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Can different or even identical coupled oscillators be completely uncorrelated and still be synchro-

nized? What can be concluded from the absence of correlations or even mutual information in networks of

dynamical elements about their connectivity? These are fundamental and far-reaching questions arising in

many complex systems. In this Letter, we address these two questions and demonstrate in simple and

generic network motifs that synchronized behavior in the generalized sense can be realized and

constructed such that no correlations and even negligible mutual information remain. Our findings raise

new questions, in particular, whether and to what extent indirect connections are being underestimated,

since the related collective behavior and even synchronization are less likely to be detected.
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The study of synchronization in coupled dynamical
systems dates back to the works of Huygens in the 17th
century [1]. When addressing synchronization in coupled
complex dynamical systems, often the focus is on the
particular case of an identically synchronized state [2].
However, synchronization in a generalized sense can still
exist, even if there is no one-to-one relationship between
the responses of the coupled systems [3]. Generalized
synchronization requires a relationship between the dy-
namics of the constituting systems, no matter how complex
this relationship is. If such a relationship exists, the re-
sponse of one system is completely determined by the
other one. The interaction between the systems can be
either bidirectional or unidirectional. In the latter case,
also known as the drive-response configuration, the dy-
namics of the response system is, after transients, fully
reproducible for the repetition of the drive signals; i.e.,
generalized synchronization boils down to the notion of
consistency [4]. From an information theory perspective,
synchronization requires a minimum amount of informa-
tion to be transferred between the coupled elements. This
minimum information has been determined precisely for
the example of a system of coupled chaotic oscillators [5].

The dynamics of coupled systems has been extensively
studied in biological networks [6,7], lasers [8], neural net-
works [9], and many other self-organizing systems. One of
the key ingredients in many of these studies is the network
topology in which the dynamical elements are embedded.
The behavior that emerges from the interaction strongly
depends on the underlying network. From a theoretical
point of view, different topologies have been extensively
considered and analyzed [10]. In real-world systems, how-
ever, the underlying network topology is often unknown,
and only measured time series of a subset of elements or of
a mean field are available. Prominent examples are climate

modeling [11], ecological modeling [12], and neuroscience
[13], among others. In all these areas, correlation measures
are being extensively used to deduce functional or, in some
cases, effective connectivity. Functional connectivity as-
sumes statistical dependencies between distinct units of the
system, while effective connectivity refers to causal inter-
actions among the constituents. Functional connectivity, in
turn, is used to develop models and to conclude on the
abilities of a network [14].
The problem of network reconstruction is particularly

important in neuroscience, where it has been identified that
several diseases and impairments are related to changes in
the network topology [15]. In human neurophysiology,
mostly functional magnetic resonance, electroencepha-
lography, or magnetoencephalography data are available.
These data boil down to a measurement of average activity
of an already large ensemble of neurons. To unveil the
connectivity information, several techniques have been
used; particularly, cross correlation and mutual entropy
are the most widely considered (see, e.g., [13] and refer-
ences therein). However, as we will show below, these two
indicators can, under certain circumstances, underestimate
and completely miss indirect connections. It is our aim to
show in this Letter, via modeling and experiments, that for
some simple configurations of coupled dynamical ele-
ments negligible correlation or mutual information are
observed, although the elements are synchronized and
determine each other’s behaviors completely.
We have chosen different topologies, which can be

classified into two general categories: bidirectional and
unidirectional coupling schemes. Figure 1(a) illustrates a
mutual interaction scheme, while Fig. 1(b) depicts a drive-
response configuration. The square boxes in Fig. 1 account
for different coupling interactions between dynamical ele-
ments A and B. For illustration purposes, we have chosen
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Mackey-Glass oscillators (MGOs) [16,17] as dynamical
elements for all nodes in the network motifs. Never-
theless, our results can be extended to a larger class of
nonlinear functions.

In the two topologies of Fig. 1, we will first test the
correlation properties between A and B for different num-
bers of nonlinear elements in the respective coupling paths.
Subsequently, we will look for the existence of a generally
synchronized state by testing the correlation properties
of A and B with respect to auxiliary systems A0 and B0
(see Fig. 1).

We start by studying the motif of two mutually coupled
systems with delay as depicted in Fig. 1(a). We consider
coupling paths C and D that include a unidirectionally
delay-coupled chain of oscillators each [18]. In this con-
figuration, delay is included in the coupling path to gen-
erate oscillations, since the isolated MGO operates in a
stable regime. In practice, the way the delay is distributed
among the coupled elements is not relevant. The total delay
in the coupling loop is the only relevant quantity and can be
located in a single path [18]. Previous studies show that this
delay-coupled configuration does not exhibit identical syn-
chronization of elements A and B when they operate in a
chaotic regime [19–22]. Nevertheless, in-phase synchroni-
zation and rotating waves can eventually appear in the case
of periodic dynamics [23].

We have investigated the dynamics generated in such
a topology with an experimental implementation using
MGOs (see [18,24,25] for electronic circuit implementa-
tion). In Figs. 2(a) and 2(b), we show the chaotic fluctua-
tions of the individual MGOs (output voltages) A and B,
with coupling paths comprising 4 MGOs each (in C and
D), with a total delay time of 30 ms in the loop. The cross-
correlation function [18] between elements A and B is
shown in Fig. 2(c). The maximum cross-correlation
(Xcorr) value between these two elements is 0.04. We
have also computed the time delayed mutual information
(DMI) [18] between them and found a maximum value of

0.05. Additionally, we have performed experiments for a
varying number (N) of MGOs in the coupling paths. A
summary of the experimental findings is presented in
Figs. 3(a) and 3(b), solid lines. Both the Xcorr and the
DMI decay for an increasing number of MGOs in the
coupling paths C and D. The curve for the maxima of
the cross correlation shows an oscillating behavior, typical
of the Mackey-Glass dynamics. The quantifiers have been
estimated from time series of 221 points.
The number of elements in the coupling paths is limited

by the practical implementation. The values for Xcorr and
DMI can be further lowered, if more elements are added in
the coupling paths. We use a MGO model to extend our
investigation to a larger number of elements. In the nu-
merics, the dynamical equation describing the MGOs is an
extension of the model for blood production proposed by
Mackey and Glass [16], which has been extensively used in
the characterization of chaotic systems [17]. The equation
for the output of element j in a coupled configuration reads

� _xjðtÞ ¼ �xjðtÞ þ F½XjðtÞ�; (1)

where F½Xj� ¼ aXj=ð1þ bcXc
j Þ. For the system depicted

in Fig. 1(a), XjðtÞ ¼ xj�1ðt� �
ð2Nþ2ÞÞ, with xj�1 being the

element preceding xj, and N is the number of elements in

each coupling path. The total delay in the ring, �, is 30 ms
[18]. The argument of the nonlinear function Xj changes

FIG. 2. Experimentally recorded time trace of the chaotic
dynamics of (a) element A and (b) element B in a mutual
coupling configuration with 4 MGOs in the coupling paths,
with a delay time of 30 ms. (c) Cross-correlation function
between elements A and B.

FIG. 1. Schematic drawing of two oscillators (A and B) in (a) a
mutual coupling arrangement with coupling paths C and D and
(b) a drive-response configuration with a coupling path C. The
dashed lines indicate the use of an auxiliary system approach to
detect generalized synchronization. A0, B0, and C0 are a copy of
A, B, and C, respectively.
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for the other coupling topologies. The parameter values of
the Mackey-Glass model are extracted from the fit of the
experimentally recorded nonlinearity, yielding hai ¼ 2:1,
hbi ¼ 1=3, and hci ¼ 9:9. The time constant of the experi-
mental implementation, �, is 0.47 ms. The parameter mis-
match found in the experimental implementation of the
MGOs has been accounted for in the numerical simula-
tions. The system dynamics is obtained by numerically
integrating Eq. (1) by using the Heun method with an
integration time step of 0.01 ms. We sample points at
0.1 ms for the correlation and mutual information analysis.

A summary of the numerical findings is presented in
Figs. 3(a) and 3(b), dashed lines. It can be seen that the
tendency towards smaller values of Xcorr and DMI con-
tinues when more elements are added in the coupling
paths. For 0 � N � 4, there is a perfect agreement be-
tween experimental and numerical results. For N > 11, the
numerical results of the DMI seem to saturate as they reach
the statistical significance level for time series of 221 points
(dotted line), shown in Fig. 3(b). An analysis for even
longer time series yields values of DMI that continue
decreasing, as shown by the circles and stars in Fig. 3(b).

In addition to the motif of two mutually coupled sys-
tems, we have further analyzed the simple drive-response
motif, as depicted in Fig. 1(b). We inject a chaotic signal
generated by a MGO with self-feedback A into B via C.
The coupling path C includes a chain of oscillators, which
have parameter mismatch among them (diversity) to pre-
vent identical synchronization to occur between neighbors
(Gaussian distribution with variance 0.2 around parameter
values). In this situation, we find that the correlation and
mutual information between elements A and B decrease for

an increasing number of MGOs in the coupling path
(simulations are started at different initial conditions). In
Fig. 4, we show the results for the DMI for two different
scenarios of the unidirectional coupling, namely, element
B and oscillators in the coupling path with or without self-
feedback [18]. We make this distinction since the MGOs
without self-feedback are damped oscillators in the ab-
sence of coupling, while the MGOs with self-feedback
can operate in a pulsating regime in the absence of cou-
pling. First, we consider MGOs without self-feedback in B
and the coupling chain, i.e., XjðtÞ ¼ xj�1ðtÞ in Eq. (1). In

Fig. 4(a), it can be seen that the DMI also decays with an
increasing number of elements in the coupling path.
Second, we consider MGOs with self-feedback in B
and the coupling chain, i.e., XjðtÞ ¼ xj�1ðtÞ þ xjðt� �Þ
in Eq. (1). That is, the oscillators in the coupling path are
subject to a self-feedback loop and are also coupled to the
preceding element in the path. It is clear from Fig. 4(b) that
the DMI decays with the number of elements in this
configuration. This DMI decay is similar to the results
for the mutually coupled topology in Fig. 3(b).
The negligible amount of correlation and mutual infor-

mation measures between elements A and B raises the
natural question of whether these elements might still be
synchronized or not. The auxiliary system approach, pro-
posed by Abarbanel, Rulkov, and Sushchik [26], is a
practical test to check the existence of generalized syn-
chronization. The auxiliary system approach requires the
use of an exact replica of the response system, which is
driven by exactly the same input as the response system
although starting from different initial conditions. By ob-
serving a stable regime of identical oscillations in the

FIG. 3. Semilog plot of the (a) absolute value of the cross-
correlation maxima and (b) mutual information maxima of
elements A and B as a function of the number of elements in
the coupling path C (equal number in D) in the mutual coupling
configuration; see Fig. 1(a). Dashed lines stand for the numerical
results and solid lines for the experimental ones. The dotted line
corresponds to the statistical noise floor due to the finite number
of recorded points (221). Circles correspond to the analysis of 223

points and stars to 225 points.

FIG. 4. Numerical results of the maxima of the mutual infor-
mation shared by elements A and B for an increasing number of
elements in the coupling path C in the drive-response configu-
ration; see Fig. 1(b). Element B and MGOs in the coupling path
have, in panel (a), coupling from the preceding element and, in
panel (b), self-feedback and coupling from the preceding ele-
ment. The dotted line corresponds to the statistical noise floor
due to the finite number of recorded points (221). Circles corre-
spond to the analysis of 223 points and stars to 225 points.
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auxiliary and response systems, the dynamics of the drive
and response systems are considered to be generally
synchronized. How far the auxiliary system approach cor-
responds to the precise definition of generalized synchro-
nization is still under debate. For the two topologies in
Fig. 1, the first part of the auxiliary systems is a precise
copy of the coupling paths between A and B, i.e., C0 � C.
The detection of generalized synchronization requires the
last element to be a copy of A (A0 � A) for the bidirectional
scheme and a copy of B (B0 � B) for the drive-response
configuration. In the following, we check, first, the corre-
lation between A and A0 in the mutual coupling scheme
and, second, the correlation between B and B0 in the drive-
response one.

The correlation function between A and A0 obtained in
the experimental implementation of the mutually coupled
MGOs is presented in Fig. 5. Our experimental results
show that an identically synchronized state indeed exists
and is robust against electrical noise and some degree of
diversity of our electronic components. We experimentally
find a correlation of 0.99 between elements A and A0, as
shown in Fig. 5. This proves a stable identical synchroni-
zation between the elements. For such a high correlation
between elements A and A0 in the presence of parameter
mismatch of the oscillators, elements in the coupling paths
C and C0 can be different, but they must match pairwise.
The identical synchronization between elements A and A0
is mediated by element B, which has a very low correlation
and shares a very small mutual information with the syn-
chronized oscillators. The existence of this identically
synchronized state between A and A0 requires the exis-
tence of generalized synchronization between A and B.
Interestingly, the amount of transferred information does
not seem to be properly captured in our case by the here
applied measures.

Additional numerical results have been performed in
the mutual coupling and the drive-response configurations
to support our findings. We find that the dynamical evolu-
tion of, respectively, elements A-A0 and B-B0 reach an
identically synchronized state. This state appears after a
transient time, because simulations are started at different
initial conditions proving the stability of the synchronized
state. For the drive-response configuration, the scheme

containing MGOs with self-feedback reaches the identi-
cally synchronized state provided that the coupling
strength is larger than the self-feedback strength.
Figure 6 shows the correlation between B and B0 as a
function of the normalized coupling strength (�), when
XjðtÞ¼�xj�1ðtÞþð1��Þxjðt��Þ in Eq. (1). For �< 0:5,

the identically synchronized state is not reached. However,
for �> 0:5, the synchronized state is reached with high
correlation. Clearly, the limit � ¼ 1 relates back to the
oscillators without self-feedback.
In conclusion, we have shown both numerically and

experimentally that under certain circumstances two ele-
ments that are connected via an uncorrelated signal can be
generally synchronized. Our results are not restricted to
Mackey-Glass oscillators but are expected to be valid for
any oscillator operating in the regime of consistency. It is
shown that correlations and mutual information below the
statistical limit, imposed by the finite number of data points,
do not prevent identical synchronization from occurring
between distant elements. Our results highlight the extreme
characteristics generalized synchronization can exhibit.
Consequently, indirect connections might be underesti-
mated when these techniques are applied to identify con-
nections between distant areas in complex networks of
dynamical elements. Since our presented network motifs
are very generic, our results might apply to any networks
with strong nonlinearities. This poses a strong challenge for
the characterization of complex networks.
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