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Aging in binary-state models: The Threshold model for complex contagion
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We study the non-Markovian effects associated with aging for binary-state dynamics in complex networks.
Aging is considered as the property of the agents to be less prone to change their state the longer they have
been in the current state, which gives rise to heterogeneous activity patterns. In particular, we analyze aging
in the Threshold model, which has been proposed to explain the process of adoption of new technologies. Our
analytical approximations give a good description of extensive Monte Carlo simulations in Erdős-Rényi, random-
regular and Barabási-Albert networks. While aging does not modify the cascade condition, it slows down the
cascade dynamics towards the full-adoption state: the exponential increase of adopters in time from the original
model is replaced by a stretched exponential or power law, depending on the aging mechanism. Under several
approximations, we give analytical expressions for the cascade condition and for the exponents of the adopters’
density growth laws. Beyond random networks, we also describe by Monte Carlo simulations the effects of aging
for the Threshold model in a two-dimensional lattice.
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I. INTRODUCTION

Stochastic binary-state models are a versatile tool to de-
scribe a variety of natural and social phenomena in systems
formed by many interacting agents. Each agent is considered
to be in one of two possible states: susceptible or infected,
adopters or nonadopters, democrat or republican, etc., de-
pending on the context of the model. The interaction among
agents is determined by the underlying network and the dy-
namical rules of the model. There are many examples of
binary-state models, including processes of opinion formation
[1–4], disease or social contagion [5,6], etc. Extended and
modified versions of these models can lead to very different
dynamical behaviors than in the original model. As exam-
ples, the use of multilayer [7–9] or time-dependent networks
[10], higher-order interactions [11–13], nonlinear collective
phenomena [14,15], noise [16], and non-Markovian [17–20]
effects induce significant changes to the dynamics.

A well-known binary-state model is the Threshold model
[21], introduced by Granovetter [5], for rumor propagation,
adoption of new technologies, riots, stock market herds, polit-
ical and environmental campaigns, etc. These are examples of
complex contagion processes [22,23] in which contagion, at
variance with simple contagion (such as in the voter and SIS
models), requires simultaneous exposure to multiple adopter
neighbors and a threshold fraction of neighboring agents
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that have already undergone contagion. Complex contagion
implies a process of group or many-agent interactions built
from a combination of pairwise interactions. The discontin-
uous phase transition and the cascade condition exhibited by
the Threshold model were predicted with analytical tools in
Ref. [21]. This model has been extensively studied in regular
lattices and small-world networks [22], random graphs [24],
modular and community structure [25], clustered networks
[26,27], hypergraphs [11], homophilic networks [28], etc.
Moreover, recent studies also include variants of the adoption
rules, including the impact of opinion leaders [29] and seed
size [30], on-off threshold [31], and the competition between
simple and complex contagion [28,32,33]. Additionally, the
Threshold model has been confronted with several sources of
empirical data [34–41].

Theoretical and computational studies of stochastic binary-
state models, including the Threshold model, usually rely on
a Markovian assumption for its dynamics. However, there is
strong empirical evidence against this assumption in human
interactions. For example, bursty non-Markovian dynamics
with heavy-tail inter-event time distributions, reflecting tem-
poral activity patterns, have been reported in many studies
[42–47]. The understanding of these non-Markovian effects is
in general a topic of current interest [17–19,48]. In particular,
for the Threshold model, memory effects have been included
as past exposures’ memory [49], message-passing algorithms
[50], memory distributions for retweeting algorithms [51], and
timers [52].

Aging is an important non-Markovian effect that we ad-
dress in this paper for binary-state models. Aging accounts for
the influence that the persistence time of an agent in a given
state modifies the transition rate to a different state [20,53–
56], so that the longer an agent remains in a given state, the
smaller is the probability to change it. Aging effects have
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already been shown to modify binary-state dynamics very
significantly. For example, aging is able to produce coarsening
towards a consensus state in the voter model [48,54], to induce
continuous phase transitions in the noisy voter model [19,57],
or to modify the phase diagram and nonequilibrium dynamics
of the Schelling segregation model [58].

In the specific context of innovation adoption, other mech-
anisms of inertia or resistance to adopt the technology have
already been introduced. In fact, the original approach of
Rogers [59] considers a fraction of “laggards” that will resist
innovating until a large majority of the population has already
adopted it. Similar articles highlight the importance of timing
interactions [60] and the effect of “contrarians” (tendency
to act against the majority), which has an important impact
on the dynamics [61,62]. In Ref. [62], it is discussed how
different technologies may show different adoption cascades
regarding the balance between advertisement and resistance
to change.

In this paper, we provide a general theoretical framework
to discuss aging effects building upon a general Marko-
vian approach for binary-state models [63,64]. We build a
general master equation for any binary-state model with tem-
poral activity patterns and we propose two different aging
mechanisms giving rise to heterogeneous activity patterns,
characterized by flat-tail inter-event time distributions. As an
example, we apply this framework to the Threshold model for
complex contagion. Theoretical predictions are matched with
extensive Monte Carlo simulations in different networks. In
addition, the role of both aging mechanisms is also studied in
a two-dimensional Moore lattice.

The paper is organized as follows. In the next section,
we describe the original Threshold model and introduce ex-
ogenous and endogenous aging in the model. In Sec. III,
numerical results are reported and contrasted with theoretical
predictions for different complex networks. For completeness,
in Sec. IV, the case of a two-dimensional (2D) lattice is
analyzed. The final section contains a summary and a discus-
sion of the results. The derivation of the approximate master
equation (AME) for general binary-state dynamics with aging
effects is given in the Appendix.

II. AGING AND THE THRESHOLD MODEL

In the standard Threshold model [5,21], one considers a
network of N interacting agents. Each node of the network
represents an agent i with a binary-state variable σi = {0, 1}
and a given threshold T (0 < T < 1). The state indicates
whether or not the agent has adopted a technology (or joined
a riot, spread a meme or fake news, etc.). We use the wording
of a technology adoption process for the rest of the paper.
If a node i (with k neighbors) has not adopted (σi = 0) the
technology, it becomes an adopter (σi = 1) if the fraction m/k
of the neighbors’ adopters exceeds the threshold T . Adopter
nodes cannot go back to the nonadopter state.

In the Threshold model with aging, each agent has an
internal time j = 0, 1, 2, . . . (in Monte Carlo units) as in
Refs. [19,20,48,53–55,57,58,65]. As an initial condition, we
set j = 0 for all nodes. In Monte Carlo simulations, we follow
a random asynchronous update in which agents are activated
in discrete time steps with probability pA( j) = 1/( j + 2).

When a nonadopter agent is activated, he or she changes
state according to the threshold condition m/k > T . We
will consider two different aging mechanisms, endogenous
and exogenous aging [54], which account for the power-law
inter-event time distributions empirically observed in human
interactions [46]. For endogenous aging, the internal time
measures the time spent in the current state: If an agent in an
updating attempt is not activated or does not adopt, the internal
time increases by one unit. Therefore, the longer an agent has
remained without adopting the technology, the more difficult
it is for him or her to adopt it.

For exogenous aging, the internal time accounts for the
time since the last attempt to change state: In each updating
attempt in which the agent is activated, the internal clock
resets to j = 0 even if there is no adoption. In this case,
aging is understood as a resistance to adopt the technology the
longer the agent has not been induced to consider adoption by
some external influence.

III. DYNAMICS ON COMPLEX NETWORKS

In this section, we discuss the Threshold model with
endogenous and exogenous aging in three different com-
plex networks: random regular [66], Erdős-Rényi [67], and
Barabási-Albert [68].

A. Numerical results

For the considered networks, the Threshold model under-
goes a discontinuous phase transition at a certain critical value
Tc, which is called the cascade condition [21]. For T < Tc,
a small initial seed of adopters triggers a global cascade
where, on average, a significant proportion of agents in the
system adopts the technology (change from σi = 0 to 1). In
our analysis, the initial condition is set to favor cascades: one
agent i with degree ki = z is selected randomly and all his
or her neighbors are initially adopters, as in Refs. [22,30].
For T > Tc, there are few cascade occurrences and none of
them are global. The cascade condition dependence with the
average degree z of the underlying network has been studied
in Refs. [21,24]. For the two aging mechanisms considered
here, Monte Carlo simulations in random graphs show that
the Tc dependence on z is very similar to the one for the model
without aging (see Fig. 1). Therefore, for large connected
networks, it tends to the same cascade condition derived for
the original Threshold model (which for Erdős-Rényi (ER)
graphs is Tc = 1/z [21]). This result is not obvious a priori
because aging has been shown to modify the final state in
several models [19,20,48,53–55,57,58,65]. This is discussed
in detail in Appendix A.

Even though aging in the Threshold model does not modify
the cascade condition, it has a large impact in the complex
contagion cascade dynamics (Fig. 2). From Monte Carlo sim-
ulations in a random regular graph, we find that without aging,
the average fraction of adopters follows an initial exponential
increase with time [see Figs. 2(a) and 3(a)],

ρ(t ) ∼ ρ0 eα t , (1)

where ρ0 is the initial fraction of adopters (seed). This be-
havior is universal for all values of the control parameters z
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FIG. 1. Average density ρ of adopters for an Erdős-Rényi graph
of mean degree z using a model with threshold T . Color-coded values
of ρ are from Monte Carlo simulations of the model without aging
in a graph with N = 10 000 agents. Black dashed and white dotted
lines correspond to the Tc value obtained numerically for the model
with exogenous and endogenous aging, respectively. Monte Carlo
simulations are averaged over M = 5×104 realizations. The red solid
line is the analytical approximation of the cascade boundary, from
Eq. (17), which is the same with and without aging.

and T below the cascade condition. In addition, we inves-
tigated the approach to the full-adopt state (ρ = 1) and we
found that the number of nonadopters follows an exponential
decay 1 − ρ(t ) ∼ e−t for all values of the control parameters
[see inset in Fig. 3(a)].

When aging is introduced, the cascade dynamics are much
slower than an exponential law [see Fig. 2(b)]. For endoge-
nous aging, all agents that are nonadopters have the same
activation probability pA( j), which decreases at each time
step. This gives rise to cascade dynamics that are well fitted

(c)

(a)

(b)

t = 2 t = 20 t = 40
(a)))))))

t = 2 t = 20 t = 40

FIG. 2. Cascade spreading for (a) the original Threshold model,
and the versions with (b) endogenous and (c) exogenous aging.
Yellow nodes are adopters and purple nodes are nonadopters. Time
increases from left to right. Monte Carlo simulations are performed
in an Erdős-Rényi network with mean degree z = 3 and T = 0.22.
System size is N = 8 000.

FIG. 3. Cascade dynamics and fall to the full-adopt state (ρ ∼ 1)
of the Threshold model (a) without aging, and the versions with
(b) endogenous and (c) exogenous aging effects. At (b) and (c), the
evolution is plotted as a function of the logarithm of time, ln (t ),
in Monte Carlo steps, as in the insets. The underlying network is a
3-regular random graph and the threshold is T = 0.2. The exponent
values are α � 1.0, β � 1.14, γ � 0.38, and δ � 1.0. Numerically
integrated solutions of Eq. (4) (solid lines) accurately describe
the numerical results. Monte Carlo simulations are averaged over
M = 5×104 realizations in a network of N = 1.6×105 nodes.

by a power-law increase [see Fig. 3(b)],

ρ(t ) ∼ ρ0

(
t + 2

2

)δ

. (2)

For exogenous aging, we observe a slow adoption spread at
the beginning followed by a cascade where almost all agents
adopt the technology [Fig. 2(c)]. This behavior is well fit-
ted with a stretched exponential increase of the number of
adopters [see Fig. 3(c)],

ρ(t ) ∼ ρ0 eβ ((t+2)/2)γ . (3)

For both aging mechanisms, in the last stages of evolu-
tion, a few “stubborn” nonadopters remain, although the
environment favors the adoption. Due to the chosen activa-
tion probability, the number of nonadopters decay with a
power law 1 − ρ(t ) ∼ 1/(t + 2) in both cases [see insets of
Figs. 3(b) and 3(c)].

Comparing the evolution of the original model with one
of the versions with aging, we observe an important sepa-
ration of timescales. While for the original model, the time
to reach the steady state follows a logarithmic increase with
the system size, the versions with endogenous and exogenous
aging show a power law and a power-logarithmic dependence,
respectively (see Fig. 4). Therefore, the timescale separation
between the original model and the versions with aging in-
creases as we increase the system size, and thus the aging
effects are more relevant for large systems.

The power law and the stretched exponential dynamics for
endogenous and exogenous aging, respectively, are observed
for all parameter values z and T below the cascade condition
(T < Tc) and for all system sizes. This is shown in Fig. 5 for
random-regular, Erdős-Rényi, and Barabási-Albert networks.
In particular, we show that the time-dependent behavior for
different system sizes collapses to a single curve when time is
scaled with the system size-dependent timescale (previously
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FIG. 4. Average time to reach the steady state (ρ > 0.9) τ as a
function of the system size N for the original Threshold model and
the versions with endogenous and exogenous aging. The underlying
network is a 5-regular random graph and the threshold is T = 0.12.
Monte Carlo simulations are averaged over M = 5×104 realizations.
Solid lines are the system size-dependent timescale: For the origi-
nal model, τNO AG = (1/α) ln(N ), and for the endogenous (τENDO =
2N1/δ − 2) and exogenous (τEXO = 2[ln(N )/β]1/γ − 2) aging, which
follows from the dynamics from Eqs. (1)–(3). The exponents α, β,
γ , and δ are fitted exponents.

analyzed in Fig. 4) that follows from either the power-law
dynamics (τENDO = 2N1/δ − 2) or the stretched exponential
law (τEXO = 2[ln(N )/β]1/γ − 2). Notice that the scaling of
the y axis is necessary for Figs. 5(d)–5(f) to show a linear
dependence (for all system sizes) due to the stretched expo-
nential increase.

A different question is the dependence of the exponents of
the power law and stretched exponential with the parameters
z and T . Numerical results from fitted Monte Carlo simula-
tions for α(z, T ), δ(z, T ), and γ (z, T ) are shown in Figs. 6
and 7. For a random-regular graph, as apparent from Fig. 5,
the exponents do not depend on the parameter T up to Tc

[so the exponents are dependent only on z, α(z), γ (z), and
δ(z)], while for Erdős-Rényi and Barabási-Albert networks,
the value of the exponents decreases with T when approaching
Tc, indicating a slowing down of the dynamics. Also, for these
two latter networks, the exponents present a maximum value
at a certain value of z. This maximum value at a certain z for
a fixed T can be understood as being between the two critical
lines of Fig. 1.

B. General mathematical description

To account for the non-Markovian dynamics introduced
by the aging mechanism, we need to go beyond the standard
mathematical descriptions of the Threshold model [24,25,64].
We do so using a Markovian description by enlarging the
number of variables [19,48]. Namely, we classify the agents
with degree k, number of adopter neighbors, m, and age
j as different sets in a compartmental model in a general
framework for binary-state dynamics in complex networks
[21,63,64]. Assuming a local treelike network structure, such
as the one generated using the configuration model for a
generic degree distribution pk [69,70] or Erdős-Rényi model,
we derive a general master equation [71] for binary-state
dynamics with temporal activity patterns in complex net-

works considering the following possible transitions (see
Appendix B for details):

(i) A susceptible [infected] node changes state and resets
internal age with probability F (k, m, j) [R(k, m, j)].

(ii) A susceptible [infected] node remains in the same
state and resets internal age to zero ( j → 0) with probability
FR(k, m, j) [RR(k, m, j)].

(iii) A susceptible [infected] node remains in the same
state and ages ( j → j + 1) with probability FA(k, m, j)
[RA(k, m, j)].

See a schematic representation in Fig. 11. Note that here
we introduce epidemics notation of susceptible or infected
nodes [63,64], but it is immediately translated to the non-
adopter or adopter situation of our model. For the specific
case of the Threshold model, the dynamics are monotonic and
R(k, m, j) = 0 (no adopter becomes a nonadopter). Moreover,
when an agent becomes an adopter, there are neither resetting
nor aging events, RR(k, m, j) = RA(k, m, j) = 0. This means
as well that equations for the nonadopter sk,m, j and adopter
ik,m, j nodes are independent. Thus, we can write the following
rate equations for the evolution of the fraction sk,m, j (t ) of
k-degree nonadopter nodes with m infected neighbors and
age j:

dsk,m, j

dt
= − sk,m, j − (k − m) βs sk,m, j

+ (k − m + 1) βs sk,m−1, j−1

+ FA(k, m, j − 1) sk,m, j−1,

dsk,m,0

dt
= − sk,m,0 − (k − m) βs sk,m,0

+
∑
l=0

FR(k, m, l ) sk,m,l , (4)

where βs is a nonlinear function of sk′,m′, j′ for all values of
k′, m′, and j′ [see Eq. (B4)]. The remaining step is to explicitly
define the transition probabilities for our aging mechanisms.
For both exogenous and endogenous aging, the adoption prob-
ability is the probability that an agent is activated and has a
fraction of adopters that exceeds the threshold T , which means
that

F (k, m, j) = pA( j) θ (m/k − T ), (5)

where θ (·) is the Heaviside step function.
The reset and aging probabilities for endogenous and ex-

ogenous aging mechanisms are different. The simplest case is
endogenous aging, where there is no reset FR(k, m, j) = 0 and
agents increase, by one, the age with probability

FA(k, m, j) = 1 − F (k, m, j) = 1 − pA( j) θ (m/k − T ).
(6)

When aging is exogenous, the reset probability is the proba-
bility to activate and not adopt,

FR(k, m, j) = pA( j) [1 − θ (m/k − T )]. (7)

Thus, agents that age are just the ones that do not activate,
FA(k, m, j) = 1 − pA( j).

Using these definitions, we have integrated Eq. (4) nu-
merically for the Threshold model with both endogenous
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Cascade dynamics of the Threshold model with (a)–(c) endogenous and (d)–(f) exogenous aging. From the left column to the right:
(a), (d) a random regular graph with degree z = 5, (b), (e) an Erdős-Rényi graph with average degree z = 5, and (c), (f) a Barabási-Albert graph
with average degree z = 8. Different colors indicate different values of T and markers correspond to different system sizes: N = 2 500 (plus),
10 000 (circles), 40 000 (triangles), 160 000 (crosses), and 640 000 (squares). Time is scaled according to the system size for each model:
τEXO = 2[ln(N )/β]1/γ − 2, τENDO = 2N1/δ − 2, where β, γ , and δ are the fitted exponents from the behavior according to Eqs. (2) and (3).
Solid lines are obtained from the solutions of Eq. (13). Monte Carlo simulations are averaged over M = 5×104 realizations.

and exogenous aging. Numerical solutions give good agree-
ment with Monte Carlo simulations (see Fig. 3). However,
in a general network, considering a cutoff for the degree
k = 0, . . . , kmax and age j = 0, . . . , jmax, the number of dif-
ferential equations to solve is (kmax + 1) (kmax + 1) ( jmax + 1)
according to the three subindexes of the variable sk,m, j . This
number grows with the largest degree square and largest age
considered and, thus, some further approximations are needed
to obtain a convenient reduced system of differential equa-
tions.

As an ansatz, we assume that timing interactions can be ef-
fectively decoupled from the adoption process so the solution
of Eq. (4) can be written as

sk,m, j (t ) = sk,m(t ) Gj (t ), (8)

where sk,m is the fraction of nonadopters with degree k and
m infected neighbors, sk,m = ∑

j sk,m, j , and there is an age
distribution Gj (t ), independent of the adoption process.

If we sum over the variable age j in Eq. (4), we can rewrite
the following rate equations for the variables sk,m:

dsk,m

dt
= − 〈pA〉 θ (m − kT ) sk,m − (k − m) βs sk,m

+ (k − m + 1) βs sk,m−1, (9)

where aging effects are just included in 〈pA〉(t ),

〈pA〉(t ) =
∞∑
j=0

pA( j) Gj (t ). (10)

Using the definition of the fraction of k-degree agents
adopters ρk (t ),

ρk (t ) = 1 −
∞∑
j=0

k∑
m=0

sk,m, j, (11)

and along the lines of Ref. [64], we use the exact solution

sk,m = [1 − ρk (0)] Bk,m[φ], (12)

where Bk,m[φ] is the binomial distribution with k attempts, m
successes, and with success probability φ. From this point, we
derive from Eq. (9) a reduced system of two coupled differen-
tial equations for the fraction of adopters, ρ(t ) = ∑

k pkρk (t ),
and an auxiliary variable φ(t ) (see details in Ref. [64]):

dρ

dt
= 〈pA〉[h(φ) − ρ],

dφ

dt
= 〈pA〉[g(φ) − φ], (13)

where φ(t ) can be understood as the probability that a ran-
domly chosen neighbor of a nonadopter node is an adopter at
time t . The functions h(φ) and g(φ) are nonlinear functions of
this variable φ,

h(φ) =
∞∑

k=0

pk

{
ρk (0) + [1 − ρk (0)]

k∑
m=kT

Bk,m[φ]

}
,

g(φ) =
∞∑

k=0

k

z
pk

{
ρk (0) + [1 − ρk (0)]

k∑
m=kT

Bk−1,m[φ]

}
.

(14)

When 〈pA〉 is replaced by a constant, Eqs. (13) reduce to
previous results for the original model [25].
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FIG. 6. Exponent α for the original Threshold model (empty
markers) and δ for the version with endogenous aging (filled mark-
ers) for different values of the average degree z (and T = 0.1) (left)
and as a function of T for fixed z (right). Different markers indicate
results from Monte Carlo simulations with different topologies: red
triangles indicate an Erdős-Rényi (ER) graph, blue circles indicate a
random-regular (RR) graph, and green squares indicate a Barabási-
Albert (BA) graph. In the right panel, the average degree is fixed
z = 5 for ER and RR, and z = 8 for the BA. Predicted values by
Eq. (22) (solid lines) fit the results for each topology. System size is
fixed at N = 4×106 for the original model and N = 3.2×105 for the
version with aging.

Determining the distribution Gj (t ) is not easy. For endoge-
nous aging, all nonadopters have the same age at each time
step and Gj (t ) = δ( j − t ) [where δ(·) is the Dirac delta func-
tion]. Therefore, 〈pA〉 = 1/(t + 2). The numerical solution of
Eq. (13) gives a good agreement with Monte Carlo simula-
tions [see Figs. 5(a)–5(c)]. For the case of exogenous aging,
the reset of the internal clock makes more difficult a choice
for Gj (t ). Inspired by the stretched exponential behavior of
ρ(t ) observed from Monte Carlo simulations, we propose
〈pA〉 = 1/(t + 2)μ. For μ = 0.75, the numerical solutions of
Eq. (13) gives a very good agreement with our Monte Carlo
simulations [see Figs. 5(d)–5(f)].

FIG. 7. Exponent γ for the Threshold model with exogenous
aging for different values of the average degree z (T = 0.1) (left)
and as a function of T for fixed z (right). Different markers indicate
results from Monte Carlo simulations with different topology: red
triangles indicate an Erdős-Rényi (ER) graph, blue circles indicate a
random-regular (RR) graph, and green squares indicate a Barabási-
Albert (BA) graph. In the right panel, the average degree is fixed
z = 5 for ER and RR, and z = 8 for the BA. Predicted values by
numerical integration of Eqs. (13) (solid lines) fit approximately the
results for each topology. System size is fixed at N = 3.2×105.

C. Analytical results

To obtain an analytical result for the cascade condition
and for the exponents of the predicted exponential, stretched-
exponential, and power-law cascade dynamics that we fitted
from Monte Carlo simulations, we need to go a step beyond
the numerical solution of our approximated differential equa-
tions [Eqs. (4) and (13)].

For a global cascade to occur, it is necessary that the vari-
able φ(t ) grows with time. If we assume a small initial seed
[ρk (0) → 0], Eq. (13) can be rewritten as in Ref. [24],

dφ

dt
= 〈pA〉

(
−φ +

∞∑
k=1

k

z
pk

k∑
m=k T

Bk−1,m[φ]

)
. (15)

Rewriting the sum term as
∑∞

l=0 Cl φl , with coefficients

Cl =
∞∑

k=l

l∑
m=0

(
k − 1

l

) (
l

m

)
(−1)l+m k

z
pk θ (m/k − T ),

(16)
we linearize Eq. (15) around φ = 0,

dφ

dt
≈ 〈pA〉 (C1 − 1) φ. (17)

The solution for Eq. (17) is then

φ(t ) = ρ0 e(C1−1)
∫ t

0 〈pA〉(s) ds, (18)

given that φ(0) = ρ0.
Since 〈pA〉(t ) is always positive, global cascades occur

when (C1 − 1) > 0. This cascade condition does not depend
on the aging term 〈pA〉(t ), and thus it is the same as for the
Threshold model without aging. In Fig. 1, the red solid line
is the result of this analytical calculation and it is in good
agreement with the numerical results.

Linearization is also useful to determine the time depen-
dence of the cascade process. Assuming a small initial seed
and rewriting the term h(φ) as

∑∞
l=0 Kl φl , the linearized

equation for the fraction of adopters ρ(t ) becomes

dρ

dt
≈ 〈pA〉 (K1 − 1) φ, (19)

where the coefficients Kl are

Kl =
∞∑

k=l

l∑
m=0

(
k

l

) (
l

m

)
(−1)l+m pk θ (m/k − T ). (20)

A solution for the fraction of adopters ρ(t ) can be obtained
from Eqs. (18) and (19). For the case of the Threshold model
without aging, setting 〈pA〉 = 1, the solution is an exponential
cascade dynamics,

ρ(t ) = ρ0 e(C1−1) t . (21)

Therefore, the number of adopters, ρ(t ), follows an exponen-
tial increase with exponent α(z, T ),

α(z, T ) = C1 − 1 =

1/T �∑
k=0

k (k − 1)

z
pk − 1, (22)

where C1 is computed from Eq. (16).
For endogenous aging, the same derivation is valid to de-

termine the exponents δ(z, T ). Using 〈pA〉 = 1/(t + 2), the
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fraction of adopters follows a power-law dependence,

ρ(t ) = ρ0

(
t + 2

2

)(C1−1)

. (23)

The exponent reported for the power-law cascade dynamics
δ(z, T ) turns out to be, therefore, the same exponent as the
one for the exponential behavior where there is no aging:
δ(z, T ) = α(z, T ) = C1 − 1. Figure 6 compares the predic-
tion of Eq. (22) with the results computed from Monte Carlo
simulations. There is a good agreement for both the Barabási-
Albert and Erdős-Rényi networks for all values of T and
z. For a random-regular graph, the predicted dependence,
α(z) = z − 2, is not a good approximation for large z. This is
because the presence of small cycles increases importantly in
a random-regular graph as the average degree z grows [72] and
the locally tree assumption made for the derivation of the rate
equations [Eq. (4)] is no longer valid. A different approach
is necessary for clustered networks (as in Ref. [73] for the
Threshold model).

For exogenous aging, an analytical expression for the ex-
ponent γ (z, T ) is not obtained following this methodology.
Still, we can fit the exponent from the numerical solutions in
Figs. 5(d)–5(f). Figure 7 shows a good comparison between
the exponent calculated from the numerical solutions from the
AME and the one calculated from Monte Carlo simulations.
The dependence of γ (z, T ) with the parameters z and T is
qualitatively similar to the dependence of α(z, T ).

IV. DYNAMICS ON A MOORE LATTICE

The Threshold model in a two-dimensional regular lattice
with a Moore neighborhood (nearest and next-nearest neigh-
bors) is known to have a critical threshold (cascade condition)
Tc = 3/8 [22]. Below this value, the cascade dynamics fol-
lows a power-law increase in the density of adopters, ρ(t ) ∼
t2, which does not depend on the threshold value T . In
Fig. 8(a), we show a typical realization of this model: From
an initial seed, the adoption radius increases linearly with time
until all agents adopt the technology.

When aging is considered, the cascade dynamics become
much slower and a dependence on T appears. When the aging
mechanism is exogenous, Monte Carlo simulations indicate
cascade dynamics following a power law ρ(t ) ≈ t ζ (T ). Quali-
tatively, we observe that while in the case without aging there
was a soft interface between adopter and nonadopters, aging
causes a strong roughening in the interface and the presence
of nonadopters inside the bulk [see Fig. 8(b)]. In addition, the
exponent values fitted from Monte Carlo simulations allow us
to collapse curves for different system sizes [see Fig. 9(a)].
Due to finite-size effects, the interface between adopters and
nonadopters eventually reaches the borders of the system and
the remaining nonadopters, in the bulk will slowly adopt
with the density of adopters following the functional shape
ρ(t ) = 1 − 1/(t + 2).

Figure 8(c) shows the dynamics towards global adoption
for endogenous aging. In comparison with the case of exoge-
nous aging, we do not observe strong interface roughening
between adopters and nonadopters because nonadopters are
not present in the bulk. Monte Carlo simulations indicate a
very slow increase of the density of adopters ρ, similar to a

FIG. 8. Cascade spreading of (a) the original Threshold model
and the versions with (b) exogenous and (c) endogenous aging on
a Moore neighborhood lattice with size N = L×L, L = 405. Yellow
and purple nodes are adopters and nonadopters, respectively. Time
increases from left to right. Initial seeds are selected favoring cas-
cades: one agent and all his or her neighbors are set as adopters at
the center of the system.

FIG. 9. Cascade dynamics of the Threshold model with (a) ex-
ogenous and (b) endogenous aging on a Moore neighborhood lattice.
Different colors indicate different values of the threshold T . Different
markers indicate the results of Monte Carlo simulations with dif-
ferent system size N = L×L: L = 50 (crosses), 100 (triangles), 200
(circles), and 400 (squares). In (a), time is scaled according to size
τ = L2/ζ . Discontinuous solid lines indicate a power-law behavior
with exponent ζ = 4/3 (blue), 1 (red), and 2/3 (green). In (b), the
system sizes are not scaled due to the slow dynamics. Discontinuous
solid lines indicate a power-logarithmic behavior, ρ(t ) N ∼ ln(t )ν ,
with exponent ν = 7/3 (blue), 2 (red), and 5/3 (green).
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power-logarithmic growth ρ(t ) ≈ [ln(t )]ν , with a threshold-
dependent exponent ν(T ) [Fig. 9(b)]. Unfortunately, we were
not able to find an analytical framework for the Threshold
model in a Moore lattice. Our general approximation used
for complex networks assumes a treelike network and is not
appropriate for this case.

V. CONCLUSIONS

We have addressed, in this work, the role of aging in
general models with binary-state agents interacting in a com-
plex network. Temporal activity patterns are incorporated by
means of a variable that represents the internal time of each
agent. We have developed an approximate master equation for
this general situation. In this framework, we have explic-
itly studied the effect of aging in the Threshold model as a
paradigmatic example of complex contagion processes. Aging
implies a lower probability to change the state when the in-
ternal time increases. We considered two aging mechanisms:
endogenous aging, in which the internal time measures the
persistence time in the current state, and exogenous aging, in
which the internal time measures the time since the last update
attempt.

Our theoretical framework with some approximations
to attain analytical results provides a good description of
the results from Monte Carlo simulations for Erdős-Rényi,
random-regular, and Barabási-Albert networks. For these
three types of complex networks, we found that the cascade
condition Tc (critical value of the threshold parameter T as
a function of mean degree z of the network) for the full
spreading from an initial seed is not changed by the aging
mechanisms. However, aging modifies, in nontrivial ways, the
cascade dynamics of the process. The exponential growth with
exponent α(z, T ) of the density of adopters in the absence
of aging becomes a power law with exponent δ(z, T ) for en-
dogenous aging, and a stretched exponential characterized by
an exponent γ (z, T ) for exogenous aging. We have analyzed
the exponents’ dependence with the order parameters α(z, T ),
δ(z, T ), and γ (z, T ), and shown that δ(z, T ) = α(z, T ).

Our general theoretical framework, based on the assump-
tion of a treelike network, is not appropriate for a regular
lattice. In this case, we have only been able to run Monte
Carlo simulations. Our results indicate that exogenous aging
gives rise to adoption dynamics characterized by an increase
in the interface roughness, by the presence of nonadopters
in the bulk, and by a power-law growth of the density of
adopters with exponent ζ (T ), while in the absence of aging,
ζ = 2 independently of T . Endogenous aging, on the other
hand, produces very slow (logarithmiclike) dynamics, with a
threshold-dependent exponent ν(T ).

This work highlights the importance of non-Markovian dy-
namics in general binary-state dynamics and, specifically, in
the Threshold model. For the problem of innovation adoption
that this model addresses, we show how persistence times
have an important impact on the adoption cascade. In fact,
in the lattice, for T = 2/8 and exogenous aging, we recover a
linear evolution for the number of adopters as in Ref. [62] for
a mean-field model. Further work in this direction would be
to categorize technologies according to the adoption curve,
to show if the system has important resistance to the pre-

FIG. 10. Average density ρ of adopters for an Erdős-Rényi graph
of mean degree z using the symmetrical Threshold model with
endogenous aging with threshold T . The activation probability is
exponential, pA( j) = exp [−0.5 ∗ ( j + 1)]. Color-coded values of ρ

are from Monte Carlo simulations of the model without aging in a
graph with N = 10 000 agents. Monte Carlo simulations are aver-
aged over M = 5×104 realizations.

vious technology (endogenous aging), or a balance between
memory and external influence or advertisement (exogenous
aging). Furthermore, the theoretical framework presented here
gives a basis for further investigations of the memory effects
and non-Markovian dynamics in networks, and in particular
for binary-state models with aging. Still, a number of the-
oretical developments remain open for future work, such as
the consideration of stochastic finite-size effects [74]. Also,
proper approximations need to be developed to account for
some of our numerical results for random-regular networks
with high degree, as well as for high clustering, degree-degree
correlations networks and for regular lattices, including con-
tinuous field equations for this latter case.
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APPENDIX A: ACTIVATION PROBABILITY EFFECT
ON THE CASCADE CONDITION

For our chosen activation probability pA = 1/( j + 2), it
has been shown that aging is not able to modify the cascade
condition from the original Threshold model. It is natu-
ral to ask about the generality of this result. In fact, in
Fig. 10 we show that for an exponential activation probability
(pA = exp [−0.5( j + 1)]), the cascade condition is modified
and the system does not reach the absorbing state for any
values of the average degree z and the threshold T considered
before (compare with Fig. 1).
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One may think that this different behavior is because not
all nodes are able to activate and adopt the technology with
the exponential activation function. To clarify this issue, we
computed the probability that an agent never activates during
the whole evolution. Since we are performing a random asyn-
chronous update in a network of size N , the probability P that
an agent is not activated in an update attempt is the probability
of not being chosen plus the probability of being chosen and
not activating:

P [“agent is not activated in an attempt"]

=
(

1 − 1

N

)
+ 1

N
(1 − pA( j)). (A1)

As we are performing Monte-Carlo simulations, the prob-
ability P of the agent being not activated after the N update
attempts of the Monte-Carlo step is:

P [“agent is not activated in a MC step"]

=
[(

1 − 1

N

)
+ 1

N
(1 − pA( j))

]N

. (A2)

Therefore, the probability P that an agent is never activated
is the probability that the agent does not get activated during
the evolution, in other words, after infinite Monte-Carlo steps
(where after each Monte-Carlo, since it has not been activated,
the internal time j increases by one):

P [“agent is never activated"]

=
∞∏
j=0

[(
1 − 1

N

)
+ 1

N
(1 − pA( j))

]N

. (A3)

For both activation probabilities, exponential (pA( j) =
exp (−0.5( j + 1))) and power law (pA( j) = 1/( j + 2)), fol-
lowing Eq. (A3), the probability that an agent is never
activated tends to 0 for the long time simulation limit jmax →
∞ for any system size N . Therefore, all agents in the system
activate at least once during the simulation. Thus, the reason
that an exponential activation probability is able to change
the cascade condition and a power law function is not just
an activation effect, it is due to a non-trivial balance between
activation and the adoption process. Notice that this calcu-
lation is the same for both aging mechanisms (endogenous
and exogenous) because the difference between those appears
after the first activation.

APPENDIX B: DERIVATION OF A GENERAL MASTER
EQUATION FOR BINARY-STATE MODELS
WITH AGING IN COMPLEX NETWORKS

We consider binary-state dynamics on static, undirected,
connected networks assuming a locally treelike structure and
in the limit of N → ∞, closely following the approach used
in Ref. [64] for binary-state dynamics in complex networks.
The relevant ingredient is to consider the nodes with different
age as different sets, what allows us to treat as Markovian
the memory effects introduced by aging [19,48]. We define
sk,m, j (t ) [ik,m, j (t )] as the fraction of nodes that are susceptible
[infected] and have degree k, m infected neighbors and age j
at time t . The networks have degree distribution pk and have

FIG. 11. Schematic representation of the transitions to or from
the set sk,m, j ( j > 0). We show the central node with some neighbors
for different values m and j. Purple nodes are susceptible, non-
adopters, or spin down, and yellow are infected, adopters, or spin
up.

been generated by the configuration model [69,70]. The initial
condition is set such that all agents have age j = 0 and there
is a randomly chosen fraction ρ0 of nodes that are infected,

For j > 0, sk,m, j (0) = 0, ik,m, j (0) = 0;

For j = 0, sk,m,0(0) = (1 − ρ0) Bk,m[ρ0],

ik,m,0(0) = ρ0 Bk,m[ρ0], (B1)

where Bk,m[ρ0] is the binomial distribution with k attempts, m
successes, and ρ0 is the initial fraction of infected agents that
is the probability of success of the binomial. Now, we examine
how sk,m, j changes in a time step. We separately consider the
case j = 0 since its evolution is different from j > 0. See
Fig. 11 for a schematic representation of transitions involving
sk,m, j .

This is the way to reach the expressions of Eq. (B2):

sk,m, j (t + dt ) = sk,m, j (t ) − F (k, m, j) sk,m, j dt

− FR(k, m, j) sk,m, j dt − FA(k, m, j) sk,m, j dt

+ FA(k, m, j − 1) sk,m, j−1 dt

− ω(sk,m, j → sk,m+1, j+1) sk,m, j dt

− ω(sk,m, j → sk,m−1, j+1) sk,m, j dt

+ ω(sk,m+1, j−1 → sk,m, j ) sk,m+1, j−1 dt

+ ω(sk,m−1, j−1 → sk,m−1, j−1) sk,m−1, j−1 dt,

sk,m,0(t + dt ) = sk,m,0(t ) − F (k, m, 0) sk,m,0 dt

+
∞∑

l=0

R(k, m, l ) ik,m,l dt

+
∞∑

l=1

FR(k, m, l ) sk,m,l dt
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− FA(k, m, 0) sk,m,0 dt

− ω(sk,m,0 → sk,m+1,1) sk,m,0 dt

− ω(sk,m,0 → sk,m−1,1) sk,m,0 dt . (B2)

Similar equations can be found considering transitions
for ik,m, j . In these equations, the transition probabilities (de-
scribed in detail in Sec. III B) allow agents to change their
state (F and R), reset their internal time ( j → 0) (FR and RR

and age ( j → j + 1) (FA and RA). Notice that we have con-
sidered no transition increasing (or decreasing) the number of
infected neighbors, m, keeping constant the age j. This is be-
cause the age j is defined as the time spent in the current state
(or since a reset). Therefore, if a node remains susceptible
and the number of infected neighbors changes (m → m ± 1),
the age of the node must increase ( j → j + 1). To determine
the rate of these events, we use the same assumption as in
Ref. [64]: we assume that the number of S-S edges (edges be-
tween susceptible agents) change to S-I edges (edges between
susceptible and infected agents) at a time-dependent rate βs.
Therefore, the transition rates are

ω(sk,m, j → sk,m+1, j+1) = (k − m) βs,

ω(sk,m−1, j−1 → sk,m, j ) = (k − m + 1) βs. (B3)

To determine the rate βs, we count the change of S-S edges
that change to S-I in a time step. This change is produced by
a neighbor changing state from susceptible to infected. Thus,
we can extract this information from the infection probability
F (k, m, j),

βs =
∑∞

j=0

∑∞
k=0 pk

∑k
m=0(k − m) F (k, m, j) sk,m, j∑∞

j=0

∑∞
k=0 pk

∑k
m=0(k − m) sk,m, j

. (B4)

A similar approximation is used to determine the transition
rates at which S-I edges change to S-S edges. We write

ω(sk,m, j → sk,m−1, j+1) = m γ s,

ω(sk,m+1, j−1 → sk,m, j ) = (m + 1) γ s, (B5)

where the rate γ s is computed using the recovery probability
R(k, m, j),

γ s =
∑∞

j=0

∑∞
k=0 pk

∑k
m=0(k − m) R(k, m, j) ik,m, j∑∞

j=0

∑∞
k=0 pk

∑k
m=0(k − m) ik,m, j

. (B6)

For standard models, one natural assumption is to consider
the probability to age as the probability of neither changing
state nor resetting,

F (k, m, j) + FA(k, m, j) + FR(k, m, j) = 1,

R(k, m, j) + RA(k, m, j) + RR(k, m, j) = 1. (B7)

With this condition, taking the limit dt → 0 of Eq. (B2),
we obtain the approximate master equation (AME) for

the evolution of the different sets sk,m, j , sk,m,0 ik,m, j ,
and ik,m,0:

dsk,m, j

dt
= − sk,m, j − (k − m) βs sk,m, j − m γ s sk,m, j

+ (k − m + 1) βs sk,m−1, j−1

+ (m + 1) γ s sk,m+1, j−1

+ FA(k, m, j − 1) sk,m, j−1,

dsk,m,0

dt
= − sk,m,0 − (k − m) βs sk,m,0 − m γ s sk,m,0

+
∞∑

l=0

R(k, m, l ) ik,m,l +
∞∑

l=0

FR(k, m, l ) sk,m,l ,

dik,m, j

dt
= − ik,m, j − (k − m) β i ik,m, j − m γ i ik,m, j

+ (k − m + 1) β i ik,m−1, j−1 + (m + 1) γ i ik,m+1, j−1

+ RA(k, m, j − 1) ik,m, j−1,

dik,m,0

dt
= − ik,m,0 − (k − m) β i ik,m,0 − m γ i ik,m,0

+
∞∑

l=0

F (k, m, l ) sk,m,l +
∞∑

l=0

RR(k, m, l ) ik,m,l ,

(B8)

where β i and γ i are similar rates as βs [Eq. (B4)]
and γ s [Eq. (B6)], exchanging terms sk,m, j by ik,m, j and
vice versa. These equations define a closed set of de-
terministic differential equations that can be solved nu-
merically using standard computational methods for any
complex network and any model aging via the infec-
tion and recovery, reset, and aging probabilities (a gen-
eral script in JULIA is available in the author’s GitHub
repository [75]).

The model is introduced via the transition probabilities
(F, R, FA, RA, FR, RR), which may depend on the degree k,
the number of infected neighbors, m, and the time spent in
the actual state (or since a reset) j. For the Threshold model
with aging, dynamics are monotonic and there are no age dy-
namics once the agent is infected, R(k, m, j) = RA(k, m, j) =
RR(k, m, j) = 0. Therefore, the equations for sk,m,0 decouple
from the equations for the variables ik,m, j , reducing Eq. (B8)
to

dsk,m, j

dt
= − sk,m, j − (k − m) βs sk,m, j

+ (k − m + 1) βs sk,m−1, j−1

+ FA(k, m, j − 1) sk,m, j−1,

dsk,m,0

dt
= − sk,m,0 − (k − m) βs sk,m,0

+
∞∑

l=0

FR(k, m, l ) sk,m,l . (B9)
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