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Abstract. We present extensive studies on feedback-induced instabilities in semiconductor
lasers (SLs) subject to delayed optical feedback. We demonstrate that a sufficient reduction
of the linewidth enhancement factor α changes the dynamical structure of the system such
that permanent emission in a stable emission state is achieved. This behaviour can be well
understood on the basis of the Lang–Kobayashi rate equation model. We give first
experimental evidence for its major theoretical predictions concerning the stable emission
state and investigate the robustness of this stable state against external perturbations. We
demonstrate that noise-induced escape from the basin of attraction of the stable state shows
similarities to the classical problem of thermally induced escape from a potential well. Thus,
we have developed and realized experimentally an efficient concept to avoid and stabilize
feedback-induced instabilities in SLs.
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1. Introduction

Semiconductor lasers (SLs) subject to delayed optical
feedback, e.g. from the facets of an optical fibre, an
optical disc or an external mirror, exhibit a variety of
complex dynamical phenomena. In practical applications,
these feedback-induced instabilities may severely degrade
the performance of the lasers. Therefore, a profound
understanding of the dynamical phenomena in SLs is
indispensable in order to avoid, or even to utilize,
the instabilities in future applications. This necessary
understanding of the dynamics of the system has been boosted
recently by using the methods of nonlinear dynamics. From
the nonlinear dynamics point of view, SLs with optical
feedback are considered as a model system for investigations
of delay systems in general. Delay systems often show
complex dynamical behaviour due to the infinite number
of possible degrees of freedom available to these systems.
A further peculiarity of SLs with delayed optical feedback
is the extraordinary strong amplitude–phase coupling of
the optical field in the SL, which is described by the
linewidth enhancement factor α. This strong nonlinearity
in combination with the delayed feedback gives rise to the
complex dynamical behaviour investigated in this paper.

The main concern of the present work is to investigate
the influence of the amplitude–phase-coupling nonlinearity
α on the dynamics of the system. In particular, we aim
to avoid the feedback-induced instabilities. Therefore,
we present extensive experimental investigations of the
dynamical behaviour of SLs subject to delayed optical
feedback in dependence on three parameters most relevant
for the dynamics of the system: the injection current I ,

the feedback rate γ and the linewidth enhancement factor
α. We demonstrate that for a very low value of α ≈ 1 the
system continuously emits on a stable emission state. This
behaviour has been predicted by the Lang–Kobayashi (LK)
rate equation model. We show that the stable emission state
indeed is the single external-cavity high-gain mode (HGM)
predicted by the LK model by giving first experimental
evidence for three major predictions of the LK model
concerning the HGM. Finally, we investigate the robustness
of the HGM against external perturbations by superimposing
white electronic noise onto the injection current of the laser.
In particular, we study the noise-induced escape from the
HGM in terms of a first-passage-time problem and compare
our results to the Henry–Kazarinov (HK) model. In addition,
we demonstrate that the noise-induced escape from the basin
of attraction of the HGM shows similarities to the classical
problem of thermally induced escape from a potential.

In the following section, we characterize the dynamics of
SLs subject to delayed optical feedback and summarize some
of the proposed theoretical explanations. In particular, we
will focus on the LK rate equation model, which predicts the
existence of the HGM, and its coexistence with the complex
dynamics. Finally, we discuss possibilities to stabilize the
laser emission on the HGM.

2. Coexistence of complex dynamics and stable
emission

According to the phenomenological classification by Tkach
and Chraplyvy [1], feedback-induced instabilities in SLs
occur over the wide range of feedback levels between
− 45 dB and −10 dB. Since these instabilities are
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Figure 1. Intensity time series recorded for I = 1.05Ith,sol and
γ = 25 ns−1. (a) Oscilloscope single-shot measurement,
bandwidth 1 GHz. (b) Streak camera single-shot measurement,
bandwidth more than 50 GHz.

associated with a drastic increase of the spectral linewidth
of the SL, this dynamical regime is referred to as coherence
collapse [2]. In this regime, the intensity dynamics are
characterized by a wide range of timescales [3]. Figure 1
shows a typical example recorded for injection currents
close to the solitary laser threshold. Figure 1(a) depicts
irregular fluctuations of the laser intensity on a timescale
of microseconds, which is very slow compared with the
relaxation oscillation frequency of the SL as a typical
semiconductor internal frequency. However, figure 1(b)
depicting the same dynamics on faster timescales shows
that indeed there is a fast pulsating behaviour underlying
these slow dynamics. Because of these different timescales,
theoretical and experimental investigations of this system
are challenging and a variety of different models describing
these feedback-induced instabilities have been proposed. A
key point in this discussion has been the relative importance
of determinism and noise governed mechanisms, and the
interplay of the two in the dynamics [4–8]. Furthermore,
the role of the number of optical modes [9–12] involved in
the laser emission, and effects of asymmetry [13–15], have
been intensively discussed.

In this paper, we focus on the LK rate equation
model [16] because this model, despite its simplifications,
successfully explains our experimental results. The LK
equations for the complex electrical field E and the carrier

number n(t) = N(t) − N0 with respect to the solitary level
N0 are

Ė(t) = 1
2 (1 + iα)ξn(t)E(t) + γE(t − τ)e−iω0τ (1)

ṅ(t) = (p − 1)
Ith

e
− n(t)

T1
− (�0 + ξn(t))P (t). (2)

The optical feedback is taken into account by γ and the
delay time τ . The electrical field is normalized so that
P(t) = |E(t)|2 is the photon number; ω0 represents the
optical frequency of the solitary laser, ξ the differential gain,
�0 the cavity decay rate, T1 the carrier lifetime, Ith the bias
current at solitary laser threshold, e the electron charge and
p the pump parameter. α accounts for the carrier-induced
variation of real and imaginary parts of the semiconductor
material’s susceptibility χ(n) = χr(n) + iχi(n). α is defined
as follows [19, 20]:

α = −d(χr(n))/dn

d(χi(n))/dn
. (3)

We begin our analysis by reviewing some properties of
the LK model. First, we consider the fixed points and their
stability properties. Each fixed point of the LK equations
corresponds to a constant optical frequency ω0 + �ω and a
constant carrier number n [5]. The location of these fixed
points in frequency-inversion space is given by the following
equations:

�ωτ = γ τ
√

1 + α2 sin{(ω0 + �ω)τ + arctan α} (4)

(γ τ)2 =
(
�ωτ − α

τξn

2

)2

+

(
τξn

2

)2

. (5)

As can be seen from equations (4) and (5), the fixed points
form an ellipse around the solitary laser mode in frequency-
inversion space. The eccentricity of this ellipse is determined
by the value of α. Decreasing α reduces the eccentricity of
the ellipse, i.e. for α = 0, the fixed points of the system are
located on a circle around the solitary laser mode. Three types
of fixed point are present in the system [6]: first, fixed points
called antimodes exhibiting a saddle-node instability which
physically correspond to destructive interference between the
laser cavity and the external cavity; second, fixed points
called modes corresponding to constructive interference,
which are destabilized via Hopf bifurcation; third, located
at the very low-frequency, high-gain end of the ellipse, the
so-called maximum-gain mode [17], which always remains
stable. In addition, all modes in the vicinity of the maximum-
gain mode which satisfy

− arctan(1/α) < (ω0 + �ω)τ < 0 (6)

also remain stable. Thus, the number of these stable HGMs
increases with decreasing α. This structure of the LK
equation gives rise to two different dynamical states. On the
one hand, the trajectory may move irregularly on the system
of destabilized fixed points. On the other hand, the trajectory
may stay on the HGM.

The LK model explains the complex dynamics of SLs
with optical feedback as a consequence of an irregular
movement of the trajectory on the system of destabilized
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fixed points described above [3]. These complex dynamics
are characterized by a broad power spectrum. Emission
on the HGM, however, is a different dynamical state and
not part of this complex dynamics. The complex dynamics
often appears to be the only existing dynamical state because
in these cases the basin of attraction of the HGM is
extremely small. Nevertheless, for certain parameter regions,
coexistence of the stable HGM with the complex dynamical
behaviour has been demonstrated in recent experimental
investigations [18].

In the present contribution, we aim to stabilize the laser
emission on the HGM and, thus, to avoid the occurrence
of the feedback-induced instabilities in principle. Our
concept is to reduce the strong amplitude–phase coupling of
the optical field described by α. Theoretically, the effect
of a reduction of this main nonlinearity of the system is
threefold. First, according to equation (5), the eccentricity
of the ellipse of fixed points decreases with decreasing α,
i.e. the distance between stable and unstable fixed points
increases [6]. Second, from equation (4) it results that the
total number of fixed points decreases with decreasing α,
whereas, according to equation (6), the number of stable
modes increases [17]. Third, the size of the local attractors of
each destabilized mode decreases [21]. Therefore, according
to the LK model, decreasing α leads to an enlarging basin
of attraction of the HGM, and an increasing stability of
the HGM. In the following section, we present extensive
experimental investigations of the influence of a reduction
of α on the dynamics of the system.

3. The influence of a reduction of α on the
dynamics of SLs with feedback

In this section, we first describe the experimental method
with which we control the value of α. Then, we present
experimental investigations of the dynamics of the system
in dependence on three parameters most relevant for the
dynamics of the system, i.e. γ , I and α. We will demonstrate
a conspicuous stabilization of the laser emission on HGM
with decreasing α over large parameter regimes.

3.1. Controlling α

In order to control the value of α, we take advantage
of the strong spectral dependence of α. Experimental
and theoretical results have demonstrated that α decreases
continuously with decreasing wavelength [22–25]. This
effect is mainly due to the strongly increasing differential
gain because the changes of the refractive index with the
carrier density vary only slightly. Consequently, we control
α by shifting the emission wavelength of the system away
from the gain maximum of the solitary laser. We achieve this
by placing an etalon inside the external cavity. Tilting the
etalon allows us to shift the overall gain profile of the system,
which can be described as the superposition of the gain curve
of the solitary laser, the Airy transmission function of the
etalon and the effective reflectivity of microscope objective
(MO) and feedback mirror. Thus, we tune the emission
wavelength of the system without changing the gain profile of
the SL. This particular wavelength shift allows us to control

the value of α. In our discussion, we neglect the slight
changes of the material gain profile due to the wavelength
shift, because the resulting effects are small compared with
the changes of α.

Figure 2 depicts a scheme of the experimental setup. The
laser is a bulk Fabry–Pérot laser diode (Hitachi HLP1400),
which is driven by an ultra-low-noise constant-current source
and temperature stabilized to better than 0.01 K. The laser
beam is collimated by an anti-reflection coated MO. The
feedback branch consists of a high-reflection mirror, and a
neutral-density filter. The delay time of the external cavity
amounts to 3.3 ns. A key element is the intracavity etalon
with a transmission bandwidth of approximately 2.1 THz.
Due to the spectral selectivity of the etalon, the SL emission
is dominated by one longitudinal diode mode. However, it
does not suppress the corresponding external cavity modes
due to its large transmission bandwidth [26]. The etalon
allows us to tune the emission wavelength of the laser over
a range of about 10 nm around the solitary gain maximum.
The intensity dynamics is detected by a single-shot streak
camera with an analogue bandwidth of more than 50 GHz
and by a fast avalanche photodiode (APD) with greater
than 3 GHz bandwidth. The power spectrum of the APD
signal is recorded by an electrical spectrum analyser. The
corresponding time series are low-pass filtered with the cut-
off frequency at 1 GHz and detected by a fast oscilloscope of
the same bandwidth. The time averaged intensity is measured
by a p–i–n photodiode. The optical spectrum is analysed
via a grating spectrometer with a resolution of 0.1 nm in
order to resolve the longitudinal diode modes and to monitor
the absolute emission wavelength of the laser. In addition,
a confocal scanning Fabry–Pérot interferometer is used to
resolve the external cavity modes. The free spectral range
of the interferometer amounts to 2 GHz, the resolution to
10 MHz. An optical isolator shields the laser from unwanted
external feedback from the detection branch.

In order to obtain maximum information about the effect
of a variation of α on the dynamics of the system, we
choose the following experimental method. First, we adjust
the emission wavelength of the system and, thus, select
the desired value of α. Then, we adjust the feedback rate
γ using the neutral-density filter. Finally, we vary the
injection current over the whole accessible range and record
the resulting dynamical behaviour. Repeating this procedure
for different values of γ , we obtain a γ –I -space diagram
providing both detailed information and a global view over
dynamics of the system for the selected value of α. In the
following section, we identify the effects of a changing α

on the dynamics of the system by comparing γ –I -space
diagrams recorded for different values of α.

3.2. Decreasing α stabilizes the system on HGM

Figure 3 depicts three γ –I -space diagrams recorded for
three different emission wavelengths, i.e. 841, 838.2 and
835.5 nm. The values of α corresponding to these
wavelengths have been determined using the method of
Henning and Collins [27], which is based on measurements
of the Fabry–Pérot resonances in the spontaneous emission
spectrum of the laser [28]. We obtain α = 2.8 ± 0.5 at
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Figure 2. Experimental setup allowing us to control the value of α and detect the temporal and spectral dynamics.

841 nm, α = 2.1 ± 0.4 at 838.2 nm and α = 1.6 ± 0.3 at
835.5 nm. These values are in good agreement with previous
results for this type of laser [22, 23].

All γ –I -space diagrams depicted in figure 3 exhibit
similar features: the threshold reduction due to the optical
feedback and two main dynamical regimes, i.e. the regime
of coexistence of stable emission on the HGM with complex
dynamics, and the regime of complex dynamics. A more
detailed characterization of these regimes can be found
in [29].

Only within the coexistence regime does the trajectory
have a finite probability to reach the HGM. Once the
trajectory has reached the dynamically stable HGM, it
can nevertheless be ejected again by external or internal
perturbations because the HGM is not yet sufficiently
stable. Since we aim to stabilize the laser emission on the
HGM, we focus our discussion on this coexistence regime.
Figure 3 demonstrates that the coexistence regime drastically
increases for decreasing α. Furthermore, the average times
of stable emission on the HGM increase strongly with
decreasing α. For α = 1.6 residence times on the HGM
exceeding 1 min are observed for considerable parameter
regions in γ –I space, preferably on the stronger-feedback
side of the coexistence regime.

The comparison of the three γ –I -space diagrams
depicted in figure 3 leads to the following results:

(i) The HGM becomes more stable for decreasing α.
Consequently, the emission on the HGM becomes more
robust against internal or external noise.

(ii) The HGM can be reached more easily for drastically
increasing parameter regimes for decreasing α. This is
consistent with an enlarging basin of attraction of the
HGM which is predicted by theory.

These results strongly indicate that the laser emission can
indeed be stabilized by a reduction of α. However, the
combination of etalon and SLs used in our setup above
does not permit us to further decrease this value because
of the limited transmission bandwidth of the etalon and the
decreasing gain of the SL. Consequently, we alternatively

approach the task of further reducing α by selecting multi-
quantum-well distributed-feedback (MQW-DFB) lasers for
our investigations.

Quantum-well (QW) lasers are known to have a
considerably lower α than bulk lasers such as the HLP1400.
This is mainly due to the dominant increase of the differential
gain in QW lasers [22,23]. Furthermore, DFB lasers have the
great advantage that their emission wavelength is determined
by the Bragg grating. Thus, the emission wavelength can
be tuned technologically to higher energies independently
of the gain profile of the semiconductor material. Thus, α
can be selected by design in DFB lasers [24]. An additional
small continuous variation of α is possible by temperature
tuning the material gain curve relative to the lasing frequency
selected by the DFB grating.

In the next section, we experimentally investigate the
consequences of a further reduction of α for the dynamics
of the system by using an MQW-DFB laser with a very low
value of α.

4. Experiments using a low-α MQW-DFB laser

In this section, we first describe our new complimentary
experimental setup. Then, we present detailed experimental
investigations of the properties of the HGM. Finally, we
investigate the robustness of the HGM against external
perturbations.

4.1. Laser structure and experimental setup

Figure 4 shows the experimental setup. The laser is an MQW-
DFB laser emitting at 1.55 µm produced by Alcatel SEL.
The laser facet heading towards the external cavity is anti-
reflection coated. However, the κL of the DFB grating of
the laser [30] is 0.7, corresponding to reflectivities similar
to those of the cleaved facets of the HLP1400. External
electronic noise can be added to the injection current via
the Bias Tee. The electronic noise is Gaussian with a
bandwidth of 1.1 GHz. The fast photodiode has a bandwidth
of 750 MHz. The delay time τ of the external cavity is
4 ns. The specifications of the other elements of the setup are
similar to those described in section 3.
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(a)

(b)

(c)

Figure 3. The dynamical behaviour of SLs with optical feedback
in dependence on the injection current I and the optical feedback
strength γ for: (a) 841 nm corresponding to α = 2.8 ± 0.5,
(b) 838.2 nm corresponding to α = 2.1 ± 0.4, (c) 841 nm
corresponding to α = 1.6 ± 0.3.

4.2. Stable emission for low-α laser

We have measured the value of α of the MQW-DFB laser
to be 0.95 ± 0.2. Consequently, we are close to a critical

NDFMO   HR-MirrorMO
  Optical
  IsolatorBS          BSPIN

  Fast
  APD

Laser

Electrical
Spectrum
Analyzer

Fast
Oscillo -
scope

Optical 
Spectrum
Analyzer

DC
Bias 
Tee

Noise
SourceI

Figure 4. The experimental setup using the MQW-DFB laser
allowing noise-induced escape studies.

value ofα below which certain feedback-induced instabilities
may disappear. Depending on many other parameters, this
value typically is α � 1 [31]. In order to obtain an
overview on the dynamics of the system for this very low
α, we record another γ –I -space diagram. We find that for
the entire parameter range covered by the diagrams shown
in figure 3, the laser emission is always stable: for these
intermediate feedback levels, the laser emission remains
stable for injection currents exceeding twice the solitary laser
threshold. For even higher injection currents, the system
shows the complex dynamics which is also observed in other
SLs for this parameter region. The higher the feedback level
γ , the higher the injection current for which the transition to
the complex dynamics occurs. The extension of the stable
emission regime in γ –I space resembles regime V depicted
in [32]. The extraordinary stability of the stable emission
state allows detailed investigations of its properties, which
are presented in the following section.

4.3. The stable emission state is indeed the HGM

The stability analysis of the fixed points of the LK equations
leads to the following predictions concerning the HGM. First,
the frequency of the HGM is shifted relative to the solitary
laser mode to lower frequencies, i.e. larger wavelengths [17].
The amount of the frequency shift is given by

�ωτ = αγ τ. (7)

Furthermore, according to equation (7), the frequency shift
should linearly depend on the feedback rate γ and the slope
of this linear dependence is given by α. Finally, the linewidth
of the HGM, δλHGM, should decrease relative to the linewidth
of the solitary laser δλSOL [33]:

δλHGM = δλSOL/(1 + γ τ)2. (8)

The extraordinary stability of the stable emission state over
wide parameter ranges allows us for the first time to check
these theoretical predictions by analysing the optical spectra
of the system. Figure 5 shows the optical spectra of the
solitary laser, and the laser with feedback in the stable
emission state. In agreement with theory, the laser line with
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Figure 6. Frequency shift of the stable emission state with
feedback relative to the solitary laser in dependence on the
feedback level (solid squares). The solid line shows a linear fit.

feedback is shifted to longer wavelength. In order to check
the second prediction concerning the HGM, we repeat this
measurement for different values of the feedback rate γ .
Figure 6 shows that the frequency shift indeed is linearly
dependent on γ . This linear dependence remains unchanged
under variation of the injection current. Finally, according
to equation (7), the slope of this line should be given by the
value of α. From the linear fit presented in figure 6, we find a
value of α = 1.1. This value is in very good agreement with
the value we have obtained using the method of Henning
and Collins. So, the experimental results presented in this
section confirm three major predictions of the LK model
concerning the HGM, i.e. frequency shift, dependence on
γ and dependence on α. Therefore, we conclude that the
stable emission state is indeed the HGM.

The very good agreement of experiment and theory
underlines the importance of equation (8) describing the
scaling of the spectral linewidth of the HGM with γ τ . In
the present experiment γ τ is as large as 300. This value
should result in a linewidth narrowing by almost five orders
of magnitude. Since the solitary laser linewidth typically is
of the order of some tens of MHz, linewidths in the sub-
kHz range should be easily accessible. In our experimental
setup, we are not able to observe this effect because even the

solitary laser linewidth cannot be resolved with the grating
spectrometer. However, for the HLP1400, we observe a
linewidth narrowing of more than one order of magnitude
in the Fabry–Pérot interferometer spectrum, again limited
by the resolution of 10 MHz of the interferometer. To
sum up, emission on the HGM might have applications in
spectroscopy as a stable, tunable, and very narrow-linewidth
light source. For these applications, in which feedback-
induced instabilities need to be avoided, the robustness of the
HGM against external perturbations is essential. Therefore,
we present systematic investigations of this point in the next
section.

5. Noise-induced escape from the basin of
attraction of the HGM

In order to test the stability of the HGM against external
perturbations, we add variable amounts of white electronic
noise to the injection current of the laser. In the following, we
investigate parameter regimes for which the system without
external noise or perturbations always emits on the HGM.
Increasing the noise from very low levels, we observe the
existence of a certain threshold noise level below which the
trajectory of the system remains on the HGM. Increasing the
external noise level above this threshold level, the trajectory
can be ejected from the HGM. Consequently, the system
jumps back and forth between the HGM and complex
dynamics. Increasing the noise level even further, the
system finally no longer reaches the HGM, and the complex
dynamics prevail. The power spectrum of the complex
dynamics is similar to the power spectrum of other laser types
which are unstable under similar conditions without external
noise. Thus, we conclude that, even though the HGM is very
stable, the system of unstable fixed points persists, and that
the observed complex dynamics takes place on this unstable
fixed point system.

5.1. A first-passage-time problem

In order to investigate the phase space of the system around
the HGM, we concentrate on intermediate noise levels for
which the system alternates between stable emission and
complex dynamics. We find that the system jumps back and
forth between these two states on extremely slow timescales
on the order of milliseconds. Figure 7 shows experimental
distribution functions (DFs) of the escape times from the
HGM for two different noise levels. In both cases, the
DFs show an exponential decay. This exponential decay is
observed for all noise levels, and indicates that a stochastic
process governs the underlying mechanism. In particular,
within the statistical error bars, all DFs exhibit the following
characteristic dependence on the average escape time 〈τ 〉:

ξ(t) ∝ e− t
〈τ 〉 . (9)

The same formula has been obtained theoretically by Sukow
et al [34] from an extension of the HK model [8]. Originally,
the HK model was designed to explain the low-frequency
fluctuation (LFF) phenomenon in terms of a first-passage-
time problem: an SL with optical feedback is prepared in
its stable state, for which a potential is assumed; the HK
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model studies spontaneous emission noise-induced escapes
from this potential. Interestingly, the HK model fails to
describe the DFs for the LFF case [34], but agrees well with
our experimental results. In addition, the HK model predicts
the following approximation for the potential depth U , i.e.
the stability of the stable state:

U ∝ γ 4

α4I 2
. (10)

This prediction is consistent with our experimental results.
The stability of the HGM increases with decreasing α,
increases with increasing feedback strength γ and decreases
with increasing injection current I .

5.2. Similarity to thermally induced escape from a
potential

As demonstrated by figure 7, the average escape times
〈τ 〉 depend very sensitively on the noise level R. We
have systematically investigated this sensitive dependence.
Figure 8 shows the average escape times plotted versus the
inverse noise level. Over several decades, 〈τ 〉 increases
exponentially with the inverse noise level:

log〈τ 〉 ∝ 1

R
. (11)

It is interesting to note that this characteristic dependence
exhibits similarity to the classical problem of thermally
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Figure 8. Average escape times from the HGM in dependence on
the inverse noise level (solid squares). The solid line depicts a
linear fit.

induced escape from a potential well. In this problem,
the temperature dependence of the average escape time 〈τ 〉
is given by the well known, phenomenological Arrhenius
factor [35, 36]:

log〈τ 〉 ∝ EA

kBT
. (12)

EA is the activation energy of the potential, and kB is
Boltzmann’s constant. So, the average escape time in this
problem increases exponentially with the inverse temperature
T . These first experimental results encourage further
experimental investigations to determine the mechanism
underlying this characteristic behaviour.

6. Conclusions

We have presented an efficient concept to avoid and control
feedback-induced instabilities in SLs subject to delayed
optical feedback. This concept uses theoretical predictions
of the LK rate equation model. According to this model, the
dynamical structure of the system consists of two separate
states: a set of destabilized fixed points responsible for the
instabilities, and the stable HGM. The complex dynamics
which takes place on the system of destabilized fixed points
often prevails since the basin of attraction of the HGM is
very small. The concept presented in this paper exploits
the fact that the HGM nevertheless is accessible within a
certain parameter regime, in which the HGM coexists with
the complex dynamics. The aim is to stabilize the laser
emission on the HGM and thereby suppress the instabilities.
In a first step, we have demonstrated that the HGM becomes
more stable and more easily accessible for a decreasing
linewidth enhancement factor α. Thus, we have confirmed
the importance of α as a key parameter for the dynamics
of the system. In a second step, we have demonstrated
that a sufficient reduction of α changes the dynamical
structure of the system so that permanent emission on the
HGM is achieved. For α ≈ 1, we have observed robust
stable emission over very large parameter regimes. Detailed
investigations of this stable emission state have confirmed
central predictions of the LK model concerning the HGM,
which confirm that the stable emission state indeed is the
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HGM. In order to investigate the stability properties of the
HGM, we have added white electronic noise to the injection
current. We have demonstrated that the noise-induced escape
process away from the HGM can be described as a first-
passage-time problem. In particular, the predictions of the
HK model concerning the DFs and the potential depth are
consistent with our experimental results. Finally, we have
demonstrated that the noise-induced escape from the basin
of attraction of the HGM exhibits similarity to the classical
problem of thermally induced escape from a potential well.

We conclude that the performance of SLs in practical
applications can be substantially improved by a sufficient
reduction of α. Low-α lasers exhibit two most desirable
properties for practical applications: insensitivity to delayed
optical feedback and chirpless operation. Values of α ≈
0 seem to be feasible in, preferably modulation doped,
QW–DFB lasers with a Bragg grating detuned to shorter
wavelengths. Furthermore, stable emission on the HGM may
find applications in spectroscopy and other fields as a simple,
narrow-linewidth, tunable light source.
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