PHYSICAL REVIEW A 89, 023822 (2014)

Similarity properties in the dynamics of delayed-feedback semiconductor lasers
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Semiconductor lasers with delayed feedback exhibit two fundamentally different dynamical states: weak and
strong chaos. We characterize experimentally the mechanism for the emergence of strong chaos. Based on
these insights, we demonstrate similarity properties for long delays, i.e., similar dynamics for different pump
currents when adjusting the feedback strength. For different delay times, even the same time- and amplitude-
rescaled version of the dynamics can be generated. Using a simple rate-equation model, these properties can be
corroborated. The results have major consequences for the characterization and tailoring of the dynamics for

applications.
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I. INTRODUCTION

The dynamics of semiconductor lasers subject to delayed
feedback has been studied for several decades. Dynamical
instabilities in these systems were identified in the 1970’s [1]
and have been studied since then with various motivations. Ini-
tially considered a nuisance, because they have been disturbing
many applications from telecommunication to optical storage
systems, lasers with delayed feedback were later recognized as
excellent testbed systems to study dynamical effects in delay
systems [2]. With the growing understanding of the dynamics
and its control, the delayed-feedback-induced dynamics has
nowadays become more and more attractive for a variety
of applications, comprising encrypted communication with
chaotic carriers [3], light sources with tunable coherence
length [4], ultrafast random bit sequence generation [5],
and neuroinspired information processing [6]. Therefore, it
is essential to understand the different dynamical properties
that can emerge, their underlying mechanisms, and how
certain states can be addressed under different conditions.
Two fundamentally different chaotic properties, denoted as
weak and strong chaos, have recently been distinguished and
identified in semiconductor lasers with delayed feedback [7].
In the case of long delays, weak chaos can be synchronized,
while strong chaos cannot. They exhibit different scaling
properties of the Lyapunov exponents with long delay times,
with the Lyapunov exponents characterizing the chaos-specific
exponential divergence of nearby trajectories. Either all Lya-
punov exponents scale inversely proportional with the delay
time, corresponding to weak chaos, or there exists at least one
that is independent of the delay time, indicating strong chaos.
Recently, it was shown that the normalized autocorrelation
function (AC) can be used as an indicator of the weak-strong
chaos transition in the laser system with delayed feedback [8].

In this paper, we study the transition from weak to strong
chaos by increasing the feedback strength, thereby clarifying
the underlying physical mechanism for this transition as the
interplay of two characteristic frequencies. These insights
have major consequences for a meaningful definition of the
weak and moderate feedback regimes. Moreover, in Ref. [§]
it was recognized that the position of the maximum of
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the sub-Lyapunov exponent, in dependence on the feedback
strength, scales with the pump parameter. Inspired by this
finding and by our identified physical mechanism, we study
whether the dynamics found in experiments exhibit similarity
properties, i.e., whether similar dynamics can be obtained for
different parameters. We show that by keeping the ratio of the
relaxation oscillation frequency of the solitary laser fligo and
the maximum feedback-induced frequency shift A f, constant,
similar AC properties are observed. Keeping also the ratio of
fido and the external cavity frequency fic constant, the same
dynamics, rescaled in amplitude and time, can be generated.
Finally, in Sec. III we corroborate these findings using a simple
rate-equation-based laser model.

II. EXPERIMENTAL RESULTS

For our experiments, we have employed two different
quantum well semiconductor lasers: a discrete-mode (DM)
laser diode emitting at 1543 nm [9], and a distributed feedback
(DFB) laser emitting at 1541 nm. Without external feedback,
the DM laser and the DFB laser have side-mode suppression
ratios of more than 40 dB and longitudinal-mode separations
of 150 and 142 GHz, respectively. We measured a linewidth
enhancement factor of « ~ 2 for the DM laser and of ~3 for
the DFB laser using the Henning-Collins approach [10]. The
lasers’ current and temperature were stabilized to an accuracy
of 0.01 mA and 0.01 K, respectively. Each laser was subject
to polarization-maintained optical feedback from a fiber-optic
external cavity in the long cavity regime with a round-trip time
of ~75 ns. Figure 1 depicts the scheme of the experimental
setup, employing standard telecommunication components.
We estimated a maximum feedback rate of ke ~ 70 ns™!
in our setup. From this maximum value, the feedback rate «
could be attenuated by more than 30 dB, with the attenuation
defined as Attenuation [dB] = —20 loglo(K"n‘—M). Time series
were acquired using a photodiode with 12.5 GHz bandwidth
and a 16 GHz analog bandwidth oscilloscope with a sampling
rate of 40 GS/s.

To characterize the transition between the different chaotic
regimes, we studied the dependence of the AC on the
feedback strength. We analyzed this dependence for the
DM laser for four different pump currents: 1.17y, 1.251,
1.51y, and 21y, with Iy, = 12.08 mA being the solitary laser
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FIG. 1. Scheme of the experimental setup. LD: laser diode; Circ:
optical circulator; PC: polarization controller; Att: optical attenuator;
95/05: one by two splitter with 95% and 5% coupling ratios; —:
optical isolator; and PD: photodiode.
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threshold. The AC, and especially its behavior around time
shifts of 7, is of particular interest, since it illustrates the
nonlinear transformation of the delayed-feedback signal by
the laser [11]. Moreover, for the laser system, the AC peak
height correlates with fundamental chaotic properties related
to weak and strong chaos [8]. Figure 2 depicts the maximum
of the AC for time shifts of about one delay time t for different
bias currents and feedback attenuations. In the following we
denote the correlations around t as the first delay echo. On
the abscissa, lower attenuations are depicted on the right-
hand side (strong feedback) and higher attenuations on the
left-hand side (weak feedback). The maximum correlations
follow a nonmonotonic dependence on the feedback strength,
exhibiting a dip for intermediate feedback strengths. This
minimum in the AC curve is an indication of the emergence
of strong chaos [8]. The points at the extreme left and right
sides, showing correlations lower than 0.2, correspond to stable
emission. The normalized AC then only reflects intensity and
detection noise. Nevertheless, the noisy stable emission can
be easily distinguished from strong chaos with similarly low
correlations via the corresponding time series.

In order to unveil the mechanism that causes this particular
dependence we measured the optical spectra with a high-
resolution optical spectrum analyzer (HROSA) with 10 MHz
resolution [12]. The HROSA combines high resolution with
a broad scan range. Given that the optical bandwidth of
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FIG. 2. (Color online) Maximum of the first delay echo as a
function of the feedback attenuation for the DM laser for four different
operating currents: 1.1/, (circle), 1.251, (square), 1.51y, (triangle),
and 21y, (cross), respectively. For clarity, we indicate on the top
abscissa the feedback strength, i.e., the estimated fraction of emitted
power reinjected into the laser.
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FIG. 3. (Color online) Measured optical spectra vs attenuation
for a current of 1.5/,. (a) Vertical dashed-dotted and dotted lines
indicate the solitary laser frequency (fsoL) and the corresponding
relaxation oscillation frequency ( fi,), respectively. The dashed curve
denotes the position of the spectrally shifted feedback-induced high-
gain region. The horizontal solid line indicates the attenuation for
which we observed the smallest first delay echo. (b) is a zoom of the
region close to the solitary frequency for weak feedback conditions.

the laser easily increases by more than three orders of
magnitude under the influence of optical feedback [13,14],
this combination is essential to detect the interaction between
the delayed-feedback dynamics and the relaxation oscillation
laser dynamics with good accuracy over a wide range of
feedback strengths. Figure 3 depicts the stacked optical spectra
for I = 1.51 as a function of the feedback attenuation, i.e.,
each color-coded horizontal line corresponds to an experi-
mentally recorded optical spectrum for a given attenuation
value. Figure 3(a) illustrates the transition from low feedback
strengths (bottom) to high feedback strengths (top). Below the
maximum attenuation the laser exhibits stable emission in its
solitary frequency. A slight increase of the feedback strength
causes undamping of the relaxation oscillations [15-17],
subsequently entering the weak chaos regime. Further increase
of the feedback strength causes the transitions towards strong
chaos for intermediate feedback. Finally, for the strongest
feedback conditions, the laser emission becomes stable again,
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emitting in the high-gain modes region. The vertical dotted line
marks the relaxation oscillation frequency without feedback
(fi3o)» which was measured for this pump current to be ~4
GHz. The dashed curve is a fit that marks the maximum
feedback-induced frequency shifts, which have a square-root
dependence with the feedback attenuation. The dependence of
this shift agrees well with the one derived from a rate-equation
model Afr, = ak/2m [18,19]. The solid horizontal line
depicts the attenuation for which the AC exhibits a minimum
at 1.51y, i.e., the region of strong chaos. Remarkably, strong
chaos occurs in the region in which Afy, approaches fiy,.
resulting in strong nonlinear interactions.

For a more detailed analysis, Fig. 3(b) shows an enlarge-
ment of the region around the solitary laser frequency for
weak to intermediate feedback strengths. One can recognize
that increasing the feedback strength induces a slight drift of
the solitary laser frequency and its corresponding relaxation
oscillation. More importantly, for large feedback attenuations
>29 dB, the maximum feedback-induced frequency shift
is clearly visible in the range {—2 to O} GHz. For smaller
feedback attenuations <29 dB it starts to nonlinearly mix with
the relaxation oscillations, resulting in a qualitative change of
the optical spectrum and the associated dynamics. The optical
spectrum does not exhibit pronounced relaxation oscillation
peaks anymore and is rather broadband. This corresponds to
the drop in the AC and can also be linked to the transition
to strong chaos along the slope. We suggest to define this
transition, when the features of the relaxation oscillations
disappear, as the separation of the weak and intermediate
feedback regimes.

This interplay between the relaxation oscillations and the
delay-induced dynamics suggests that the resulting dynamics
might be comparable for different feedback and pump param-
eters, as long as the ratio of relaxation oscillation frequency
fRSO and maximum feedback-induced frequency shift A fy, is
kept constant. Rescaling the feedback attenuation accordingly
defines comparable conditions for the different recorded
curves in Fig. 2. We choose the curve at 21, as a reference
and rescale the feedback attenuation for the other currents
such that the ratios fRSO /A fip correspond. Figure 4(a) shows
the resulting curves versus the rescaled feedback attenuation.
After rescaling, the U-shaped region of the minimum of the
different curves fall on top of each other. The deviations for
weak feedback can be mostly attributed to the different signal-
to-noise ratios (SNR) for different currents. In particular,
we have evaluated the influence of the SNR via adding
white noise to our time series. The obtained dependence
for the AC height on the SNR is in good agreement with
the experimental findings, within error margins below 5%.
The deviations at strong feedback can be associated with
the onset of alternation between chaotic dynamics and stable
emission. This effect is very prominent in the DM laser due
to its low o parameter. Altogether, the rescaling and similarity
properties of the delayed-feedback-induced dynamics are
obtained model independent and are found to hold over
large ranges of feedback strengths. In good approximation,
the relaxation oscillation frequency exhibits a square-root
dependence on the excess pump current over threshold pex. =
(ﬁ — 1). Then, the rescaling corresponds to the condition

f]igo/Affb ~V Dexc/K.
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FIG. 4. (Color online) Maximum of the first delay echo as a
function of the feedback attenuation for (a) four different operating
currents of the DM laser and (b) three different operating currents of
the DFB laser. The pump currents are 1.1/, (circle), 1.251, (square),
1.51, (triangle), and 21, (cross), respectively.

In order to prove the generality of the similarity properties
of the delay-induced dynamics, we investigated the rescaling
of the feedback strength on the AC for a different laser, keeping
the rest of the experimental setup unchanged. Figure 4(b)
shows the results for the DFB laser diode under the correspond-
ing change of scale of the feedback attenuation axis. Also for
this laser, the different curves fall on top of each other after the
rescaling of the feedback attenuation. Again, the deviations for
weak feedback can be explained solely by the different SNR
for different currents. This device has a higher o parameter
than the DM laser and, therefore, stable emission under
strong feedback conditions is not observed. Consequently,
the curves coincide up to the strongest feedback conditions.
The similarity of the dynamical properties of the laser with
optical feedback for rescaled feedback strengths indicates that
the transitions between different dynamical regimes are not
directly linked to an absolute feedback strength as traditionally
considered [20,21], but rather to the interplay between
feedback strength and relaxation oscillation frequency (pump
current). An intriguing consequence of these results is that
in order to study the dynamical properties of semiconductor
lasers with delayed feedback, one can significantly reduce the
amount of measurements in parameter space.

The rescaling considered so far only considers the de-
pendence of the maximum of the first delay echo on pump
parameter and feedback strength. Exploring further the simi-
larity properties of this delay system, the delay time plays a
crucial role as well. Keeping also the ratio of the relaxation
oscillation and the external cavity frequency constant, i.e.,
i RSo/ fEC ~ T\/Pexc = const, we demonstrate that completely
equivalent, but amplitude- and time-rescaled, dynamics is
obtained. Therefore, we repeat the experiment for a different
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FIG. 5. (Color online) (a) Maximum of the first delay echo and
(b) full first delay echo for two different dynamical conditions.
Crosses (a) and the dashed line (b) correspond to 2/, 7; = 75.18 ns.
Triangles (a) and the solid line (b) correspond to 1.5661y, 7o =
99.95 ns. Both curves in (b) correspond to attenuations at the
minimum of each respective AC curve in (a). The time axis is rescaled
by At" = L At for the solid line in (b).

delay time 1,. Please note that, in addition to the rescaling
in time, the amplitudes also rescale with the corresponding
change in the pump current. We extended the length of the
external optical cavity by adding 5 m of fiber, and characterized
the dependence of the AC function on the attenuation for
the rescaled current. We change the delay time from t; =
75.18 ns to 7, = 99.95 ns, corresponding to a scaling factor
of B = % = 0.75. For these two cases the pump current of
Iy = 21y, is compared to a pump current of I, = 1.5661,,
respectively, such that fRSO /fec remains equal. The similarity
of the dynamics after a change in the delay time is illustrated
in Fig. 5. Remarkably, not only is the maximum of the AC
around the delay times invariant, as shown in Fig. 5(a), but
so is the time-rescaled AC function around the delay times,
as depicted in the lower panel [both curves correspond to the
minimum at —14 dB in Fig. 5(a)] . Moreover, we have verified
that all time-rescaled AC functions correspond. From these
findings, we can deduce the following similarity property for
the autocorrelation function:

AC(AL; T, Pexe k) = AC (ﬂAt;,Br, pe“,f) :
BB
This is of high relevance, since this means that a particular
dynamics observed for a certain delay time can be simply
slowed down or accelerated by appropriately changing the
delay time, feedback attenuation, and pump parameter. By
this, dynamical properties can be adjusted and tailored for
applications such as photonic information processing [6].
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III. NUMERICAL MODELING

To corroborate our findings, we have employed a simple
rate-equation-based laser model to verify the observed similar-
ity properties in the chaotic dynamics regime. A semiconductor
laser subject to moderate optical feedback can, in many
cases, be described by the Lang-Kobayashi (LK) equations
as follows [22-24]:

E(t) = H2Gnn()E®) + kE(t — T)e ™™, )

(1) = pexcdin — yn(t) — [T + GanIE@?,  (2)

where E and n are the complex electric field amplitude and the
carrier number above threshold, respectively. The feedback is
accounted for via the delay time t and the feedback rate «.
The parameters in Eq. (1) are the linewidth enhancement factor
(), the differential optical gain (Gy = 2.142 x 10* s71), and
the laser solitary frequency (wy). In Eq. (2), pexc is the excess
pump current over threshold (ﬁ — 1), Ju = 1.552 x 107 57!
denotes the pump threshold current in units of the electron
charge, y = 0.909 x 10° s~!is the carrier decay rate, and I" =
0.357 x 10'? s7! is the cavity decay rate. Parameter values
have been chosen according to Refs. [23,24], except fora = 3,
t = 10 ns. The feedback rate « has been varied in the range 1—
100 ns~!. In this model, the solitary laser relaxation oscillation
frequency is given by fro = %«/ GN Pexc Jin and the maximum
feedback-induced frequency shift is A fr, = ok /2.

Figure 6 depicts the numerical results for the height of
the first AC peak for different pump currents. We find that
the curves for the AC peak height become pump current
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FIG. 6. (Color online) Maximum of the first autocorrelation peak
as a function of the feedback attenuation for four different operating
currents: 1.11y, (circle), 1.251, (square), 1.5/, (triangle), and 21
(cross), respectively. In (b) the feedback rate has been scaled as \/Pexc-
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FIG. 7. (Color online) Color-coded amplitude of the numerically
calculated optical spectra vs feedback rate for a pump of pex. = 0.5
(I = 1.51y). The vertical dashed-dotted and dotted lines indicate
the solitary laser frequency and its relaxation oscillation frequency,
respectively. The horizontal solid line indicates the feedback for
which we have the minimum of the AC, and the oblique dashed
line depicts the position of A f. (b) is a zoom of the region close to
the solitary laser frequency for low feedback strengths of (a).

independent when the feedback rate « is rescaled by ./Pexc.
This agrees with the scaling of the Lyapunov exponents as
reported in Ref. [8] in the approximation of weak feedback
and small variations of 7.

In order to explore the generality of our experimental results
in more detail, we have numerically computed the optical
spectra of the laser with feedback for different parameters
as a function of the feedback rate «. Figure 7(a) depicts the
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stacked optical frequency spectra for pexe = 0.5 when the
feedback rate is varied in Eq. (1). For increasing feedback, the
laser exhibits a transition from stable emission to undamped
relaxation oscillations such as in the experiments. Further
increasing the feedback, the frequency bands corresponding
to the solitary laser emission (see the dashed-dotted line in
Fig. 7), the relaxation oscillations (dotted line), and its higher
harmonics become wider, starting to nonlinearly mix, until
they can no longer be distinguished. The minimum in the
height of the AC peak [the horizontal line in Fig. 7(a)] occurs
just after the onset of the strong mixing of the frequency bands.
In particular, the minimum AC echo occurs when A fp, (oblique
line in Fig. 7) approaches the relaxation oscillation frequency
of the solitary laser. We systematically find the same qualitative
behavior of the dynamics for all currents.

IV. CONCLUSIONS

We have shown in experiments and simulations that the
dynamics of a laser with delayed feedback shows similarity
properties. For different feedback strengths, pump parameters,
and delay times, equivalent dynamics was observed. This is
corroborated by the fact that, by adjusting delay time and
feedback strength according to the change in pump current, the
ratio between the total number of external cavity modes and
maximum feedback-induced frequency shift remains constant.
Our studies also indicate that the compensation of some
parameters by others has its limitations. Different o parameters
cannot be compensated for and will always result in different
dynamics. However, we note that even for the same laser,
different o parameters can be realized [25]. This study,
together with the identification of the physical mechanism
that generates strong chaos in semiconductor lasers, opens
a clarifying perspective onto the broad field of delay-coupled
semiconductor lasers. Our results offer promising implications
for future photonics applications, in which nonlinear delayed-
feedback dynamics is used.
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