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Field theory for recurrent mobility
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Understanding human mobility is crucial for applications such as forecasting epidemic

spreading, planning transport infrastructure and urbanism in general. While, traditionally,

mobility information has been collected via surveys, the pervasive adoption of mobile tech-

nologies has brought a wealth of (real time) data. The easy access to this information opens

the door to study theoretical questions so far unexplored. In this work, we show for a series of

worldwide cities that commuting daily flows can be mapped into a well behaved vector field,

fulfilling the divergence theorem and which is, besides, irrotational. This property allows us to

define a potential for the field that can become a major instrument to determine separate

mobility basins and discern contiguous urban areas. We also show that empirical fluxes and

potentials can be well reproduced and analytically characterized using the so-called gravity

model, while other models based on intervening opportunities have serious difficulties.
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Human mobility has been studied for decades due to the
relevant role it plays in a wide spectrum of applications
including economic questions and living conditions1–3,

city structure4,5, forecasting epidemic spreading6–9, traffic
demand and design of new infrastructure10, or urban pollution
and air quality11. Data on people migrations dates back at least to
1871 when the United Kingdom registered the difference in
inhabitants during a decade12. More recently, in the last decades,
census surveys in countries around the world have included a
question on the tract of residence and that of work (see for
instance the Supporting Information of7 to find a list). Aggre-
gating the home-work trips of the single individuals, one can
define the so-called Origin-Destination (OD) matrices that for
every pair (i, j) collect the flow of people traveling from census
tract i to j, Tij. These matrices are absolutely essential for trans-
port planning since they encode trip demand. Census and spe-
cially dedicated surveys have dominated the area in terms of
mobility data collection until a few years ago13,14. With the
advent of the big data era, the availability of large-scale quick-
updated data has notably increased. Passive sources such as
mobile phone records or GPS-located messages in online social
networks (Twitter, Foursquare, etc) have been employed to study
mobility15–20 and, in particular, to extract OD matrices (see also
the recent reviews14,21). It is worth noticing that the quality of the
OD matrices obtained from these new information and com-
munication technologies (ICT) data sources have been con-
fronted against the information provided by surveys with
satisfactory results in urban areas at geographical scales larger
than one square kilometer18. The wealth of new data opens the
door to tackle and revisit relevant theoretical aspects concerning
mobility flows that could not been boarded before.

From a theoretical perspective, two competing frameworks
have been used for almost 80 years to characterize mobility flows:
the gravity22,23 and the intervening opportunity24,25 models.
Their main difference lies in the way in which the geographical
distance affects the flows. While in the gravity model the flows
decay with a certain deterrence function (usually, with an expo-
nential or power law-like forms26–29), the intervening opportu-
nity models depend on the “opportunities” or jobs enclosed
within a given area. Since the opportunity distribution can be
highly heterogeneous in space, the distance plays an indirect role
on the final assignment of the trip destinations and, in turn, on
the decay of the total flows14,30. A few years ago, it has been
introduced the so-called radiation model as an evolution of the
intervening opportunity concept in which the opportunity
selected is supposed to be the best possible choice simplifying the
statistic treatment, and the density of opportunities is related to
the population30,31. This allows to write a closed formula for the
probability of a trip to finish at a given geographical unit.
Regarding the gravity model, its functional shape was proposed
ad hoc, essentially inspired by Newton’s law in which the
populations act as masses32,33, although it can be also recovered
from maximal entropy arguments34. Moreover, the model
can be developed further by taking into account the distin-
guishability of the trips35–37. Early after the gravity model
introduction, the possibility of defining a potential was dis-
cussed38 but the lack of reliable data prevented ulterior research
in this direction.

Several works have focused on the comparison between the two
families of models and their performance when compared with
empirical data39–47. It is worth mentioning that a fair comparison
requires to be carried out over the same type of mobility data
(daily or sporadic trips behave differently) and with the same
constraints. The constraints here refer to the amount of infor-
mation provided to the model. The basic unconstrained models
only include the population in the geographical units, while in the

constrained versions the total in- or/and out-flows are also
supplied46.

In this work, we propose a method to define a mesoscopic
vector field out of daily commuting data. This field turns out to be
well-behaved, fulfilling Gauss’s divergence theorem and being
irrotational. Given that we are analyzing empirical information,
these results are far from trivial and they reveal intrinsic features
of aggregated daily human mobility. The existence of a well-
behaved mesoscopic field is confirmed with both data from
Twitter and census for large urban areas. By taking into account
the irrotational nature of the field, we also define a potential for
the mobility flows. This potential is a tool that will crucially
contribute to controversial issues such as the functional definition
of city limits48 and the presence of polycenters5. After these first
empirical results, we focus on which properties of the mesoscopic
field can be reproduced by the models. In the case of the gravity,
the fluxes over surfaces, rotational and potential empirical
observations are well reproduced with an exponentially decaying
deterrence function and they can be analytically obtained or
approximated. The radiation model has, however, stronger diffi-
culties to reproduce the empirical values of the fluxes.

Results
Definition of the vector field. We obtain OD matrices between
cells of 1 × 1 km2 from Twitter and, where available, also from
census data in several worldwide cities (see Supplementary Table
1 for a list of cities and Methods, below, for a description of the
data cleaning procedure). We call Tij to the daily flow of com-
muters from cell i, home, to j, work. There can be flows between
any pair of cells in the city. As defined, the OD matrix Tij contains
only information on trips origin and final destination, not about
trajectories or middle points visited. We then define a vector
centered in i, Tij u

!
ij, where u!ij is the unit vector from i to j. The

vectors pointing to all destinations j are then vectorially summed

to obtain a resultant vector T
!

i ¼
P

j Tij u
!

ij in every cell i (see
Fig. 1a). These vectors define a field in the space and they identify
the mean outgoing mobility direction in every point. If the

mobility is balanced in opposite directions, the vector T
!

i can
vanish. These equilibrium (Lagrange) points play an important
role in the field theoretical framework. As an illustration,
empirical fields for London and Paris are displayed in Fig. 1b, c,
respectively. Further examples for other cities are shown in the
Supplementary Figs. 27–42.

Drawing a parallel with classical field theories, T
!

i can be
divided by the “mass” of the origin cell i (home-place) to define
the vector field

W
�!

i ¼
T
!

i

mi
¼

X
j≠i

Tij

mi
u!ij; ð1Þ

where the mass mi corresponds to the cell population considered

in the analysis. The vector W
�!

i, defined at the mesoscopic cell-
size scale, is the main object of study in this work and it
represents an average mobility per capita. Our data refers to
commuters, either those calculated from Twitter or collected by
the census. For practical reasons, we define the local mass mi as
the total number of commuters residing in cell i. This means that
mi ¼

P
j Tij, with the sum including the term j= i. This

definition allows us to apply a coherent treatment to all our
databases and it is an approximation for the total workforce living
in every cell. As shown in46, the mass defined in this way yields
better flow estimates than the actual cell population for both
gravity and radiation models.
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If instead of home to work, we consider the returning trip from
work to home the picture does not change significantly. If the

vectors T
!

i are still defined at the residence cell, their sense
reverses but the modulus remains unchanged. The spatial
organization of the field is, therefore, invariant and it does not
affect the results shown below (except for one sign). On the other
hand, if instead of calculating the resultant vector at the residence

place we define it at the working cell: T
!′

j ¼
P

i Tij u
!

ji and

W
�!′

j ¼ T
!′

j=mj, the values of the vectors themselves modify at
every location but the mesoscopic field behavior and the main
properties studied below are robust (see Supplementary Note 13
and Supplementary Fig. 51).

Empirical results. Once the field is defined, we can calculate
directly from empirical data the flux across any closed perimeter

from the surface integral ΦS
W ¼ H

d‘ n! W
�!

, where n! is the unit
vector normal to the perimeter in each point and d‘ the infini-
tesimal of length, and compare it with the volume integral of the

divergence of W
�!

, ΦV
W ¼ R

dS∇ W
�!

, in the area enclosed inside
the perimeter (where dS is the infinitesimal of area). This allows

us to assess whether the empirical vector field W
�!

fulfils Gauss’s
Theorem of the Divergence or not. Gauss’s theorem states that

ΦS
W ¼

I
d‘ n! W

�! ¼
Z

dS∇ W
�! ¼ ΦV

W ; ð2Þ

and it implies that the field is generated by a source and that the
fluxes through surfaces must respect conservation laws. The
numerical estimations of the flux ΦW as a function of the scale
using both integrals are shown in Fig. 2 for London and Paris
with two perimeter shapes: a circle and a square. As it can be
seen, the agreement between both approaches is rather good with
R2
P ¼ 0:96 (circle) and R2

P ¼ 0:89 (square) for London and R2
P ¼

0:97 (circle) and R2
P ¼ 0:80 (square) for Paris. R2

P is obtained as
the square of the Pearson correlation coefficient of both curves.
We have run the same test in several cities with Twitter data.
Supplementary Table 1 shows the list of coordinates of the central
points of the perimeters in each city and Supplementary Table 2
the results of the comparisons. In most of the cases the values of
R2
P are in the range 0.8–0.97 with only two exceptions that are, in

any case, over 0.66. For completeness, the same operation has
been performed with census data in London (R2

P ¼ 0:98 both for
the circle and the square) and in Paris (R2

P ¼ 1 for the circle and

R2
P ¼ 0:98 for the square) as can be seen in Supplementary Fig. 1.

This implies that the field does indeed fulfil Gauss’s theorem.
Similarly, we can compute the curl of the vector field directly

out of the data (see Methods). The field W
�!

is embedded in a x–y

plane and, therefore, ∇ × W
�!

has only a component on the z-

direction. The outcome of ||∇ × W
�!

|| using a colormap is
depicted in Fig. 3a. The values of the curl modulus is of the order
of 10−1 in km−1. To evaluate whether this is small or large, we
have defined a null model by randomly redirecting the angles of
the vectors of each cell. The curl of the random model is of the
same scale as the empirical field (Fig. 3b). For instance,

calculating the dimensionless numbers
R
dS jj∇ ´ W

�!jj2 we obtain
21 for the empirical field and 45 for null model. Furthermore, the

distribution of the original ∇ × W
�!

is similar to the random one,
with a mixed between a delta distribution at zero and a symmetric
exponential decay in the tails (Supplementary Fig. 43). This
means that the values that we observe in the empirical curl are
compatible with random fluctuations and the possibility of having
a developed rotational structure in the field is rejected. The
comparison with the modulus of the original field shows as well
that the curl is 4 orders of magnitude smaller (Fig. 1b). All these

evidences support the irrotational character of W
�!

and allow us
to define a potential for it. These results are further supported by

the vectors W
�!

angle analysis performed in Supplementary Note
11 (Supplementary Figs. 45–50).

Circular infrastructures are not so uncommon in cities, besides
circular metro lines many highways are organized as concentric
rings when there is no major geographical impediment as in Paris
or London. One may, thus, wonder why typically we do not
observe rotational components in the cities vector field. To have
such components, it would be necessary to have an unbalanced
flow of people living in an area and working in another over the
ring following one of the rotation senses. At the scale that we are
using, this is not seen anywhere in the cities under study. The
main factor that could favor the emergence of rotational
components is thus the segregation of land use. However, land
use mixing is strong enough in large cities49 to prevent this sort of
loops in the mobility flows at mesoscopic scales, leading to
hierarchical configurations of the mobility with a few clear
attraction centers.

Models. There are two main modeling frameworks in the lit-
erature to characterize mobility flows: those based on
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intervening opportunities and those based on gravity-like
approaches. Here we have considered different variations of
these models. In the case of the gravity model, the deterrence
function can show either an exponential or a power-law decay
with the distance. For the intervening opportunities, we have
focused on the radiation model31 and its nonlinear version45.
Models can be classified as unconstrained if only require the
masses in every cell mi as inputs and production-constrained if
additionally need the empirical outflow from each cell in order
to estimate flows to other cells. The results discussed in this
main paper refer to the unconstrained gravity with an

exponential deterrence function and to the radiation model that
is production-constrained. For the gravity model, the uncon-
strained version is considered because of its simplicity and
amenability to analytical treatment (see Supplementary Note 4,
Supplementary Figs. 14–19). The model parameters (for the
gravity k and d0) have been adjusted to best reproduce the curve
of the flux as a function of distance from the city center in terms
of R2

P. For the results of other models and details on the
parameter calibration see Supplementary Note 3, Supplemen-
tary Tables 3 and 4, Supplementary Fig. 13, and Supplementary
Note 6 along with Supplementary Figs. 23–26.
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We consider a set of circles centered at the center of London
with radius R from 0 to 40 km (Supplementary Table 1). The flux

of W
�!

across the circles with different R is computed for both
models and compared with the empirical value (Fig. 4). While the
gravity model with an exponential deterrence function works well

at reproducing the entering fluxes of the vector field T
!

and W
�!

in the Greater London Area, the radiation model does not capture
the level of fluxes observed empirically, despite receiving more
detailed input information given that it is a production-
constrained model. This is due to the fact that the local individual
mobility predicted by the radiation model is more isotropic than
the empirical one and the mobility predicted by the gravity. The
results for other cities are consistent (Supplementary Note 7,
Supplementary Figs. 27–42). The nonlinear radiation model
improves a little the situation but it still underestimates the fluxes
(Supplementary Note 6, Supplementary Figs. 23–26). The gravity
with a power-law decaying deterrence function is neither able to
reproduce well ΦW(R) or ΦT(R) (Supplementary Note 5,
Supplementary Figs. 19–22). The unconstrained gravity frame-
work provides the important advantage of allowing an analytical
treatment for the fluxes, which is based on a scaling approach that
is exact for the power-law deterrence function and approximated
for the exponential (Supplementary Note 5 and Supplementary
Fig. 22).

A recent brute-force comparison between models (gravity,
radiation and intervening opportunities with different levels of
contraint) and empirical commuting flows was carried out in46.
The performance indicators at single flow level were favoring the
exponential gravity model but the metrics were not able to
capture big differences across models. For completeness, a similar
analysis based on trip distance distribution has been included in
Supplementary Note 10 and Supplementary Fig. 44. As with the
direct flows, the results are not conclusive regarding model

performance. However, the behavior of the fluxes as a function of
the radius clearly discern between models performance. One may
wonder what the origin is of these differences. The answer reveals
the real potential of the vectorial framework. Besides the

modulus, the empirical vectors W
�!

i also have a direction that
must be reproduced by the models. Measuring the angle of the
vector over the horizontal positive axis Θemp and comparing it
with the models predictions Θmod, we obtain the scatter plots of
Fig. 5 for London and Paris (results for other cities are in
Supplementary Fig. 47). The domain of Θmod has been adjusted to
minimize the difference. As seen in Fig. 5, the gravity model
reproduces much better the direction of the vectors. Since the

calculation of the fluxes involves a scalar product between W
�!

and the perimeter normal vector, the directionality (besides the
modulus) is essential to obtain a good result. An analysis
performed with direct trip flows would never be able to detect
these differences.

City potential. Since we have empirically found that the field

W
�!

can be considered irrotational, we can define a scalar

potential using the formula W
�!

=−∇V. Numerically, this

means to find Vi in every cell i given the vector field W
�!

i. The
procedure to do this is detailed in the Methods Section. Figure
6a shows the empirical potential for London obtained with Eqs.
(12) and (13) compared with the one computed by the gravity
model with exponential deterrence function using the same
treatment as in Fig. 6b. The same results for Paris are displayed
in Fig. 6d, e. Even though the empirical potential is noisier than
the one obtained with the gravity model, they agree well. As
shown in Fig. 6c, the level of correlation is R2

P ¼ 0:98 for
London and R2

P ¼ 0:93 for Paris (Fig. 6f). The potential has a
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clear marked minimum in the center of the city, which is a clue
of the commuting monocentricity at these scales. As depicted in
Fig. 7, other cities or conurbations have a different configura-
tion with as many local minima as mobility centers. Note that
this is an appropriate method to define and visualize areas of
attraction of each city and their geographic limits. The equi-
potential contour plots for other cities are shown in the Sup-
plementary Note 8 and Supplementary Fig. 42.

Discussion
In summary, we have introduced a vectorial field framework to
characterize human mobility flows. When considering recurrent

home-work mobility in cities, we find that the mesoscopic field
representing the flows is well-behaved in the sense of satisfying
Gauss’s theorem and, besides, it is irrotational. As a consequence
of this last point, it is possible to define a scalar potential, which
reducing the dimensionality of the system encodes all the infor-
mation on the commuting at a mesoscopic scale. The results are
corroborated using two independent data sources for the com-
muting. Twitter data is used in the main text, and the results are
reproduced for census data in the Supplementary Note 2 and
Supplementary Figs. 2–10 for London, Manchester and Paris. Our
focus here has been on commuting, which in most cities corre-
sponds to over 60% of the total mobility. However, we cannot
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Fig. 6 City potentials. a–c London. d–f Paris. a, d The empirical potential results clearly peaked in the city center, where in overall the density of inhabitants
is high. The equilibrium point of the mobility is located at the minimum of the potential. b, e The gravity model predicted potential peaks also at the city
center in agreement with the empirical results. c, f Scatter plots comparing gravity model with exponential deterrence function predictions and empirical
values of the potential, which show high correlation
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discard that other types of mobility at larger or shorter ranges
may display similar behaviors. This remains as an open question
for further exploration.

Our results have important consequences both from theoretical
and applied perspectives. From a theoretical point of view, there
are no a-priori reasons to assume that individual mobility at
microscopic scale could induce a well-behaved mesoscopic field
amenable to continuous treatment. Finding it from the empirical
data implies that recurrent mobility in cities obeys deep sym-
metries that can be fully understood and described only within
the framework of field theory. In particular, Gauss’s and the
rotational are the most basic theorems in the theory. They are the
blocks upon which more involved results (metrics, theorems, etc)
are built and this is why it is so important to prove that the
vectors obtained from empirical data satisfy both. Gauss’s

theorem means that the field is generated by a source and that the
fluxes through surfaces must respect conservation laws. These
constraints affect the flows and also the directions as shown in
Figs. 4 and 5. The irrotational nature of the field implies that one
can derive the field from a potential and vice versa, the field is
univocally determined by the potential. The symmetries of the
potential are also present in the field and, among other things, the
dimensionality of the problem can be reduced: from a vector in
every location to a scalar. Differences in the potential between
points decide the direction and intensity of the mobility flows.
Out of the symmetries usually it is possible to define invariant
(conservative) quantities that play a central role in the vector
field. Our work opens thus the door to use the heavy mathema-
tical machinery developed during centuries to cope with vector
fields.

Tokyo

Los Angeles

Rio de Janeiro

Manchester-Liverpool
-Leeds-Sheffield

a b

c d

Fig. 7 Empirical equipotential curves. Equipotential curves calculated with commuting flows obtained from Twitter data for several world cities and
conurbations. a Manchester–Liverpool–Leeds–Sheffield (UK), b Los Angeles (USA), c Tokyo (Japan), and d Rio de Janeiro (Brazil). The underground map
layout is produced using Carto. Map tiles by Carto, under CC BY 3.0. Data by OpenStreetMap, under ODbL
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Concentrating in the data, this framework allows to better
distinguish between models performance. Any model trying to
reproduce daily mobility flows should generate a field with the
properties observed here in the empirical data. Otherwise, the
model does not adjust to reality. These models have been used for
decades to calculate trip demand in the planning of transport
infrastructure. This is, therefore, a very relevant applied question.
Recent brute-force comparisons between models and empirical
commuting flows throw no clear conclusion on which model
reproduces best the data. The metrics used were based on the
analysis of raw mobility flows, hence a different approach is
needed to reach a final conclusion. This is the role that the field
theoretical perspective covers. Beyond the raw flows, the vector
field has also a direction in each point and we can compare
directions between model predictions and empirical data. This
analysis shows that the gravity model with an exponential decay
best reproduces both flows and directions. This result is further
confirmed with the study of the fluxes across surfaces where the
directionality plays a central role. We observe a better fit to the
empirical curves as a function of the distance from the city center
by the gravity model. Furthermore, the unconstrained gravity
model admits an analytical treatment capable of producing
expressions for the flux and the potential. This example is a proof
of the potential of the vector representation.

In the gravity model framework, the existence of a potential
has been postulated decades ago but these hypotheses were not
systematically validated against data. We perform such valida-
tion and confirm that the gravity model with an exponential
deterrence function generates a potential compatible with the
empirical one. The potential is a fundamental tool to tackle
hard open problems such as the definition of centers in cities,
polycentricity and borders in conurbation systems. The shape
of the potential sheds new light on the spatial organization of
mobility in cities as we can picture city centers as the strongest
gravitational attractors of the metropolitan area and redefine
city boundaries. For example, borders could be defined as the
locations where the potential falls below a fixed percentage
from the highest peak of the city, separating thus the basins of
attraction of the different centers. This can have an important
practical relevance when planning infrastructures and public
services.

Methods
Twitter data. We use geolocated Twitter data in big cities and conurbations to
extract information on commuters mobility. Even if the number of users is
smaller than the local population, it has been shown that this data is valid to
study aggregated urban mobility at scales larger than 1 km2 with a global cov-
erage18,20. Details on the procedure to download geolocated Twitter data are
included in Supplementary Note 12. Our database is composed of tweets with
coordinates in the area of Manchester–Liverpool, London, Los Angeles, Paris,
Rio de Janeiro and Tokyo from March 2015 to October 2017. The information is
then mapped into a regular square grid of 1 km2. Tweets on Saturdays and
Sundays, people moving faster than 200 km/h, users tweeting more than once
per second, people tweeting <10 times in the whole time window and for less
than one month have been filtered out. We consider the interval from 8 AM to 8
PM in local time as working hours, tweets in this interval are supposedly posted
from the work place. Similarly, the rest of tweets are assumed to be posted from
home. We assign to every user a home and a work cell as the most common cells
during the corresponding hours. With this information, we can assume a daily
trip from home to work for every user and another one back. Aggregating trips
we can generate an OD matrix for the whole city, where each element Tij con-
tains the number of people commuting from cell i to j. The OD matrices
represent generic levels of daily mobility and are used to determine trip demand
for urban planning. The trips are not assigned to a particular moment in the data
time window. To avoid noise due to poor statistics, we filtered out cells with <5
people as residents or workers.

A minor issue can raise with the misclassification of night-shift workers. A
possible solution tested in50 is to assume that the place with largest activity
corresponds to work. However, this procedure was designed for more exhaustive
data such as mobile phone records and it may introduce new biases with Twitter
data. Still, the fraction of night-workers is only 10% of the total workforce in

London, and less than 11% in the whole UK (see [https://www.tuc.org.uk/news/
260000-more-people-working-night-past-five-years-finds-tuc] for more details).
The night workers mobility, even if misclassified, is part of the general daily
mobility flow of the city. Finally, the census data is free from this issue since the
questionnaire explicitly asks for residence and working places and the results are
consistent for both data sources.

Census data. In addition to the Twitter data, the same study is repeated with
census data from France and the United Kingdom. This data is publicly available
on governmental web sites (FR, https://www.insee.fr and UK, https://www.ons.gov.
uk/census/2011census). Census output areas have heterogeneous shapes different
for every country and they do not compose a regular grid. A further treatment has
to be carried out to adapt the population distribution and the home-work OD
matrix to the grid. This introduces uncertainty that is not present in the Twitter
data. Detailed information on how to divide and rearrange heterogeneous census
areas into a square grid is provided in the Supplementary Note 5 and Supple-
mentary Fig. 12. Thresholds on number of inhabitants and workers have been
applied as well to avoid considering non statistically relevant zones. A method to
assign a threshold to each city is provided in the Supplementary Note 2 and
Supplementary Fig 11.

Numerical calculation of the curl. Given a vector field evaluated in the cells of a
grid, it is possible to calculate the curl using the central finite differences51 dis-

cretization method. The curl of W
�!

in the cell i, whose indices in the x- and y-
directions are (α, β), is determined as:

∇ ´ W
�!

i ¼ Wyðαþ1;βÞ�Wyðα�1;βÞ
2Δx

�Wxðα;βþ1Þ�Wxðα;β�1Þ
2Δy ;

ð3Þ

where Δx and Δy are side sizes of the cells in the x- and y-directions, and Wx and

Wy are the x and y components of the vector W
�!

, respectively, evaluated in i and
its nearest neighbors in the grid. The curl only has component in the z-direction

since the vector W
�!

lays on the x–y plane.

Numerical calculation of the flux. The definition of the flux as a perimeter
(surface) integral is

ΦS
W ¼

I
S
W
�!

n!d‘ ð4Þ

for the vector W
�!

and

ΦS
T ¼

I
S
T
!

n!d‘ ð5Þ

for T
!

. In both cases, the integral is performed over the perimeter S, d‘ is the
infinitesimal element of length and n! is the unit vector normal to the perimeter in
each point.

From a numerical perspective, the integrals are calculated as

ΦS
W ¼

X
i2S

W
�!

i n
!

i d‘; ð6Þ

ΦS
T ¼

X
i2S

T
!

i n
!

i d‘; ð7Þ

where the index i runs over all the cells intersecting the perimeter S, n!i is the unit
vector normal to the surface in i and d‘ is approximated by the total perimeter of S
divided by the number of intersecting cells. The flux as a volume integral of the
divergence is calculated as

ΦV
W ¼

X
i2V

Wxðαþ1;βÞ �Wxðα;βÞ
Δx

þWyðα;βþ1Þ �Wyðα;βÞ
Δy

� �
dV ð8Þ

with the location of cell i in (α, β), as above, the index i runs over the cells in the
volume V and dV is the area of the unit cell. The cells without resident commuters,
m= 0, do not exhibit outflows and, to avoid inconsistencies, the field is defined as
null in them. This implies that they do not contribute to the calculation of the flux
or other results. Note that this is different from the classical continuous approaches
of field theory in physics (e.g., electric or gravitational fields) where the field is
defined everywhere and always contributes to the net flux.

Gravity model. The equation for the flow of commuters between two areas i and j
with an exponential deterrence function is

Tij ¼ kmimj e
�dij=d0 ; ð9Þ

where k is a constant, mi,j are the populations of origin and destination areas i (j),
dij is the distance between them and d0 is a characteristic distance. This is the linear
version of the Gravity Model, where the output and input flows are proportional to
the number of people in the area. The model has only two parameters to fit (k and
d0). The vector field is obtained by summing over the possible destinations and
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dividing by mi. If u!ij is the unit vector pointing from i to j, the vector field can be
written as

W
�!

i ¼
X
j

Tij

mi
u!ij ¼ k

X
j

mj e
�dij=d0 u!ij: ð10Þ

Radiation model. The Radiation Model is inspired by radiation and absorption of
particles31: for every worker residing in and leaving cell i, the destination (work)
cell j is obtained using the probability expression

Pði; jÞ ¼ mimj

ðmi þ sijÞðmi þmj þ sijÞ
; ð11Þ

where sij is the population residing in a circle centered in i, with radius dij and
excluding the populations of i and j. The average flows can be calculated as 〈Tij〉=
TiP(i, j), where Ti is the empirical total outflow of cell i.

Numerical calculation of the potential. The potential is calculated by numerically

solving the equations −∇Vi= W
�!

i taking into account that ∇ × W
�!

= 0. For the
computation of the empirical potential, we used conditions V= 0 in all the
boundary regions of the grid and then use the forward centered discretization
formula for the gradient operator51 starting from the city bounding box corner. In
a cell i with indices (α, β), this operation becomes:

dVi

dx
¼ Vαþ1;β � Vα;β

Δx
¼ WðxÞ;α;β; ð12Þ

dVi

dy
¼ Vα;βþ1 � Vα;β

Δy
¼ WðyÞ;α;β; ð13Þ

The procedure is iterated until all cells have been assigned a potential. We average
then the resulting potentials after starting from every corner of the bounding box to
decrease the noise.

Data availability
In this work, we use two data sources: Geolocated Twitter and census in the UK and
France. All the data are available online, although in all cases the access conditions
require the user to obtain the data directly from the provider sites. For the census data,
the 2011 UK commuting information can be found at output area level in the link
[https://wicid.ukdataservice.ac.uk/cider/about/data_int.php?type=2] and 2011 French
data at municipal level is available at [https://www.insee.fr/en/statistiques?categorie=1].
For Twitter, the data is downloaded using the streaming API [https://developer.twitter.
com/en/docs/tweets/filter-realtime/overview]. An example of the script employed to
obtain geolocated data in a geographical area is provided in the Supplementary Note 12.
The aggregated information necessary to reproduce our results has been uploaded at the
repository Figshare with doi: [https://doi.org/10.6084/m9.figshare.8158958]52.

Code availability
An example of the code used to collect Twitter data is provided in the Supplementary
Note 12. The code for the analysis was programmed using Python and the equations
employed are described in the Methods Section.
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