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We study the effect that the injection of a common source of noise has on the trajectories of chaotic
systems, addressing some contradictory results present in the literature. We present particular
examples of one-dimensional maps and the Lorenz system, both in the chaotic region, and give

numerical evidence showing that the addition of a common noise to different trajectories, which
start from different initial conditions, leads eventually to their perfect synchronization. When
synchronization occurs, the largest Lyapunov exponent becomes negative. For a simple map we are
able to show this phenomenon analytically. Finally, we analyze the structural stability of the
phenomenon. €2001 American Institute of Physic§DOI: 10.1063/1.1386397

The synchronization of chaotic systems has been the sub-
ject of intensive research in recent years. Besides its fun-
damental interest, the study of the synchronization of
chaotic oscillators has a potential application in the field
of chaos communications. The main idea resides in the
hiding of a message within a chaotic carrier generated by
a suitable emitter. The encoded message can be extracted
if an appropriate receiver, one which synchronizes to the
emitter, is used. One of the conditions to be fulfilled in
order to achieve synchronization is that the receiver and
the emitter have very similar device parameters, hence
making it very difficult to intercept the encoded message.
Although the usual way of synchronizing two chaotic sys-
tems is by injecting part of the emitted signal into the
receiver, the possibility of synchronization using a com-
mon random forcing has also been suggested. However,
there have been some contradictory results in the litera-
ture on whether chaotic systems can indeed be synchro-
nized using such a common source of noise and the issue
has begun to be clarified only very recently. In this paper
we give explicit examples of chaotic systems that become
synchronized by the addition of Gaussian white noise of
zero mean. We also analyze the structural stability of the
phenomenon, namely, the robustness of the synchroniza-
tion against a small mismatch in the parameters of the
chaotic sender and receiver.

I. INTRODUCTION

that fluctuation termgloosely callednoise can actually in-
duce some degree of order in a large variety of nonlinear
systems. The first example of such an effect is thastof
chastic resonand€ by which a bistable system responds
better to an external sign@hot necessarily periodiaunder

the presence of fluctuations, either in the intrinsic dynamics
or in the external input. This phenomenon has been shown to
be relevant for some physical and biological systems de-
scribed by nonlinear dynamical equatichs. Other ex-
amples in purely temporal dynamical systems include phe-
nomena such as noise-induced transitfongise-induced
transport, coherence resonante!! etc. In extended sys-
tems, noise is known to induce a large variety or ordering
effects!> such as pattern formatidi* phase
transitionst®>18 phase separatiofi;?® spatiotemporal sto-
chastic resonance;?2 noise-sustained structur&s2* doubly
stochastic resonanég,amongst many others. All these ex-
amples have in common that some sorbuafer appears only

in the presence of the right amount of noise.

There has also been some recent interest on the interplay
between chaotic and random dynamics. Some counterintui-
tive effects such as coherence resonance, or the appearance
of a quasiperiodic behavior, in a chaotic system in the pres-
ence of noise, have been found recefftifhe role of noise
in standard synchronization of chaotic systems has been con-
sidered in Refs. 27 and 28, as well as the role of noise in
synchronizing nonchaotic systeff’s>° In this paper we ad-
dress the different issue of synchronization of chaotic sys-
tems by a common random noise source, a topic that has

~ One of the most surprising results of the last few decadegtracted much attention recently. The accepted result is that,
in the field of stochastic processes has been the discovefy, some chaotic systems, the introduction of the same noise
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in independent copies of the systems could I¢fad large
enough noise intensitto a common collapse onto the same
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trajectory, independently of the initial condition assigned toand Chenff showing synchronization with a positive
each of the copies. This synchronization of chaotic systemkyapunov exponent were again an artifact of the limited pre-
by the addition of random terms is a remarkable and couneision of the calculation.

terintuitive effect of noise and although some clarifying pa- In addition to the above-mentioned criticisms, Herzel
pers have appeared recently, still some contradictory resultsnd Freuntf and Malescié® pointed out that the noise used
exist for the existence of this phenomenon of noise-inducetb simulate Eq(1) and the Lorenz system in Ref. 40 is not
synchronization. It is the purpose of this paper to give furtherreally symmetric. While the noise in the Lorenz system is
analytical and numerical evidence that chaotic systems camonsymmetric by construction, in the case of the map, the
synchronize under such circumstances and to analyze theonzero mean arises because the requiremept
structural stability of the phenomenon. Moreover, the resultss (0,1), Vn, actually leads one to discard the values of the
presented here clarify the issue, thus opening directions teandom numbeg,, which would induce a violation of such
obtain such a synchronization in electronic circuits, e.g., forcondition. The average value of the random numbers which
encryption purposes. Common random noise codes havgave been accepted is different from zero, hence producing
been used in spread spectrum communication for a long timen effectivebiasednoise, i.e., one which does not have zero
ago>! The main idea is to mix information data within a mean. The introduction of a nonzero mean noise means that
noisy code. At the receiver, the information is recovered usthe authors of Ref. 40 were altering essentially the properties
ing a synchronized replica of the noise code. More recentlyof the deterministic map. Furthermore, Gade and BYssu
the use of common noise source has also been proposed aargued that the synchronization observed by Maritan and Ba-
useful technique to improve the encryption of a key in anavar is due to the fact that the bias of the noise leads the
communication channéf. system to a nonchaotic fixed point. With only this basis, they

The issue of ordering effect of noise in chaotic systemsconcluded that a zero-mean noise can never lead to synchro-

was already considered at the beginning of the 1980s byization in the Lorenz system. The same conclusion was

Matsumoto and Tsud® who concluded that the introduction reached by Shezet al,*® who studied experimentally a

of noise could actually make a system less chaotic. Later, Yughua circuit and concluded that synchronization by noise

Ott, and Cheff studied the transition from chaos to non- only occurs if the noise does not have a zero mean. The same

chaos induced by noise. Synchronization induced by noisgonclusion is obtained in Ref. 49 by studying numerically a

was considered by Fahy and Hammianwho showed that = single and an array of Lorenz models, and in Ref. 50 from

particles in an external potential, when driven by the sam@yxperiments in an array of Chua circuits with multiplicative

random forces, tend to collapse onto the same trajectory, @lored noise. Therefore, from these last works, a wide-

behavior interpreted as a transition from chaotic to nonchaspread belief has emerged according to which it is not pos-

otic behaviors. The same system has been studied numetje to synchronize two chaotic systems by injecting the

cally and analytically® 3 Pikovsky*® analyzed the statistics same noisy unbiased, zero-mean, signal to both of them.

of deviations from this noise-induced synchronization. A pa- Contrary to these last resul(tbu,t in agreement with the

per that generated a lot of controversy was that of Ma”tarbreviously mentioned resufs39, Lai and Zho@' have

and Banavat’ These authors analyzed the logistic map inghown that some chaotic maps can indeed become synchro-

the presence of noise: nized by additive zero-mean noise. A similar result has been
obtained by Loreteet al.®? and by Minai and Anand?°%°*

Yoo 1= 4% (1= X)) + & (1) in the case vyherg the noise appears paramgtricglly in the
map. The implications to secure digital communications have
been considered in Refs. 32, 53, and 55, and an application

where ¢, is the noise term, considered to be uniformly dis-to ecological dynamics in fluid flows is presented in Ref. 56.
tributed in a symmetric intervdl—W, +W]. They showed An equivalent result about the synchronization of Lorenz
that, if W were large enougli.e., for a large noise intensity systems using a common additive noise has been shown by
two different trajectories which started with different initial the authors of the present paper in Ref. 57. The actual
conditions but otherwise used the same sequence of randomechanism that leads to synchronization has been explained
numbers, would eventually coincide into the same trajectoryby Lai and Zhow! see also Ref. 58. As Pikovskyrequired,

The authors showed a similar result for the Lorenz systensynchronization can only be achieved if the Lyapunov expo-
(see Sec. ). This result was heavily criticized by nentis negative. The presence of noise allows the system to
Pikovsky*! who proved that two systems can synchronizespend more time in the “convergence region” where the lo-
only if the largest Lyapunov exponent is negative. He thercal Lyapunov exponent is negative, hence yielding a global
argued that the largest Lyapunov exponent of the logistimegative Lyapunov exponent. This argument will be devel-
map in the presence of noise is always positive and coneped in more detail in Sec. Il, where an explicit calculation
cluded that the synchronization was, in fact, a numerical efin a simple map will confirm the analysis. The results of Lai
fect of lack of precision of the calculation. The analysis ofand Zhou have been extended to the case of coupled map
Pikovsky was confirmed by Longet al.*? who studied the latticeS® where Pikovsky’s criterion has been extended for
logistic map with arbitrary numerical precision. The criterion spatially extended systems.

of negative Lyapunov exponent has also been shown to hold In this paper we give further evidence that it is possible
for other types of synchronization of chaotic systems ando synchronize two chaotic systems by the addition of a com-
Zhou and Laf® noticed that previous results by Shuai, Wong, mon noise which is Gaussianly distributed and not biased.
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FIG. 2. Lyapunov exponent for the noiseless map-0Q, continuous ling
and the map with a noise intensig=0.1 (dotted ling and e=0.2 (dot-
FIG. 1. Bifurcation diagram of the map given by Eqg) and (3) in the ~ dashed ling

absence of noise terms.

. _ ) (e=0.2) are used\ becomes negative and trajectories start-
We analyze specifically some one-dimensiof®D) maps  ing with different initial conditions, but using the same se-

and the Lorenz system, all in the chaotic region. The necesjuence of random numbers, synchronize perfectly, see the
sary criterion introduced in Ref. 41 and the general argusynchronization diagram in Fig.(8. Obviously, the noise
ments of Ref. 51 are fully confirmed and some heuristic arintensity in the cases shown is not large enough such as to be

guments are given about the general validity of our results.gpe to neglect completely the deterministic part of the map.
The organization of the paper is as follows. In Sec. Il we

present numerical and analytical results for some 1D maps,
while Sec. Il studies numerically the Lorenz system. In Sec. (a)
IV we analyze the structural stability of the phenomenon,

i.e., the dependence of the synchronization time on the pa-
rameter mismatch. Finally, in Sec. V we present the conclu-
sions as well as some open questions relating the genera
validity of our results.

=~

©

X
e

Il. RESULTS ON MAPS

The first example is that of the map

Xn+1=F(Xp) =1(X,) + €&y, (2

where¢, is a set of uncorrelated Gaussian variables of zero
mean and variance 1. As an example, we use explicitly 0.2 0.4 0.6 0.8 1.0

x—0.5|2 )
f(x)=ex;{—( ” ) .

(b)

Studying the convergence or divergence of trajectories of Eq. 15L
(2) starting from different initial conditions under the same C
noise ¢, is equivalent to analyzing the converge or diver-
gence of trajectories from two identical systems of the form
(2) driven by the same noise. We plot in Fig. 1 the bifurca-
tion diagram of this map in the noiseless case. We can see th¢ i«
typical windows in which the system behaves chaotically. i
The associated Lyapunov exponeRt, is positive in these 00
regions. For instance, fap=0.3 (the case we will be con- I
sidering throughout the papeit is A~0.53. In Fig. 2 we —05F .~
observe that the Lyapunov exponent becomes negative for - ' ' ' '
most values ofw for large enough noise level Again for —05 0.0 O'(15) 1.0 1.5
w=0.3 and now fore=0.2 it is A=—0.17. A positive X
Lyapunov exponent in the noiseless case implies that trajegyg. 3. Piot of two realizations®, x? of the map given by Eqs2) and
tories starting with different initial conditions, but using the (3) with =0.3. Each realization consists of 10 000 points which have been
same sequence of random numt{@}%, remain different for obtai_ngd by iteratio_n_qf the map starting in each case from a different initial

. - . . condition(100 000 initial iterations have been discarded and are not shown
all the iteration steps. In this case, the correspondlng Syr\ﬁ (a) there is no noisee=0, and the trajectories are independent of each
chronization diagram shows a spread distribution of point$ner. in (b) we have used a level of noise=0.2, producing a perfect
[see Fig. 8)]. However, when moderate levels of noise synchronization(after discarding some initial iterations

3
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Therefore, the synchronization observed does not trivially ( a)
appear as a consequence of both variables becoming them 6T
selves identical to the noise term.

According to Ref. 41, convergence of trajectories to the
same one, or lack of sensitivity to the initial condition, can
be stated asnegativity of the Lyapunov exponerthe 4r
Lyapunov exponent of the maR) is defined as

N
)\=Iim£2 In|F’(x;)]. 4) <1 1\
N =1 L

N—oo

It is the average ofthe logarithm of the absolute value)of 0 '

the successive slopds found by the trajectory. Slopes in 0.0 0.5 1.0

[ —1,1] contribute tox with negative values, indicating tra- X

jectory convergence. Larger or smaller slopes contribute with

positive values, indicating trajectory divergence. Since the (b)

deterministic and noisy maps satidfy =f’ one is tempted

to conclude that the Lyapunov exponent is not modified by

the presence of noise. However, there is noise dependenct

through the trajectory values, i=1,... N. In the absence

of noise,\ is positive, indicating trajectory separation. When 0.8

synchronization is observed, the Lyapunov exponent is nega- » I

tive, as required by the argument in Ref. 41. w I
Notice that this definition of the Lyapunov exponent as- - 0.4

sumes a fixed realization of the noise terms, and it is the '

relevant one to study the synchronization phenomena ad-

dressed in this paper. One could use alternative definitfons. 0ol

For instance, if one considers the coupled system of both the : = ' '

x variable and the noise generator producinghen the larg- -1 0 1 2

est Lyapunov exponent of the composed system is indeed X

posmvg (ar_]d very large for a 9000_' random ”“mp_er_ 9enerays 4. piot of the stationary distribution for the map given by Egsand

tor). This simply tells us that there is a large sensitivity to the(s) with »=0.3 in the(a) deterministic case=0, and(b) the case with

initial condition of the composed system, £) as shown by noise along the trajectory,=0.2.

the fact that a change of the seed of the random number

generator completely changes the sequence of values of both

¢ andx. We consider in this paper the situation described by a(l—exp(1+x)) if x<—1
definition (4) with fixe.d. noise reqlizatipn. —2_ 2% if xe(—1,—0.5
By using the definition of thénvariant measure on the _
attractor, or stationary probability distribution B(x), the f(x)=4 2X if xe(=050.95 (6
Lyapunov exponent can be calculated also as 2—2x if xe(0.5,1)

a(—1l+expl—x)) if x>1

7\:<|09|F'(X)|>:<|09|f’(x)|>5J Ps(X)log|f"(X)[dX.  with 0<a<1. This particular map, based in the tent n§3p,
(5) has been chosen just for convenience. The following argu-
ments would apply to any other map that in the absence of
Here we see clearly the two contributions to the Lyapunowoise takes most frequently values in the region with the
exponent: although the derivativi (x) does not change highest slopes, but which visits regions of smaller slope
when including noise in the trajectory, the stationary prob-when noise is introduced. This is the case, for example, of
ability does changésee Fig. 4, thus producing the observed the map(3). In the case of6), the values given by the de-
change in the Lyapunov exponents. Synchronization, therterministic part of the map, after one iteration from arbitrary
can be a general feature in maps, sucti3dswhich have a initial conditions, fall always in the interval{1,1). This is
large region in which the derivativd'(x)| is smaller than the region with the highest slogg’|=2. In the presence of
one. Noise will be able to explore that region and yield, onnoise the map can take values outside this interval and, since
average, a negative Lyapunov exponent. This is, basicallfthe slopes encountered are smaller, the Lyapunov exponent
the argument developed in Ref. 51. can only be reduced from the deterministic value. To for-
In order to make some analytical calculation that canmally substantiate this point, it is enough to recall the defi-
obtain in a rigorous way the transition from a positive to nition of Lyapunov exponer): an upper bound fol’ (x)|
negative Lyapunov exponent, let us consider the map giveis 2, so that a bound fok is immediately obtainedi
by Eq.(2) and <In 2. Equality is obtained for zero noise.
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The interesting point about the mé&p) and similar ones

is that one can demonstrate analytically thatan be made 50 F
negative. The intuitive idea is that it is enough to decrease E
in order to give arbitrarily small values to the slopes encoun- 40 E
tered outside {1,1), a region accessible only thanks to :
noise. To begin with, let us note th&'(x)|=2 if xe a0k
(-1,1), andF'(x)|<aif |x|>1, so that an upper bound to & :
. N F
(4) can be written as 20k
o (N No
)\\nlllinm(NanJr N Ina 10f
=p, In2+pg Ina=In 2—pg In(2/a). (7) Ot s s . . .
N;/N and Ng/N are the proportion of values of the map 0 10 20 (1) 30 40 50
insidel =(0,1) and outside this interval, respectively, and we z
have used that ad— o they converge wittp, and pg, the
invariant measure associated witand to the rest of the real (b)
line, respectively ,+po=1). A sufficient condition for 50
Xne1=Ff(X,)+ €&, to fall outside | is that |&,|> 2.
Thus, po=probability(x,. ;|>1)>probability( ,|>2/e) 40
=erfc(\2/€)=T, where we have used the Gaussian charac-
ter of the noise. In consequence, one finds fi@n 30
— N
A<In2-T In(2/a). (8) 20
The important point is thaT=erfc(J§/e) is independent of
the map parameters, in particularafThus,(8) implies that 10
by decreasing the value ofA can be made as low as de-
sired. By increasings such thatT>In 2/In(2/a), A will be 0 . . . . ,
certainly negative. Thus we have shown analytically that 0 10 20 30 40 50
strong enough noise will always make negative the 71

Lyapunov exponent of the ma®) and, accordingly, it will

. . . . . . . H 0 1 2 H
induce yield “noise-induced synchronization” in that map. FIG. 5. Plot of two realizationg®,z(? of the Lorenz system Eq9) with
p=10, b=8/3, andr=28. Each plotted realization starts from a different

initial condition and consists of an initial warming up timetef12 000(not
shown and runs for a timé= 600 in the dimensionless units of the Lorenz
system of equation$a) The deterministic cases& 0) and(b) the results for

Ill. THE LORENZ SYSTEM e=40. Notice the perfect synchronization (ip).

In this section we give yet another example of noise-
induced synchronization. We consider the well-known

Loren?! model with additional random terms of the follow- y(t+At)=y(t) + At —x(t)z(t) +rx(t) —y(t)]

ing form:4°
, +eVAtg(t), (10
X=ply=x), 2(t+ At =z(t) + At[ x()y(t) — bz(t)].
y=—XZ+Ix—y+eé, (99 The values ofg(t) are drawn at each time step from an
. independent Gaussian distribution of zero mean and variance
z=xy—bz one and they have been generated by a particularly efficient

81Igorithm using a numerical inversion technidd&he time
step used idt=0.001 and simulations range typically for a
total time of the order of=10" (in the dimensionless units

of the Lorenz system of equationsThe largest Lyapunov
exponent has been computed using a simultaneous integra-
ytion of the linearized equatior?8.For the deterministic case,
}rajectories starting with different initial conditions are com-
pletely uncorrelated, see Fig(ah. This is also the situation
c]or small values of. However, when using a noise intensity
€=40 the noise is strong enough to induce synchronization
of the trajectories. Again, the presence of the noise terms
forces the largest Lyapunov exponent to become negative
X(t+At)=x(t)+At[p(y(t) —x(1))], (for e=40 it isA~—0.2). As in the examples of the maps,

¢ is white noise: a Gaussian random process of mean zer
(&(t))=0 and delta correlated,&(t)é(t"))=46(t—t"). We
have useg=10, b=_8/3, andr =28 which, in the determin-
istic case,e=0 are known to lead to a chaotic behavitre
largest Lyapunov exponent ds~0.9>0). As stated in Sec.
[, previous results seem to imply that synchronization is onl
observed for a noise with a nonzero mean. However, ou
results show otherwise.

We have integrated numerically the above-mentione
equations using the stochastic Euler metffo8pecifically,
the evolution algorithm reads
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( a) two trajectories of the same noisy Lorenz syst@mnof any
50T other chaotic systeyobserved here, equivalent to the syn-
- chronization of two identical systems driven by a common
40F noise, could be observed in the laboratory, depends on
r whether the phenomenon is robust when allowing the two
a Lorenz systems to be not exactly equas they cannot be in
30 C a real experiment If one wants to use this kind of stochastic
a i synchronization in electronic emitters and receivéos in-
20 stance, as a means of encrypliame should be able to de-
termine the allowed discrepancy between circuits before the
10| lack of synchronization becomes unacceptable. Additional
X discussions on this issue may be found in Refs. 39, 32,
ot and 65.
—20 We consider the following two maps forced by the same
noise:
Xnt1= F(Xp) +&n, (11
80[ Ynr1=9(Yn) +én- (12
i Linearizing in the trajectory differenag,=y,— X,,, assumed
60 to be small, we obtain
L Un+1=0"(Xp)Un+9(X,) — F(Xn) =9 (Xp)up+ A(Xp).
N 40 (13
i We have defined (x) =g(x) — f(x), and we are interested in
op L the situation in which the two systems are just slightly dif-
r ferent, for example, because of a small parameter mismatch,
so thatA will be small in some sense specified below.
0t ' : ' ' Iteration of (13) leads to the formal solution:
-30 —-15 0 15 30 n-1
X U,=M(n—1,0Up+ >, M(n—1m+1)A(X,). (14
FIG. 6. “Butterfly” attractor of the Lorenz system in the cas@s of no m=0
noisee=0, and(b) e=40 using the same time series as in Fig. 5. We have definedv (j ’i):HL:i g’(xk), and M (i _ 1,i)El.

An upper bound ori14) can be obtained:

after some transient time, two different evolutions which|y,|?<|M(n—1,0)|?|u,|?
have started in completely different initial conditions syn-
chronize toward the same value of the three variapdes
Fig. 5(b) for the z coordinatg. Therefore, these results prove
that synchronization by common noise in the chaotic Lorenz
system does occur for sufficiently large noise intensity. ThisThe first term on the right-hand side is what would be ob-
result contradicts previous ones in the literattf® The tained for identical dynamical systems. We know tha¢n
main difference with these papers is in the intensity of the— 1,0)—€"" asn—o, where\ is the largest Lyapunov ex-
noise: it has to be taken sufficiently large, as here, in order tonent associated wittl2). We are interested in the situa-
observe synchronization. Notice that although the noise intion in which A <0, for which this term vanishes at long
tensity is large, the basic structure of the “butterfly” Lorenz times. Further analysis is done first for the case in which
attractor remains present as shown in Fig. 6. Again, this reA(X) is a bounded functiofor x is a bounded trajectory with
sult shows that, although the noise intensity used could bd& continuous. In this situation, there is a real numbgr
considered large, the synchronization is rather different fronsuch thafA(x,)|<u. We then get

n—1
+ E_O IM(n—1,m+1)|?|A(xy)|2. (15)

what would be obtained from a trivial common synchroniza- n—1
tion of both systems to the noise variable by neglecting the lu |2$M22 IM(n—1m+1)|2 (16)
deterministic terms. " Mm=0 ’

an inequality valid for largen. Let us now defineK
IV. STRUCTURAL STABILITY =max|g(x)|, the maximum slope of the functiog(x). A
An important issue concerns the structural stability oftrivial bound is now obtained as
this phenomenon, in particular how robust is noise synchro- 1_K2n
nization to small differences between the two systems one is |up|2< p2 '
trying to synchronize. Whether or not the synchronization of 1-K?

(17)
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This can be further improved in the cake<1, where we
can write

©

S
o

~

|un|2SM2 (18

[=:]
o

1-K?

As a consequence, differences in the trajectories remain
bounded at all iteration steps Since, according to the defi- : : : : ;
nition (4), InK is also an upper bound for the Lyapunov 250 285 =60 260 270 27 280
exponent for all values of and, in particular, for the noise-
less map,e=0, this simply tells us that if the deterministic
map is nonchaotic, then the addition of a common noise to
two imperfect but close replicas of the map will still keep the
trajectory difference within well-defined bounds. The situa-
tion of interest here, however, concerns the case in which a,
negative Lyapunov exponent arises only as the influence of a
sufficiently large noise term, i.e., the deterministic map is
chaotic andK>1. In this case, the sum in E(L6) contains 2656 270 215 280 285 200 295
products of slopes which are larger or smaller than 1. It is r

still true that the terms in the sum for large valuercf m

Synchronization Time [%]
-2
=}

100

ization Time [%]
@ ©
13 =3
op
~—

Synchron:
-2
=]

can be approximated b (n—1m+1)~e(™ M gnd, 5 100
considering this relation to be valid for all valuesrofn, we 8 C)
would get 5%
o
—-1 -1 =
- 2, a2\ - —2\(m+1 1-e*" g %
> IM(n—1m+1)[2=~e?" > e MMi="— g
m=0 m=0 1_62)\ % "0
19 i . . . .
9.6 9.8 10.0 10.2 104 10.6
and, thus, at large, P
|U |2< 2(1_62)\)—1 (20) . . P
nl =M : FIG. 7. Percentage of time that two slightly dissimilar Lorenz systems,

. subjected to the same noise, remain synchroniapdo a 10% discrepancy
It can happen’ however, that the product deflnan in the z variable. For one of the two systems we fpq =10, b;=8/3, and

—1m+1) contains a large sequence of large sloggs;). r,=28 while for the other we vary systematically one of the parameters
These termgstatistically rarg will make the values ofu,| keeping the other two constant: {s) the parameteb, varies, in(b) the

violate the above-mentioned bound at sporadic times. AnalyParameter, varies, and in(c) the parametep, varies. Notice that the
sis of the statistics of deviations from synchronization Wasgggfe”rfigebgtf\Nsey;:T}:ce’”;ﬂ%‘eg:i':g;"s' Pﬁgzelro/toha” 85% if the relative
carried out in Ref. 39. Although fax <0 the most probable

deviation is close to zero, power-law distributions with long
tails are found, and indeed its characteristics are determined
by the distribution of slopes encountered by the system dur-
ing finite amounts of time, or finite-time Lyapunov expo-
nents, as the above-mentioned arguments suggest. Therefore,
we expect a dynamics dominated by relatively large periods z,=x,y,—b,z,,
of time during which the difference between trajectories re-

mains bounded by a small quantity, but intermittently |nter_-are forced by the same noigét). In order to discern the

rupted by bursts of large excursions of the difference. This IS\tfect of each parameter separately, we have varied indepen-

indeed observed in the numerical simulations of the map :
. . . . S . ! I h f the th , while keep-
defined previously. This general picture is still valid even |f.aenty each one of the three parametepsb(r), while keep

|A(x)| is not explicitly bounded ing constant the other two. The results are plotted in Fig. 7.
' o In Fig. 7 we plot th rcent f time in which the tw
We have performed a more quantitative study for the 9 © plot the percentage o © cn fhe two

in which t oy L ; ith diff i tLorenz systems are still synchronized with a tolerance of
case In which two noisy Lorenz systems with diterent s€ts) go4 This means that trajectories are considered synchro-
of parameters, namely

nized if the relative difference in the variable is less than

V2= —XoZo+T Xo— Yo+ €, (22

X, =Pa(Y1—X1), 10%. According to the general discussion for maps, we ex-
pect departures from approximate synchronization from time
V1= — X123+ 11X, — Y+ €€, (21)  to time. They are in fact observed, but from Fig. 7 we con-
. clude that small variation&f the order of 1% still yield a
z;=X1y1— 012y, synchronization time of more than 85%. In Fig. 8 we show
and that the loss of synchronization between the two systems
_ appears in the form of bursts of spikes whose amplitude is
Xo=P2(Y2—X5), only limited by the size of the attractor in the phase space.
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system. Finally, we have analyzed the structural stability of
the observed synchronization. In the Lorenz system, syn-
chronization times larger than 85%within an accuracy of
10%) can still be achieved if the parameters of the system are
allowed to change in less than 1%.

It is important to point out that noise-induced synchro-
nization between identical systems subjected to a common
noise is equivalent to noise induced order, in the sense that
the Lyapunov exponent defined (#) becomes negative in a
single system subjected to noise. One can ask whether the
state with negative Lyapunov exponent induced by noise
may be still be called “chaotic” or not. This is just a matter
of definition: If one defines chaos as exponential sensibility
to initial conditions, and one considers tli@ a fixed noise
realization then the definition of Lyapunov exponent implies
that trajectories are no longer chaotic in this sense. But one
can also consider the extended dynamical system containing
the forced oneand the noise generataie.g., in numerical
computations, it would be the computer random number gen-
FIG. 8. Time evolution of the difference between two trajectorigandz, erator algorithm. For this extended systerthere is strong
corresponding to two Lorenz systems driven by the same noise but with £ensibility to initial conditions in the sense that small differ-
small mismatch in the parameter(a) r; =28 andr,=0.9999%r; and in  ences in noise generator seed leads to exponential divergence
(b) r,=0.999<r,. Notice that although the synchronization time diminishes of traiactories. In fact, this divergence is at a rate given by
with increasing parameter mismatch, the maximum absolute difference be- . .
tween the two variables does not depend on the mismatch. the Lyapunov exponent of the noise generator, which ap-

proaches infinity for a true Gaussian white process. Trajec-

tories in the noise-synchronized state are in fact more irregu-
Moreover, it can also be clearly seen in Fig. 8 that Igtye  lar than in the absence of noise, and attempts to calculate the
infrequen} spike amplitudes appear for arbitrarily small mis- Lyapunov exponent just from the observation of the time
match. series will lead to a positive and very large value, since it is

In the realm of synchronization of chaotic oscillators, the extendeddynamical system that is observed when ana-
two different types of analogous intermittent behaviors haveyzing the time seri€¥ (typically such attempts will fail be-
been associated also with the fluctuating character of theause the high dimensionality of good noise generators, ide-
finite-time conditional Lyapunov exponents noted previouslyally infinity, would put them out of the reach of standard
One is on—off intermittend§ where the synchronization algorithms for Lyapunov exponent calculationsAgain,
manifold is slightly unstable on average but the finite timewhether or not to call such irregular trajectories with just
Lyapunov exponent is negative during relatively long periodspartial sensibility to initial conditions “chaotic” is just a mat-
of time. In the other one, named bubbliffgthe synchroni- ter of definition. More detailed discussion along these lines
zation is stable on average but the local conditionalcan be found in Ref. 52.

Lyapunov exponent becomes occasionally positive. While in ~ There still remain many open questions in this field.
the former case bursting always occurs due to the necessariljhey involve the development of a general theory, probably
imperfect initial synchronization, in the latter it is strictly a based in the invariant measure, that could give us a general
consequence of the mismatch of the entraining systems. leriterion to determine the range of parametérgluding

this sense, the behavior reported in the preceding paragrapivise levels for which the Lyapunov exponent becomes
should be considered as a manifestation of bubbling in synregative, thus allowing synchronization. In this work and
chronization by common noise. similar ones, the word synchronization is used in a very re-
stricted sense, namely: the coincidence of asymptotic trajec-
tories. This contrasts with the case of interacting periodic
oscillations where a more general theory of synchronization

In this paper we have addressed the issue of synchronexists to explain the phenomenon of nontrivial phase locking
zation of chaotic systems by the addition of common randonbetween oscillators that individually display very different
noises. We have considered three explicit examples: two 1ldynamics. Indications of the existence of analog nontrivial
maps and the Lorenz system under the addition of zerophase locking have been reported for chaotic attraéfors.
mean, Gaussian, white noise. While the map examples corfhere a “phase” with a chaotic trajectory defined in terms of
firm previous results in similar maps, and we have obtained Hilbert transform is shown to be synchronizable by exter-
with them analytical confirmation of the phenomenon, thenal perturbations in a similar way as happens with periodic
synchronization observed in the Lorenz system contradictescillators. Whether or not this kind of generalized synchro-
some previous results in the literature. The reason is thatization can be induced by noise is, however, a completely
previous works considered noise intensities smaller than thepen question. Last, but not least, it would also be interesting
ones we found necessary for noise synchronization in thito explore whether analogs of the recently reported synchro-

40
20
0

—-20
—40

23772,

Zp—7Z,

t [au.]

V. CONCLUSIONS AND OPEN QUESTIONS
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nization of spatiotemporal chad<! may be induced by
noise.
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