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We study the effect that the injection of a common source of noise has on the trajectories of chaotic
systems, addressing some contradictory results present in the literature. We present particular
examples of one-dimensional maps and the Lorenz system, both in the chaotic region, and give
numerical evidence showing that the addition of a common noise to different trajectories, which
start from different initial conditions, leads eventually to their perfect synchronization. When
synchronization occurs, the largest Lyapunov exponent becomes negative. For a simple map we are
able to show this phenomenon analytically. Finally, we analyze the structural stability of the
phenomenon. ©2001 American Institute of Physics.@DOI: 10.1063/1.1386397#
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The synchronization of chaotic systems has been the sub
ject of intensive research in recent years. Besides its fun
damental interest, the study of the synchronization of
chaotic oscillators has a potential application in the field
of chaos communications. The main idea resides in the
hiding of a message within a chaotic carrier generated by
a suitable emitter. The encoded message can be extracte
if an appropriate receiver, one which synchronizes to the
emitter, is used. One of the conditions to be fulfilled in
order to achieve synchronization is that the receiver and
the emitter have very similar device parameters, hence
making it very difficult to intercept the encoded message.
Although the usual way of synchronizing two chaotic sys-
tems is by injecting part of the emitted signal into the
receiver, the possibility of synchronization using a com-
mon random forcing has also been suggested. Howeve
there have been some contradictory results in the litera-
ture on whether chaotic systems can indeed be synchro
nized using such a common source of noise and the issu
has begun to be clarified only very recently. In this paper
we give explicit examples of chaotic systems that becom
synchronized by the addition of Gaussian white noise of
zero mean. We also analyze the structural stability of the
phenomenon, namely, the robustness of the synchroniza
tion against a small mismatch in the parameters of the
chaotic sender and receiver.

I. INTRODUCTION

One of the most surprising results of the last few deca
in the field of stochastic processes has been the disco

a!Electronic mail: raul@imedea.uib.es
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that fluctuation terms~loosely callednoise! can actually in-
duce some degree of order in a large variety of nonlin
systems. The first example of such an effect is that ofsto-
chastic resonance1,2 by which a bistable system respond
better to an external signal~not necessarily periodic! under
the presence of fluctuations, either in the intrinsic dynam
or in the external input. This phenomenon has been show
be relevant for some physical and biological systems
scribed by nonlinear dynamical equations.3–5 Other ex-
amples in purely temporal dynamical systems include p
nomena such as noise-induced transitions,6 noise-induced
transport,7 coherence resonance,8–11 etc. In extended sys
tems, noise is known to induce a large variety or order
effects,12 such as pattern formation,13,14 phase
transitions,15–18 phase separation,19,20 spatiotemporal sto-
chastic resonance,21,22 noise-sustained structures,23,24 doubly
stochastic resonance,25 amongst many others. All these ex
amples have in common that some sort oforder appears only
in the presence of the right amount of noise.

There has also been some recent interest on the inter
between chaotic and random dynamics. Some counterin
tive effects such as coherence resonance, or the appea
of a quasiperiodic behavior, in a chaotic system in the pr
ence of noise, have been found recently.26 The role of noise
in standard synchronization of chaotic systems has been
sidered in Refs. 27 and 28, as well as the role of noise
synchronizing nonchaotic systems.29,30 In this paper we ad-
dress the different issue of synchronization of chaotic s
tems by a common random noise source, a topic that
attracted much attention recently. The accepted result is
for some chaotic systems, the introduction of the same n
in independent copies of the systems could lead~for large
enough noise intensity! to a common collapse onto the sam
© 2001 American Institute of Physics
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trajectory, independently of the initial condition assigned
each of the copies. This synchronization of chaotic syste
by the addition of random terms is a remarkable and co
terintuitive effect of noise and although some clarifying p
pers have appeared recently, still some contradictory res
exist for the existence of this phenomenon of noise-indu
synchronization. It is the purpose of this paper to give furt
analytical and numerical evidence that chaotic systems
synchronize under such circumstances and to analyze
structural stability of the phenomenon. Moreover, the res
presented here clarify the issue, thus opening direction
obtain such a synchronization in electronic circuits, e.g.,
encryption purposes. Common random noise codes h
been used in spread spectrum communication for a long
ago.31 The main idea is to mix information data within
noisy code. At the receiver, the information is recovered
ing a synchronized replica of the noise code. More recen
the use of common noise source has also been proposed
useful technique to improve the encryption of a key in
communication channel.32

The issue of ordering effect of noise in chaotic syste
was already considered at the beginning of the 1980s
Matsumoto and Tsuda,33 who concluded that the introductio
of noise could actually make a system less chaotic. Later,
Ott, and Chen34 studied the transition from chaos to no
chaos induced by noise. Synchronization induced by no
was considered by Fahy and Hamman,35 who showed that
particles in an external potential, when driven by the sa
random forces, tend to collapse onto the same trajector
behavior interpreted as a transition from chaotic to nonc
otic behaviors. The same system has been studied num
cally and analytically.36–38Pikovsky39 analyzed the statistic
of deviations from this noise-induced synchronization. A p
per that generated a lot of controversy was that of Mari
and Banavar.40 These authors analyzed the logistic map
the presence of noise:

xn1154xn~12xn!1jn , ~1!

wherejn is the noise term, considered to be uniformly d
tributed in a symmetric interval@2W,1W#. They showed
that, if W were large enough~i.e., for a large noise intensity!
two different trajectories which started with different initi
conditions but otherwise used the same sequence of ran
numbers, would eventually coincide into the same traject
The authors showed a similar result for the Lorenz sys
~see Sec. III!. This result was heavily criticized by
Pikovsky,41 who proved that two systems can synchron
only if the largest Lyapunov exponent is negative. He th
argued that the largest Lyapunov exponent of the logi
map in the presence of noise is always positive and c
cluded that the synchronization was, in fact, a numerical
fect of lack of precision of the calculation. The analysis
Pikovsky was confirmed by Longaet al.,42 who studied the
logistic map with arbitrary numerical precision. The criterio
of negative Lyapunov exponent has also been shown to
for other types of synchronization of chaotic systems a
Zhou and Lai43 noticed that previous results by Shuai, Won
Downloaded 25 Sep 2001 to 130.206.78.208. Redistribution subject to AI
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and Cheng44 showing synchronization with a positiv
Lyapunov exponent were again an artifact of the limited p
cision of the calculation.

In addition to the above-mentioned criticisms, Herz
and Freund45 and Malescio46 pointed out that the noise use
to simulate Eq.~1! and the Lorenz system in Ref. 40 is n
really symmetric. While the noise in the Lorenz system
nonsymmetric by construction, in the case of the map,
nonzero mean arises because the requirementxn

P(0,1), ;n, actually leads one to discard the values of t
random numberjn which would induce a violation of such
condition. The average value of the random numbers wh
have been accepted is different from zero, hence produ
an effectivebiasednoise, i.e., one which does not have ze
mean. The introduction of a nonzero mean noise means
the authors of Ref. 40 were altering essentially the proper
of the deterministic map. Furthermore, Gade and Bass47

argued that the synchronization observed by Maritan and
navar is due to the fact that the bias of the noise leads
system to a nonchaotic fixed point. With only this basis, th
concluded that a zero-mean noise can never lead to sync
nization in the Lorenz system. The same conclusion w
reached by Sa´nchezet al.,48 who studied experimentally a
Chua circuit and concluded that synchronization by no
only occurs if the noise does not have a zero mean. The s
conclusion is obtained in Ref. 49 by studying numerically
single and an array of Lorenz models, and in Ref. 50 fr
experiments in an array of Chua circuits with multiplicativ
colored noise. Therefore, from these last works, a wi
spread belief has emerged according to which it is not p
sible to synchronize two chaotic systems by injecting
same noisy unbiased, zero-mean, signal to both of them

Contrary to these last results~but in agreement with the
previously mentioned results32–39!, Lai and Zhou51 have
shown that some chaotic maps can indeed become sync
nized by additive zero-mean noise. A similar result has b
obtained by Loretoet al.,52 and by Minai and Anand,32,53,54

in the case where the noise appears parametrically in
map. The implications to secure digital communications ha
been considered in Refs. 32, 53, and 55, and an applica
to ecological dynamics in fluid flows is presented in Ref. 5
An equivalent result about the synchronization of Lore
systems using a common additive noise has been show
the authors of the present paper in Ref. 57. The ac
mechanism that leads to synchronization has been expla
by Lai and Zhou,51 see also Ref. 58. As Pikovsky41 required,
synchronization can only be achieved if the Lyapunov ex
nent is negative. The presence of noise allows the syste
spend more time in the ‘‘convergence region’’ where the
cal Lyapunov exponent is negative, hence yielding a glo
negative Lyapunov exponent. This argument will be dev
oped in more detail in Sec. II, where an explicit calculati
in a simple map will confirm the analysis. The results of L
and Zhou have been extended to the case of coupled
lattices59 where Pikovsky’s criterion has been extended
spatially extended systems.

In this paper we give further evidence that it is possib
to synchronize two chaotic systems by the addition of a co
mon noise which is Gaussianly distributed and not bias
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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667Chaos, Vol. 11, No. 3, 2001 Analytical and numerical studies
We analyze specifically some one-dimensional~1D! maps
and the Lorenz system, all in the chaotic region. The nec
sary criterion introduced in Ref. 41 and the general ar
ments of Ref. 51 are fully confirmed and some heuristic
guments are given about the general validity of our resu

The organization of the paper is as follows. In Sec. II
present numerical and analytical results for some 1D ma
while Sec. III studies numerically the Lorenz system. In S
IV we analyze the structural stability of the phenomeno
i.e., the dependence of the synchronization time on the
rameter mismatch. Finally, in Sec. V we present the conc
sions as well as some open questions relating the gen
validity of our results.

II. RESULTS ON MAPS

The first example is that of the map

xn115F~xn!5 f ~xn!1ejn , ~2!

wherejn is a set of uncorrelated Gaussian variables of z
mean and variance 1. As an example, we use explicitly

f ~x!5expF2S x20.5

v D 2G . ~3!

Studying the convergence or divergence of trajectories of
~2! starting from different initial conditions under the sam
noise jn is equivalent to analyzing the converge or dive
gence of trajectories from two identical systems of the fo
~2! driven by the same noise. We plot in Fig. 1 the bifurc
tion diagram of this map in the noiseless case. We can se
typical windows in which the system behaves chaotica
The associated Lyapunov exponent,l, is positive in these
regions. For instance, forv50.3 ~the case we will be con
sidering throughout the paper! it is l'0.53. In Fig. 2 we
observe that the Lyapunov exponent becomes negative
most values ofv for large enough noise levele. Again for
v50.3 and now fore50.2 it is l520.17. A positive
Lyapunov exponent in the noiseless case implies that tra
tories starting with different initial conditions, but using th
same sequence of random numbers$jn%, remain different for
all the iteration steps. In this case, the corresponding s
chronization diagram shows a spread distribution of po
@see Fig. 3~a!#. However, when moderate levels of noi

FIG. 1. Bifurcation diagram of the map given by Eqs.~2! and ~3! in the
absence of noise terms.
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(e*0.2) are used,l becomes negative and trajectories sta
ing with different initial conditions, but using the same s
quence of random numbers, synchronize perfectly, see
synchronization diagram in Fig. 3~b!. Obviously, the noise
intensity in the cases shown is not large enough such as t
able to neglect completely the deterministic part of the m

FIG. 2. Lyapunov exponent for the noiseless map (e50, continuous line!
and the map with a noise intensitye50.1 ~dotted line! and e50.2 ~dot-
dashed line!.

FIG. 3. Plot of two realizationsx(1), x(2) of the map given by Eqs.~2! and
~3! with v50.3. Each realization consists of 10 000 points which have b
obtained by iteration of the map starting in each case from a different in
condition~100 000 initial iterations have been discarded and are not sho!.
In ~a! there is no noise,e50, and the trajectories are independent of ea
other. In ~b! we have used a level of noisee50.2, producing a perfect
synchronization~after discarding some initial iterations!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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668 Chaos, Vol. 11, No. 3, 2001 Toral et al.
Therefore, the synchronization observed does not trivia
appear as a consequence of both variables becoming t
selves identical to the noise term.

According to Ref. 41, convergence of trajectories to
same one, or lack of sensitivity to the initial condition, c
be stated asnegativity of the Lyapunov exponent. The
Lyapunov exponent of the map~2! is defined as

l5 lim
N→`

1

N (
i 51

N

lnuF8~xi !u. ~4!

It is the average of~the logarithm of the absolute value o!
the successive slopesF8 found by the trajectory. Slopes i
@21,1# contribute tol with negative values, indicating tra
jectory convergence. Larger or smaller slopes contribute w
positive values, indicating trajectory divergence. Since
deterministic and noisy maps satisfyF85 f 8 one is tempted
to conclude that the Lyapunov exponent is not modified
the presence of noise. However, there is noise depend
through the trajectory valuesxi , i 51, . . . ,N. In the absence
of noise,l is positive, indicating trajectory separation. Wh
synchronization is observed, the Lyapunov exponent is ne
tive, as required by the argument in Ref. 41.

Notice that this definition of the Lyapunov exponent a
sumes a fixed realization of the noise terms, and it is
relevant one to study the synchronization phenomena
dressed in this paper. One could use alternative definition52

For instance, if one considers the coupled system of both
x variable and the noise generator producingj, then the larg-
est Lyapunov exponent of the composed system is ind
positive ~and very large for a good random number gene
tor!. This simply tells us that there is a large sensitivity to t
initial condition of the composed system (x,j) as shown by
the fact that a change of the seed of the random num
generator completely changes the sequence of values of
j andx. We consider in this paper the situation described
definition ~4! with fixed noise realization.

By using the definition of theinvariant measure on the
attractor, or stationary probability distribution Pst(x), the
Lyapunov exponent can be calculated also as

l5^ loguF8~x!u&5^ logu f 8~x!u&[E Pst~x!logu f 8~x!udx.

~5!

Here we see clearly the two contributions to the Lyapun
exponent: although the derivativef 8(x) does not change
when including noise in the trajectory, the stationary pro
ability does change~see Fig. 4!, thus producing the observe
change in the Lyapunov exponents. Synchronization, th
can be a general feature in maps, such as~3!, which have a
large region in which the derivativeu f 8(x)u is smaller than
one. Noise will be able to explore that region and yield,
average, a negative Lyapunov exponent. This is, basic
the argument developed in Ref. 51.

In order to make some analytical calculation that c
obtain in a rigorous way the transition from a positive
negative Lyapunov exponent, let us consider the map gi
by Eq. ~2! and
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f ~x!55
a~12exp~11x!! if x,21

2222x if xP~21,20.5!

2x if xP~20.5,0.5!

222x if xP~0.5,1!

a~211exp~12x!! if x.1

~6!

with 0,a,1. This particular map, based in the tent map60

has been chosen just for convenience. The following ar
ments would apply to any other map that in the absence
noise takes most frequently values in the region with
highest slopes, but which visits regions of smaller slo
when noise is introduced. This is the case, for example
the map~3!. In the case of~6!, the values given by the de
terministic part of the map, after one iteration from arbitra
initial conditions, fall always in the interval (21,1). This is
the region with the highest slopeuF8u52. In the presence o
noise the map can take values outside this interval and, s
the slopes encountered are smaller, the Lyapunov expo
can only be reduced from the deterministic value. To f
mally substantiate this point, it is enough to recall the de
nition of Lyapunov exponent~4!: an upper bound foruF8(x)u
is 2, so that a bound forl is immediately obtained:l
< ln 2. Equality is obtained for zero noise.

FIG. 4. Plot of the stationary distribution for the map given by Eqs.~2! and
~3! with v50.3 in the~a! deterministic casee50, and~b! the case with
noise along the trajectory,e50.2.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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669Chaos, Vol. 11, No. 3, 2001 Analytical and numerical studies
The interesting point about the map~6! and similar ones
is that one can demonstrate analytically thatl can be made
negative. The intuitive idea is that it is enough to decreasa
in order to give arbitrarily small values to the slopes enco
tered outside (21,1), a region accessible only thanks
noise. To begin with, let us note thatuF8(x)u52 if xP
(21,1), anduF8(x)u,a if uxu.1, so that an upper bound t
~4! can be written as

l< lim
N→`

S NI

N
ln 21

NO

N
ln aD

5pI ln 21pO ln a5 ln 22pO ln~2/a!. ~7!

NI /N and NO /N are the proportion of values of the ma
insideI 5(0,1) and outside this interval, respectively, and
have used that asN→` they converge withpI andpO , the
invariant measure associated withI and to the rest of the rea
line, respectively (pI1pO51). A sufficient condition for
xn115 f (xn)1ejn to fall outside I is that ujnu.2/e.
Thus, pO5probability(uxn11u.1).probability(ujnu.2/e)
5erfc(A2/e)[T, where we have used the Gaussian char
ter of the noise. In consequence, one finds from~7!

l< ln 22T ln~2/a!. ~8!

The important point is thatT5erfc(A2/e) is independent of
the map parameters, in particular ofa. Thus,~8! implies that
by decreasinga the value ofl can be made as low as de
sired. By increasinge such thatT. ln 2/ln(2/a), l will be
certainly negative. Thus we have shown analytically t
strong enough noise will always make negative
Lyapunov exponent of the map~6! and, accordingly, it will
induce yield ‘‘noise-induced synchronization’’ in that map

III. THE LORENZ SYSTEM

In this section we give yet another example of nois
induced synchronization. We consider the well-know
Lorenz61 model with additional random terms of the follow
ing form:40

ẋ5p~y2x!,

ẏ52xz1rx2y1ej, ~9!

ż5xy2bz.

j is white noise: a Gaussian random process of mean z
^j(t)&50 and delta correlated,̂j(t)j(t8)&5d(t2t8). We
have usedp510, b58/3, andr 528 which, in the determin-
istic case,e50 are known to lead to a chaotic behavior~the
largest Lyapunov exponent isl'0.9.0). As stated in Sec
I, previous results seem to imply that synchronization is o
observed for a noise with a nonzero mean. However,
results show otherwise.

We have integrated numerically the above-mention
equations using the stochastic Euler method.62 Specifically,
the evolution algorithm reads

x~ t1Dt !5x~ t !1Dt@p~y~ t !2x~ t !!#,
Downloaded 25 Sep 2001 to 130.206.78.208. Redistribution subject to AI
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y~ t1Dt !5y~ t !1Dt@2x~ t !z~ t !1rx~ t !2y~ t !#

1eADtg~ t !, ~10!

z~ t1Dt !5z~ t !1Dt@x~ t !y~ t !2bz~ t !#.

The values ofg(t) are drawn at each time step from a
independent Gaussian distribution of zero mean and varia
one and they have been generated by a particularly effic
algorithm using a numerical inversion technique.63 The time
step used isDt50.001 and simulations range typically for
total time of the order oft5104 ~in the dimensionless units
of the Lorenz system of equations!. The largest Lyapunov
exponent has been computed using a simultaneous inte
tion of the linearized equations.64 For the deterministic case
trajectories starting with different initial conditions are com
pletely uncorrelated, see Fig. 5~a!. This is also the situation
for small values ofe. However, when using a noise intensi
e540 the noise is strong enough to induce synchroniza
of the trajectories. Again, the presence of the noise te
forces the largest Lyapunov exponent to become nega
~for e540 it is l'20.2). As in the examples of the map

FIG. 5. Plot of two realizationsz(1),z(2) of the Lorenz system Eq.~9! with
p510, b58/3, andr 528. Each plotted realization starts from a differe
initial condition and consists of an initial warming up time oft512 000~not
shown! and runs for a timet5600 in the dimensionless units of the Loren
system of equations.~a! The deterministic case (e50) and~b! the results for
e540. Notice the perfect synchronization in~b!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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after some transient time, two different evolutions whi
have started in completely different initial conditions sy
chronize toward the same value of the three variables@see
Fig. 5~b! for thez coordinate#. Therefore, these results prov
that synchronization by common noise in the chaotic Lore
system does occur for sufficiently large noise intensity. T
result contradicts previous ones in the literature.46,48 The
main difference with these papers is in the intensity of
noise: it has to be taken sufficiently large, as here, in orde
observe synchronization. Notice that although the noise
tensity is large, the basic structure of the ‘‘butterfly’’ Loren
attractor remains present as shown in Fig. 6. Again, this
sult shows that, although the noise intensity used could
considered large, the synchronization is rather different fr
what would be obtained from a trivial common synchroniz
tion of both systems to the noise variable by neglecting
deterministic terms.

IV. STRUCTURAL STABILITY

An important issue concerns the structural stability
this phenomenon, in particular how robust is noise synch
nization to small differences between the two systems on
trying to synchronize. Whether or not the synchronization

FIG. 6. ‘‘Butterfly’’ attractor of the Lorenz system in the cases~a! of no
noisee50, and~b! e540 using the same time series as in Fig. 5.
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two trajectories of the same noisy Lorenz system~or of any
other chaotic system! observed here, equivalent to the sy
chronization of two identical systems driven by a comm
noise, could be observed in the laboratory, depends
whether the phenomenon is robust when allowing the t
Lorenz systems to be not exactly equal~as they cannot be in
a real experiment!. If one wants to use this kind of stochast
synchronization in electronic emitters and receivers~for in-
stance, as a means of encryption! one should be able to de
termine the allowed discrepancy between circuits before
lack of synchronization becomes unacceptable. Additio
discussions on this issue may be found in Refs. 39,
and 65.

We consider the following two maps forced by the sam
noise:

xn115 f ~xn!1jn , ~11!

yn115g~yn!1jn . ~12!

Linearizing in the trajectory differenceun5yn2xn , assumed
to be small, we obtain

un115g8~xn!un1g~xn!2 f ~xn![g8~xn!un1D~xn!.
~13!

We have definedD(x)[g(x)2 f (x), and we are interested in
the situation in which the two systems are just slightly d
ferent, for example, because of a small parameter misma
so thatD will be small in some sense specified below.

Iteration of ~13! leads to the formal solution:

un5M ~n21,0!u01 (
m50

n21

M ~n21,m11!D~xm!. ~14!

We have definedM ( j ,i )5)k5 i
j g8(xk), and M ( i 21,i )[1.

An upper bound on~14! can be obtained:

uunu2<uM ~n21,0!u2uu0u2

1 (
m50

n21

uM ~n21,m11!u2uD~xm!u2. ~15!

The first term on the right-hand side is what would be o
tained for identical dynamical systems. We know thatM (n
21,0)→eln asn→`, wherel is the largest Lyapunov ex
ponent associated with~12!. We are interested in the situa
tion in which l,0, for which this term vanishes at lon
times. Further analysis is done first for the case in wh
D(x) is a bounded function~or x is a bounded trajectory with
D continuous!. In this situation, there is a real numberm
such thatuD(xm)u,m. We then get

uunu2<m2 (
m50

n21

uM ~n21,m11!u2 ~16!

an inequality valid for largen. Let us now defineK
5maxxug(x)u, the maximum slope of the functiong(x). A
trivial bound is now obtained as

uunu2<m2
12K2n

12K2
. ~17!
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This can be further improved in the caseK,1, where we
can write

uunu2<m2
1

12K2
. ~18!

As a consequence, differences in the trajectories rem
bounded at all iteration stepsn. Since, according to the defi
nition ~4!, ln K is also an upper bound for the Lyapuno
exponent for all values ofe and, in particular, for the noise
less map,e50, this simply tells us that if the deterministi
map is nonchaotic, then the addition of a common noise
two imperfect but close replicas of the map will still keep t
trajectory difference within well-defined bounds. The situ
tion of interest here, however, concerns the case in whic
negative Lyapunov exponent arises only as the influence
sufficiently large noise term, i.e., the deterministic map
chaotic andK.1. In this case, the sum in Eq.~16! contains
products of slopes which are larger or smaller than 1. I
still true that the terms in the sum for large value ofn2m
can be approximated byM (n21,m11)'e(n2m21)l and,
considering this relation to be valid for all values ofn,m, we
would get

(
m50

n21

uM ~n21,m11!u2'e2ln (
m50

n21

e22l(m11)5
12e2ln

12e2l

~19!

and, thus, at largen,

uunu2&m2~12e2l!21. ~20!

It can happen, however, that the product definingM (n
21,m11) contains a large sequence of large slopesg8(xi).
These terms~statistically rare! will make the values ofuunu
violate the above-mentioned bound at sporadic times. An
sis of the statistics of deviations from synchronization w
carried out in Ref. 39. Although forl,0 the most probable
deviation is close to zero, power-law distributions with lo
tails are found, and indeed its characteristics are determ
by the distribution of slopes encountered by the system d
ing finite amounts of time, or finite-time Lyapunov exp
nents, as the above-mentioned arguments suggest. There
we expect a dynamics dominated by relatively large peri
of time during which the difference between trajectories
mains bounded by a small quantity, but intermittently int
rupted by bursts of large excursions of the difference. Thi
indeed observed in the numerical simulations of the m
defined previously. This general picture is still valid even
uD(x)u is not explicitly bounded.

We have performed a more quantitative study for
case in which two noisy Lorenz systems with different s
of parameters, namely

ẋ15p1~y12x1!,

ẏ152x1z11r 1x12y11ej, ~21!

ż15x1y12b1z1 ,

and

ẋ25p2~y22x2!,
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ẏ252x2z21r 2x22y21ej, ~22!

ż25x2y22b2z2 ,

are forced by the same noisej(t). In order to discern the
effect of each parameter separately, we have varied inde
dently each one of the three parameters, (p,b,r ), while keep-
ing constant the other two. The results are plotted in Fig
In Fig. 7 we plot the percentage of time in which the tw
Lorenz systems are still synchronized with a tolerance
10%. This means that trajectories are considered sync
nized if the relative difference in thez variable is less than
10%. According to the general discussion for maps, we
pect departures from approximate synchronization from ti
to time. They are in fact observed, but from Fig. 7 we co
clude that small variations~of the order of 1%! still yield a
synchronization time of more than 85%. In Fig. 8 we sho
that the loss of synchronization between the two syste
appears in the form of bursts of spikes whose amplitude
only limited by the size of the attractor in the phase spa

FIG. 7. Percentage of time that two slightly dissimilar Lorenz system
subjected to the same noise, remain synchronized~up to a 10% discrepancy
in the z variable!. For one of the two systems we fixp1510, b158/3, and
r 1528 while for the other we vary systematically one of the paramet
keeping the other two constant: in~a! the parameterb2 varies, in ~b! the
parameterr 2 varies, and in~c! the parameterp2 varies. Notice that the
percentage of synchronization time is still higher than 85% if the relat
difference between the parameters is less than 1%.
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Moreover, it can also be clearly seen in Fig. 8 that large~but
infrequent! spike amplitudes appear for arbitrarily small mi
match.

In the realm of synchronization of chaotic oscillator
two different types of analogous intermittent behaviors ha
been associated also with the fluctuating character of
finite-time conditional Lyapunov exponents noted previous
One is on–off intermittency66 where the synchronization
manifold is slightly unstable on average but the finite tim
Lyapunov exponent is negative during relatively long perio
of time. In the other one, named bubbling,67 the synchroni-
zation is stable on average but the local conditio
Lyapunov exponent becomes occasionally positive. While
the former case bursting always occurs due to the necess
imperfect initial synchronization, in the latter it is strictly
consequence of the mismatch of the entraining systems
this sense, the behavior reported in the preceding parag
should be considered as a manifestation of bubbling in s
chronization by common noise.

V. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have addressed the issue of synchr
zation of chaotic systems by the addition of common rand
noises. We have considered three explicit examples: two
maps and the Lorenz system under the addition of ze
mean, Gaussian, white noise. While the map examples
firm previous results in similar maps, and we have obtain
with them analytical confirmation of the phenomenon, t
synchronization observed in the Lorenz system contrad
some previous results in the literature. The reason is
previous works considered noise intensities smaller than
ones we found necessary for noise synchronization in

FIG. 8. Time evolution of the difference between two trajectoriesz1 andz2

corresponding to two Lorenz systems driven by the same noise but w
small mismatch in ther parameter:~a! r 1528 andr 250.999993r 1 and in
~b! r 250.9993r 1. Notice that although the synchronization time diminish
with increasing parameter mismatch, the maximum absolute difference
tween the two variables does not depend on the mismatch.
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system. Finally, we have analyzed the structural stability
the observed synchronization. In the Lorenz system, s
chronization times larger than 85%~within an accuracy of
10%! can still be achieved if the parameters of the system
allowed to change in less than 1%.

It is important to point out that noise-induced synchr
nization between identical systems subjected to a comm
noise is equivalent to noise induced order, in the sense
the Lyapunov exponent defined in~4! becomes negative in a
single system subjected to noise. One can ask whether
state with negative Lyapunov exponent induced by no
may be still be called ‘‘chaotic’’ or not. This is just a matte
of definition: If one defines chaos as exponential sensibi
to initial conditions, and one considers thisfor a fixed noise
realization, then the definition of Lyapunov exponent implie
that trajectories are no longer chaotic in this sense. But
can also consider the extended dynamical system contai
the forced oneand the noise generator~e.g., in numerical
computations, it would be the computer random number g
erator algorithm!. For this extended systemthere is strong
sensibility to initial conditions in the sense that small diffe
ences in noise generator seed leads to exponential diverg
of trajectories. In fact, this divergence is at a rate given
the Lyapunov exponent of the noise generator, which
proaches infinity for a true Gaussian white process. Tra
tories in the noise-synchronized state are in fact more irre
lar than in the absence of noise, and attempts to calculate
Lyapunov exponent just from the observation of the tim
series will lead to a positive and very large value, since i
the extendeddynamical system that is observed when an
lyzing the time series68 ~typically such attempts will fail be-
cause the high dimensionality of good noise generators,
ally infinity, would put them out of the reach of standa
algorithms for Lyapunov exponent calculations!. Again,
whether or not to call such irregular trajectories with ju
partial sensibility to initial conditions ‘‘chaotic’’ is just a mat
ter of definition. More detailed discussion along these lin
can be found in Ref. 52.

There still remain many open questions in this fie
They involve the development of a general theory, proba
based in the invariant measure, that could give us a gen
criterion to determine the range of parameters~including
noise levels! for which the Lyapunov exponent become
negative, thus allowing synchronization. In this work a
similar ones, the word synchronization is used in a very
stricted sense, namely: the coincidence of asymptotic tra
tories. This contrasts with the case of interacting perio
oscillations where a more general theory of synchronizat
exists to explain the phenomenon of nontrivial phase lock
between oscillators that individually display very differe
dynamics. Indications of the existence of analog nontriv
phase locking have been reported for chaotic attractor69

There a ‘‘phase’’ with a chaotic trajectory defined in terms
a Hilbert transform is shown to be synchronizable by ext
nal perturbations in a similar way as happens with perio
oscillators. Whether or not this kind of generalized synch
nization can be induced by noise is, however, a comple
open question. Last, but not least, it would also be interes
to explore whether analogs of the recently reported synch

a

e-
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nization of spatiotemporal chaos70,71 may be induced by
noise.
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