( July 2003)
The recently proposed Langevin equation, aimed to capture the relevant critical features of stochastic sandpiles, and other self-organizing systems is studied numerically. The equation is similar to the Reggeon field theory, describing generic systems with absorbing states, but it is coupled linearly to a second conserved and static (non-diffusive) field. It has been claimed to represent a new universality class, including dierent discrete models: the Manna as well as other sandpiles, reaction-diffusion systems, etc. In order to integrate the equation, and surpass the difficulties associated with its singular noise, we follow a numerical technique introduced by Dickman. Our results coincide remarkably well with those of discrete models claimed to belong to this universality class, in one, two, and three dimensions. This provides a strong backing for the Langevin theory of stochastic sandpiles, and to the very existence of this new, yet meagerly understood, universality class. |