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Interface depinning in the absence of an external driving force
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We study the pinning-depinning phase transition of interfaces in the quenched Kardar-Parisi-Zhang model as
the external driving forc& goes towards zero. For a fixed value of the driving force, we induce depinning by
increasing the nonlinear term coefficient which is related to lateral growth, up to a critical threshold. We
focus on the case in which there is no external force appked @) and find that, contrary to a simple scaling
prediction, there is a finite value af that makes the interface to become depinned. The critical exponents at
the transition are consistent with directed percolation depinning.
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[. INTRODUCTION moves with a finite velocity. However, the interface remains
pinned by the disorder fdf <F.. The critical pointF=F
The dynamics of random interfaces in the presence ofs known as depinning transition. The interface velocity
noise is an interesting example of critical phenomena andcales asv~(F—F_.)? near and above the transition and
generic scale-free behavior in systems far from equilibriumplays the role of an order parameter.
In the case of surface growth dominated by thermal fluctua- The value of the critical force depends on the parameters
tions, the Kardar-Parisi-Zhan@kPZ) equation[1] has been of the model, in particular, it depends on the value of the
very much studied for it represents a whole universality classoefficient\ of the nonlinear term. Therefore, by keeping
of growth, which includes many well-known discrete com- constant the rest of the equation parameters, one may find a
puter modeld2]. In many experimental situations, however, critical line F.=f(\) separating the pinned from the de-
interface motion is affected by the existence of random pinpinned phase. Alternatively, we can see this critical line the
ning forces(see[2] and references thergirin this case, the other way around and let,=f~%(F) be the critical value of
simplest way to model interface roughening is to replace thehe KPZ nonlinearity above which the interface gets de-
noise termy(x,t) in KPZ by a quenched disordej(x,h), pinned. The driving forcé- favors the advance of the inter-
face and thus, the lower the driving force is, the larger the
critical value\ . of the nonlinearity that is needed in order to
get the interface depinned. Indeed, one would expect that as
F—0 depinning becomes more and more difficult until
which is often referred to as the quenched Kardar-Parisieventually, at-=0, the threshold .—c and depinning be-
Zhang (QKPZ2) equation. The first term on the right-hand comes impossible. This intuitive picture can be justified by
side describes the smoothening effect of surface tenBi®, means of a simple scaling argument as follows. Consider a
the driving force that pushes the interface through the disoreypical region of sizd pinned by the disorder. Equatidh)
der, and the term\(Vh)? comes from lateral growth and applied to that region reads
represents the nonlinear most relevant correction. The
quenched  disorder has  short-range  correlations . S P
(p(x,h) 7(x’,h")y=8(x—x")A(h—h’), where the cor- vhI™“+Ah% "2+ F—-A(0)71~%*=0. 2
relatorA(u) is a very rapidly decreasing function pf| and

is the term actually responsible for the pinning of the inter- f one subposes that the nonlinear term dominates over the
face. This equation is expected to describe interface rougH- PP

PP ; ; ; 2] -2
ening in many disordered systems, including the nonequilibg'ﬁus'on’ the interface remains pinned whenever'|

< 1/2)—d/2 ; ; ey
rium dynamics of magnetic domain walls in disordered?A(?) I Th_whe(;e? is the Iatt|che spa;cw_]gt_ln tTe g{ﬁWth
materials[3—6], an elastic chain in a quenched disor{g}, irection. 15 _gefines a - characteristic iengthc

_ [y 2,4 1/(4—d) > ;
fracture cracks propagatidi8], etc. Its applicability to de- _.D‘ a’/A(0)] . such tha‘g .f0”<|° the m@erface gets
scribing Iuid-fluid displacement in porous media might pePinned. Now to estimate the critical force that is necessary to
less justified though9] depin a region of typical sizk., one equates the force term

; o : ith the disorder in Eq(2) to get to an expression for the
The QKPZ model described by E@.) exhibits a continu- witt . z —d/(a— .
ous phase transition at a certain critical vakigof the ex- Icrltlcal Imef,_ ZCNA(O)ZM Y(na?)YE9 Cinverting  the
ternal driving forceF. For F larger thanF, the interface atter, one Tinds

oh
EZVV2h+A(Vh)2+F+ n(x,h), 1)

A(O)Z/d
Cc
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for the critical line of the depinning transitiofl0]. In 1 5.0
+1 dimensions for instance, E@3) predicts a diverging
Ae~F 3 asF—0 [11].

In this paper, we show that, contrary to this scaling pic-
ture, there is always a finite critical value, of the KPZ
nonlinearity such that the interface gets depinned even for
F=0. Our conclusions are based upon numerical integration <
of Eq. (1) in d=1. We numerically calculate the critical line
and find thaf\ .(F=0)=3.60*= 0.01(in natural unit$ for the
QKPZ equation. Our results support the somehow counterin-
tuitive conclusion that an interface may get depinned in the
absence of the external driving force by the sole effect of
nonlinearities.

0.0 0.2 0.4 0.6 0.8 1.0

F

FIG. 1. Critical linex .= f(F) for the QKPZ equation. Symbols
In order to numerically integrate Ed1), the equation are points obtained from numerical simulations in a system of size
parameters can easily be rescaled to have only two indepen=1024. The line is a fit according to E€). Note thatx . remains
dent tuning parameters—namely, the nonlinear KPZ coeffifinite, even atF=0.
cient A and the driving force~. We have used a standard
finite-difference scheme for integrating the QKPZ equationwhere the constants; = 4.31+0.04 andb,= 0.81+0.03(see

IIl. NUMERICAL RESULTS

given (in natural unit$ by Fig. 1. To our knowledge, this is the first formula for the
critical line and demands theoretical explanation.
h(i,t+At)=h(i,t)+ AtF+ At [ RGO +AL[h(I+11) In thg following, we focus on the case in wh!ch.no gxter—
nal driving F=0 pushes the interface and depinning is due
+h(i—1t)—2h(i,t)] solely to nonlinear lateral growth. We have studied the criti-
. . 2 cal behavior in the vicinity ol .(F=0)=3.60+0.01 in or-
T AL h(i+1H—-h(i-1 , (4)  derto address the problem of the nature of the critical point.

2 First, we have computed the scaling behavior of the station-
ary interface velocity af =0 as the transition is approached.
where the lattice spacing has been set to unity. We start oun Fig. 2 (inse we plotv vs\ for F=0 and a system of size
simulation from a flat initial conditiorh(x,0)=0 and peri- L=8192 showing that the transition is continuous. The criti-
odic boundary conditions, i.eh(0t)=h(L,t) and h(L cal behavior of the order parameteis shown in Fig. 2. We

+1t)=h(1t), are imposed on the interfack(i,t) stands find that close to the depinning threshold, the interface ve-
for the integer part of(i,t), and the quenched disorder is locity scales asv~(A—\c)? with a critical exponentd

. . . L= . =0.635-0.007.
Gaussian distributed and has correlatidngi,h) »(j,h’)) o . o .
=& j6pr - Simulations with different time steps were car- The depinning m_ec_:hamsm .qu_O is the following.
ried out, and the scheme proved to be stable and well be>tarting from a flat initial conditiorh(x,t=0)=0, all the
haved for a time step =0.01 (or smallej for the range of

tuning parameters simulated. Following Newman and Bray 040 =
[12], who found some numerical instabilities when numeri- 02 osf °
cally integrating KPZ, we took special care in checking that s o020l
no numerical instabilities appeéire., surface cusps are ef- -0.4 |
fectively smoothened by the Laplacian téreven for the sor
large values of\ used here. >o 061 0.00,
We carried out simulations in systems of side gi 08
=128,256. ..,8192. For each value of the of the nonlinear =
coefficientA, we computed the critical value of force needed -1.0 |
to get the interface depinned. Our results are summarized in
Fig. 1. As expected, we find that as the driving force is -12f
smaller, the critical valua ; of the nonlinear coefficient re-
N . . -1.4
quired in order to depin the interface becomes larger. How- -1.5

ever, as anticipated above, the critical powt always re-
mains finite, even foFF=0. At a purely phenomenological

level, we find that the critical line can be fitted very nicely by ~ FIG. 2. Interface velocity vs coefficient for the QKPZ equa-
tion at F=0 (inse) close to the threshold .(F=0). The critical

|23 F\2/3 behavior of the velocity ~ (N —\;)" is shown in the main panel. A
(_> + _) =1, (5) straight line is found foi .= 3.60+0.01 and the slope corresponds
b, b, to the velocity critical exponent=0.635+0.007.
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2.0 - - - where k., in view of the dependence of the curves en
05 o must be very small. These two regimes are separated by a
crossover timet, that depends ore. Indeed, following
1.5 | Kertesz and Wolf{15], near a roughening phase transition,
one expects the crossover time to scale with the distance to
= the threshold a.~ £~ €~ 7, wherey=zv. Direct examina-
1.0 tion of Fig. 3 immediately suggests the scaling ansatz
o
A=, W(t, )~ thrpze~*g(t/t,), ®)
0.5 which is characteristic of systems close to a roughening tran-
sition [15—17]. The scaling function is given by
0'01 0 0.0 10 2.0 3.0 ufe” oz if - u<1
- ' ' ' ' g(u)~ C)

log,, t const. if u>1,
FIG. 3. In the main panel, we plot the global width for different and the scaling relation

distancegas showh e= (A —\.)/\ to the threshold foF=0 in a

system of size.=8192. The crossover frort?” to t°2 occurs at Ket k=(Bc= Brpd ¥ (10)

times that scale ags~ e~ with the distance to the threshold. Inset

shows a data collapse according to ER). of the sets shown in the

main panel. A good collapse is found for the exponegis,

=0.3, k=0.57, andy=1.57.

among critical exponents must be fulfilled so that both re-
gimes match.

In Fig. 3 (inse) we show a data collapse of
t~Prrze“W(t, €) vs €”t. A good data collapse is obtained for
the exponentg,,,~ 0.3, k=0.57, andy=1.57, the error in
estimating these exponents being of about 10%. From the
scaling relation(10), one also get$.=0.73 in good agree-
ment with our previous estimate.

The value of the critical exponents is consistent with
ose of the DPD moddl18,19 just above the transition

. . o . X 16,2]. We thus conclude that the lateral growth-driven de-
mogeneities are effectively amplified by the nonlinearity an hinning point atF =0 and\ =\, also belongs to the univer-
the interface gets moving with a finite velocity. sality class of DPD. ¢

As occurs in the standard case of depinning driven by an
external force, we find that the depinned phase)\; is
rough and belongs to the universality class of KPZ. This can
be seen by studying the scaling behavior of the the global
width W(L,t)=[(h(x,t)2)—(h(x,1))?]2, where the aver-
age is over allk and different realizations of disordét3].
We obtain that the global width scales [d<}]

terms in Eq.(1) are zero except for the disorder. At tinhe
=0, the quenched random terw(x,h) generates inhomo-
geneities in the front, which in turn produce a finite value of
(Vh)2. For small values oh, these inhomogeneities smear
out and the interface gets pinned by the disorder at one of thﬁ:]
infinite pinning paths. However, for> \ . these initial inho-

Ill. DISCUSSION

Our results indicate that in the absence of any external
driving field, an interface may get depinned by increasing the
nonlinear term\ in Eq. (1) up to its critical value. From the
experimental point of view, this implies that, assuming the
s parametemn is tunable in the laboratory, an interface could
LSO S become depinned even when no external driving force is
. (6) : : . .
L* if t>ty, applied. In the following, we discuss the role of anisotropy
of the background random medium in generating the KPZ

2 : . .
with a time exponenB=0.33+0.01 and a roughness expo- t;:rm)\(|Vh) f af‘d how t_h|5 meclgmar_usm may behusgd to ralsfe
nent «=0.50+0.01 in agreement with the KPZ class of (N€ value ofA In experiments by increasing the degree o
growth. disorder anisotropy. '

However, when approaching the depinning transition 1€ QKPZ equation foh=0 is known as the quenched

from above,e=(\—\.)/\.—0", the scaling of the global Edwards-Wilkinson(QEW) equation and has been much

width is affected by the existence of a diverging correlationStudied in recent years. The critical exponents at the depin-

length ¢~ €. This is the typical size of the fluctuations of ning transition have been well determined by several authors

the majority phase, i.e., the characteristic size of connecte@o_zg’z' r:n (#Jrli]-dliglensionz Oie /find&d~{2\';> ffmdf
regions formed by pinned sites. As we show in Fig. 3, theNO'E,35 at the threshold =F an a—:.I. 2 ands=1/4 in the
global width(and similarly, the local widthdisplays a cross- MoVing phase foF>F, where the disorden(x,h) may be
over from~1t%7 to KPZ-like behaviort%3 More precisely, replaced byn(x,vt) and the exponents of the EW universal-

one can see in Fig. 3 that the width approximately behaves e@' class[2] are recov_ered. Th_e QEW equation qrise_s natu-
rally as the Langevin equation for the Hamiltonidth

= [dx[V1+(Vh)?+V(x,h)] describing the elastic energy
@ of an interface in a disordered potent¥(x,y) [3—5]. The
throze™ < if  t>t,, term\ (Vh)? cannot be deduced as a variation of any Hamil-

W(L,t)~

theeie  if <ty
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tonian and is added as the most relevant nonlinear correction these systems is thus highly anisotropic. Pressure differ-
[2]. Geometrically, it accounts for growth in a direction lo- ence between the reservoir and the paper pores leads to a
cally normal to the interface and is referred to as nonlineacoarse-grained effective nonlinear term, which depends on
lateral growth term. viscosity of the invading fluid and microstructure of the me-
In the past, the physical origin of the KPZ nonlinearity in dium. Whenever the effectively generatadterm is large
interface depinning has been found to be related to two disenough to be above., depinning of the wetting front oc-
tinct mechanisms for different modd24]. On the one hand, curs.
in the spirit of the original work of KPZ1], the\ term may In summary, we have studied the QKPZ equation focusing
have a purely kinematic origin, so thet<v [20,24]. In this  on the case in which there is no external driving for€e (
case, the termx(Vh)? goes to zero at the depinning transi- =0). We have shown that there exists a depinning transition
tion, F=F., and the system thus belongs to the QEW uni-for a finite value of the KPZ coefficient=A.(F=0) and
versality class. On the other hand, there are mod&isfor  that transition belongs to the DPD universality class. More-
which A remains finite at the transitiof25]. These models over, we find that the interface velocity scales was (A
have exponents that correspond to the DPD universality class \;)? with a critical exponentd=0.635+0.007, which is
[20,26. Tang, Kardar, and DhdR7] have shown that this identical to the scaling in the case of depining driven by an
finite A term may arise in some models because of an undeexternal force. This seems to indicate that théerm upon
lying anisotropy in the random medium, i.e., models thatrenormalization gives rise to a constant term in a linear fash-
have a growth direction determined by the random mediumion that makes the role of a finite driving force. A finite value
A further numerical step on this direction has recently beerof the nonlinear coefficient appears in systems with aniso-
achieved by Park, Kim, and Kirf28] by studying a model tropic disorder, such as for instance in paper wetting experi-
with an anisotropic disorder correlator. The effect of anisot-ments. In this system, there is no external driving force and
ropy on real experiments has also been successfully tested logpinning occurs due to local capillary forces, which drive
Albert et. al. [29]. Experiments on fluid flow in a random the interface through the anisotropic lateral growth term
medium formed by packed glass be4@6] are now known X\ (Vh)2. We conclude that by varying the anisotropy degree
to belong to the isotropic QEW universality cld€9]. How-  of the corresponding random medium in other experimental
ever, the scaling exponents obtained for paper wettingystems, depinning is possible even with no external driving.
[19,31,33 are close to the prediction of the anisotropic DPD
universality class. A definite identification of paper wetting ACKNOWLEDGMENTS
with DPD is still an open question thoudB,33]. In paper-
wetting experiments, a sheet of paper is vertically suspended We thank S. Zapperi and S. Stepanow for discussions.
over a reservoir of liquidusually black ink. The fluid then  Financial support from DGES of the Spanish Government
wets the paper and the interface between wet and dry phasé3roject No. PB96-0378-C02-D2s acknowledged. J.M.L.
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