by generating a random number
u0 uniformly distributed in the interval (0, 1) and solving the equation

u0 =

Z
tA!B

0

f

A!B

(t)dt = 1� e

�!A!BtA!B (3.4)



28 Numerical simulations of master equations: The Gillespie’s algorithm.

or, using that 1� u0 and u0 have the same statistical properties:

t

A!B

=

� ln u0

!

A!B

. (3.5)

At time t1 = t0 + t

A!B

we jump from A to B. Now that the state is B we have to
compute the time interval t

B!A

to the next jump, this time from B to A. The same
reasoning leads to the time of the next jump t2 = t1 + t

B!A

where t is obtained from a
random number u1 as

t

B!A

=

� ln u1

!

B!A

. (3.6)

Now the time of the next jump, from A to B is t3 = t2 + t

A!B

where

t

A!B

=

� ln u2

!

A!B

, (3.7)

and so on.

c /home/raul/COHERENCE/rate1.f
implicit double precision(a-h,o-z)
tmax=10000.0d0
t=0.0d0
wab=0.5d0
wba=1.0d0
call dran_ini(12345)
i=i_dran(2)
write(66,*) t,i
do while (t.lt.tmax)

if (i.eq.1) then
tn=-dlog(dran_u())/wab
in=2

else
tn=-dlog(dran_u())/wba
in=1

endif
t=t+tn
write(66,*) t,i
i=in
write(66,*) t,i

enddo
end

We now consider the more general case that there are M states labeled by 1, 2, . . . ,M .
Imagine that at time t0 we are at state i0. Now there can be jumps to M � 1 di↵erent
states with rates !

i0!k

for k = 1, . . . , N , k 6= i0. If !

i0!j

= 0, then the correspond-
ing jump t

i0!j

is not permitted. We generate now M � 1 random numbers u

k

0 for
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k = 1, . . . ,M , k 6= i0 and compute the jumping times to every one of these states as:

t

i0!k

=

� ln u

k

0

!

i0!k

, k = 1, . . . ,M, k 6= i0 (3.8)

The next jump to happen will be the one that occurs in the smallest possible time
t

i0!i1 = min(t

i0!1, ti0!2, · · · , t

i0!M

). The, at time t1 = t0 + t

i0!i1 we jump from i0 to
i1. Now that we are at state i1, we generate the random numbers u

k

1 for k = 1, . . . ,M ,
k 6= i1 and compute the times of possible jumps

t

i1!k

=

� ln u

k

1

!

i1!k

, k = 1, . . . ,M, k 6= i1. (3.9)

The actual jump i1 ! i2 is the one that occurs in the earliest time
t

i1!i2 = min(t

i1!1, ti1!2, · · · , t

i1!M

). Then, at time t2 = t1 + t

i1!i2 the state jumps
from i1 to i2. The process starts again at state i2 at time t2.

Here we present a computer program that implements this numerical method:

c /home/raul/COHERENCE/rate2.f
implicit double precision(a-h,o-z)
parameter (M=10)
dimension w(M,M)
do i=1,M

do j=1,M
w(i,j)=abs(i-j)

enddo
enddo
tmax=10000.0d0
t=0.0d0
call dran_ini(12345)
i=i_dran(M)
write(66,*) t,i
do while (t.lt.tmax)

if (i.eq.1) then
j0=2

else
j0=1

endif
tn=-dlog(dran_u())/w(i,j0)
in=j0
do j=j0+1,M

if (j.ne.i) then
if (w(i,j).gt.0.0d0) then

t1=-dlog(dran_u())/w(i,j)
if (t1.lt.tn) then

tn=t1
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in=j
endif

endif
endif

enddo
t=t+tn
write(66,*) t,i
i=in
write(66,*) t,i

enddo
end

The same problems can be considered from a di↵erent point of view. Imagine first
that we are interested in the behavior of an ensemble of N independent systems. Each
of the systems follows a stochastic dynamics with jumps between two possible states A

and B. In order to simulate the behavior of the ensemble, we can either run the above
program rate1 N times and then analyze the data accordingly or we can just focus on
the stochastic variable that gives the number n of systems which at time t are in state
A. By conservation, the number of systems which are at state B is N � n.

From this alternative point of view, the variable n can take any of the N + 1 values
n = 0, 1, . . . , N . So, we consider that the ensemble can be in any of N + 1 states
labeled by the value of n. This is similar to the second case explained before (program
rate2). However the problem gets simpler as the only possible transitions allowed are
those that increase (or decrease) in one unit the value of n, corresponding to transitions
from one system from B to A (or from A to B). The rate of the transition from n to
n + 1 is (N � n)!

B!A

and the rate of the transition from n to n� 1 is n!

A!B

. Then,
if at time t0 we are in state n we have to compute the time t

n!n+1 of the next jump
n ! n + 1 and the time t

n!n�1 of the next jump to n ! n� 1 and realize the action
implied by the minimum of these two values. Let us now give a specific program that
implements this numerical method.

c /home/raul/COHERENCE/rate1b.f
implicit double precision(a-h,o-z)
tmax=10000.0d0
t=0.0d0
wab=0.5d0
wba=1.0d0
call dran_ini(12345)
n=i_dran(N+1)-1
write(66,*) t,n
do while (t.lt.tmax)

if (n.eq.0) then
tn=-dlog(dran_u())/(N*wba)

in=1
elseif (n.eq.N)
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tn=-dlog(dran_u())/(N*wab)
else

tn1=-dlog(dran_u())/((N-n)*wba)
tn2=-dlog(dran_u())/(n*wab)
if (tn1.lt.tn2) then

tn=tn1
in=n-1

else
tn=tn2
in=n+1

endif
endif

t=t+tn
write(66,*) t,n
n=in
write(66,*) t,n

enddo
end

An extension of this description can be used in the case that an individual system can
be in more than 2 states. Instead of giving now an specific example, we will explain first
a modification introduced by Gillespie that leads to a much more e�cient programming
of the numerical simulations.

3.2 The Gillespie’s algorithm.

Gillespie has proposed a very simple but very e↵ective modification of the numerical
algorithm. We first take the point of view of considering only one system. This can be
in any of M states. Assume that, as before, the system is in the state i0 at time t0.
First, one computes the rate of escape from this state i0 to any other state j 6= i0. This
is nothing but ⌦

i0 =

P
j 6=i0

!

i0!j

. Then one computes the time interval to the next
jump t

i0!i1 using this total rate:

t

i0!i1 =

� ln u0

⌦

i0

. (3.10)

Once the time of the next jump has been determined as t1 = t0 + t

i0!i1 then we have
to determine where to jump, or which is the final state i1. The probability p

i0!j

, of
reaching state j 6= i0 is proportional to the rate !

i0!j

, or

p

i0!j

=

!

i0!j

⌦

i0

(3.11)

It is easy now to determine the final state i1 by using a random number v0 uniformly
distributed in the interval (0, 1) and finding the smallest i1 that satisfies

P
i1

j=1 p

i0!j

> v0.
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The program is:

c /home/raul/COHERENCE/rate3.f
implicit double precision(a-h,o-z)
parameter (M=100)
dimension w(M,M),wt(M)
do i=1,M
wt(i)=0.0d0

do j=1,M
w(i,j)=abs(i-j)
wt(i)=wt(i)+w(i,j)

enddo
enddo
tmax=10000.0d0
t=0.0d0
call dran_ini(12345)
i=i_dran(M)
write(66,*) t,i
do while (t.lt.tmax)

tn=-dlog(dran_u())/wt(i)
p=0.0d0
j=0
r=dran_u()*wt(i)
do while (r.gt.p)
j=j+1
p=p+w(i,j)
enddo
t=t+tn
write(66,*) t,i
i=j
write(66,*) t,i

enddo
end

If we take now the point of view that there are N (possibly interacting) systems we
need to consider the variables that give the number of systems n

k

which are on each
of the possible states k = 1, . . . ,M . These variables will change (typically by a small
amount) and the rates of the transitions (n1, . . . , nM

) ! (n

0
1, . . . , n

0
M

) will depend on
the variables (n1, . . . , nM

) themselves. It is easier if we consider an specific example.
A simple model for the spread of an epidemics is the so-called SIR model: S (for

susceptible), I (for infectious) and R (for recovered). In its simplest form a population
of N individuals is splitted into these three groups: susceptible people can get the
disease, infectious people have the disease and can hence pass the infection to susceptible
people. Infected people cure and then they become immune to antoher infection. In
this simple version, there are no death or birth of individuals and their total number
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remains constant. If n

S

, n

I

, n

R

are, respectively, the number of susceptible, infected and
recovered individuals, they verify n

S

+ n

I

+ n

R

= N the basic ingredients of the model
are:
1) A susceptible gets infected after being in contact with an infected. The contact of
a susceptible with an infected will occur with probability proportional to n

I

/⌦, being ⌦

a parameter that determines the spatial extension of the population. If we call � the
rate at which a given susceptible people gets infected after a contact with an infected
people, the overall rate at which one susceptible people will get infected is �n

I

/⌦. The
rate at which any susceptible will get infected is then �n

S

n

I

/⌦.
2) An infected individual gets cured and becomes recovered. This happens, for an
individual infected, at rate ⌫.

In step (1), when a susceptible gets infected the numbers vary as: n

S

! n

S

�1, n

I

!
n

I

+ 1. In step (2), recovery of an infected, the numbers vary as: n

I

! n

I

� 1, n

R

!
n

R

+1. It is possible (and convenient) to introduce more steps in the process, such as the
death (possibly with di↵erent rates) of susceptible, infected and recovered individuals;
the birth of susceptible individuals and the entrance of infected individuals from another
town. However, for the sake of clarity, we only consider the two previous basic ingredients.

Now it is easy what to do: at the population level, the two jumps are (1) n

S

!
n

S

� 1, n

I

! n

I

+ 1 with rate �n

S

n

I

/⌦ and (2) n

I

! n

I

� 1, n

R

! n

R

+ 1 with
rate ⌫n

I

. The reader might find interesting to write down the master equation of the
model and to derive the corresponding mean-field equations for the densities s = n

S

/⌦,
i = n

I

/⌦, r = n

R

/⌦:

ds

dt

= ��si (3.12)

di

dt

= �si� ⌫i (3.13)

dr

dt

= ⌫i (3.14)

The following program implements Gillespie’s algorithm for this model:

c /home/raul/COHERENCE/epidemics.f
implicit double precision(a-h,o-z)
doube precision nu
N=10000
tmax=10000.0d0
t=0.0d0
nu=0.5d0
beta=1.0d0
Omega=100.0d0
call dran_ini(12345)
ni=i_dran(N+1)-1
ns=N-ni
nr=0
write(66,*) t,ns,ni,nr
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do while (t.lt.tmax)
if (ni.eq.0) stop
w1=beta*ns*ni/Omega
w2=nu*ni
w=w1+w2
tn=-dlog(dran_u())/w
t=t+tn
write(66,*) t,ns,ni,nr
if (dran_u().lt.w1/w) then

ns=ns-1
ni=ni+1

else
ni=ni-1
nr=nr+1

endif
write(66,*) t,ns,ni,nr

enddo
end


