
Physica A 295 (2001) 114–122
www.elsevier.com/locate/physa

Enhancement of stochastic resonance: the role of
non Gaussian noises

M.A. Fuentesa , Ra'ul Toralb , Horacio S. Wioa ;∗; 1
aGrupo de F	
sica Estad	
stica 2, Centro At	omico Bariloche (CNEA) and Instituto Balseiro

(CNEA and UNC) 8400-San Carlos de Bariloche, Argentina
bDepartment of Physics, Universitat de les Illes Balears and IMEDEA (CSIC-UIB)

Palma de Mallorca, Spain

Abstract

We have analyzed the phenomenon of stochastic resonance in a double well potential driven
by a colored non Gaussian noise. Using a path-integral approach we have obtained a consistent
Markovian approximation that enables us to get, through the two state theory, analytical ex-
pressions for the signal-to-noise ratio, 4nding an enhancement of this quantity when the system
departs from Gaussian behavior. This 4nding is supported by extensive numerical simulations.
We discuss the relation of these results to some experiments in sensory systems. c© 2001 Elsevier
Science B.V. All rights reserved.

1. Introduction

Stochastic resonance (SR) has attracted considerable interest in the last decade due,
among other aspects, to its potential technological applications for optimizing the output
signal-to-noise ratio (SNR) in nonlinear dynamical systems, as well as to its connection
with some biological mechanisms. The phenomenon shows the counterintuitive role
played by noise in nonlinear systems as it enhances the response of a system subject
to a weak external signal. There is a wealth of papers, conference proceedings and
reviews on this subject [1,2], Ref. [3] being the most complete one, which show the
large number of applications in science and technology, ranging from paleoclimatology
[4,5], to electronic circuits [6], lasers [7], chemical systems [8,9], and the connection
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with some situations of biological interest (noise-induced information Gow in sensory
neurons in living systems, inGuence in ion-channel gating or in visual perception)
[10–12]. A tendency shown in recent papers, and determined by the possible techno-
logical applications, points towards achieving an enhancement of the system response
(that is: obtaining a larger output SNR) by means of the coupling of several SR units
in what conforms an extended medium [13–18].

Majority of the studies on SR have been made analyzing a paradigmatic system:
a bistable one-dimensional double-well system. Among bistable models there is one
that stands out: the two-state model (TST) [5,19]. Such a model has proved extremely
useful for the understanding of the SR phenomenon, oHering also a simple framework
able to provide analytical results. In almost all descriptions, and particularly within
the TST, the transition rates between the two wells are estimated as the inverse of
the mean 4rst-passage-time, which is evaluated using standard techniques [20], and
most speci4cally through the Kramers approximation [21]. In all cases the noises are
assumed to be Gaussian [20]. However, some experimental results in sensory systems,
particularly for one kind of cray4sh [22] as well as recent results for rat skin [23], oHer
strong indications that the noise source in these systems could be non Gaussian. This
point of view is supported by the results obtained in a recent contribution [24], where
the study of a particular class of Langevin equations having non Gaussian stationary
distribution functions [25,26] was made use of. The work in [25,26] is based on the
generalized thermostatistics proposed by Tsallis [27–29] which has been successfully
applied to a wide variety of physical systems [30–34]. Another noteworthy aspect is
that the SNR obtained within this framework, seems to be less dependent on the precise
value of the noise intensity, an aspect of great relevance from both technological and
biological points of view. However, the analysis done in Ref. [24] still is not completely
satisfactory.

In this contribution we analyze the case of SR when the noise source is non Gaussian.
We consider the following problem

ẋ = f(x; t) + g(x)�(t) ; (1)

�̇= −1
�

d
d�
Vq(�) +

1
�
�(t) ; (2)

where �(t) is a Gaussian white noise of zero mean and correlation 〈�(t)�(t′)〉 = D

(t − t′), and Vq(�) is given by [25]

Vq(�) =
1

�(q− 1)
ln
[
1 + �(q− 1)

�2

2

]
; (3)

where � = �=D. The function f(x; t) is derived from a potential U (x; t), consisting of
a double well potential and a linear term modulated by S(t)∼F cos(!t) (f(x; t) =
−dU=dx=−U ′

0 + S(t)). This problem corresponds (for != 0) to the case of diHusion
in a potential U0(x), induced by �, a colored non-Gaussian noise. Clearly, when q→ 1
we recover the limit of � being a Gaussian colored noise (Ornstein–Uhlenbeck process
[20]).
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In what follows we show the form of the eHective Markovian Fokker–Planck equa-
tion, obtained using an approximation based on a path integral treatment of Gaussian
colored noises [35–37], we calculate its stationary probability, and we derive the ex-
pression for the 4rst passage time (MFPT). We use the TST approach [5,19] in order
to obtain the power spectral density (psd) and the SNR. These results are compared
with exhaustive Monte Carlo simulations. Finally we draw some conclusions.

2. Effective Markovian approximation

Applying the path-integral formalism to the Langevin equations given by Eqs. (1) and
(2), and applying an adiabatic elimination procedure [35–37] it is possible to arrive at
an e5ective Markovian approximation. The speci4c details are shown elsewhere [38].
Such an approximation yields the following FPE for the evolution of the probability
P(x; t)

@tP(x; t) = −@x[A(x)P(x; t)] + 1
2@

2
x[B(x)P(x; t)] ; (4)

where

A(x) =
U ′

1 + �U ′′
0 [1 + �

2D (q− 1)U ′2
0 ]

(5)

and

B(x) = D
[

1 + �
2D (q− 1)U ′2

0

1 + �U ′′
0 [1 + �

2D (q− 1)U ′2
0 ]

]2

: (6)

The stationary distribution of the FPE in Eq. (4) is thus

Pst(x) =
ℵ
B

exp[ − �(x)] ; (7)

where ℵ is the normalization factor, and

�(x) =
2
D

∫
A
B

dy : (8)

The indicated FPE and its associated stationary distribution enable us to obtain the
MFPT through a Kramers-like approximation. This quantity is the necessary ingredient
to work with the TST approach.

2.1. Mean 4rst passage time

The MFPT can be obtained, in a Kramers-like approximation [20] from

T (x0) =
∫ x0

a

dy
�

∫ y

−∞

dz �
B
; (9)

where

�(x) = exp
(
−2
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B

)
: (10)
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In order to obtain analytical results, we will focus on polynomial-like forms for the
potential. We adopt

U (x) =
x4

4
− x

2

2
+ S(t)x ; (11)

setting S(t) =F cos(!t); and assuming that !−1 is large compared to the characteristic
relaxation times in both wells. For this kind of potential the normalization constant ℵ
diverges for any value of �¿ 0. This can be seen from the asymptotic behavior of
�(x), for x → ∞ : �(x) → 0, while B−1 → ∞, resulting in an ill de4ned stationary
probability density in Eq. (7). In order to 4nd approximate relations for the MFPT,
and other related quantities, we assume that Eq. (4) is valid only for values of x
near the wells and when the dispersion of the � process is 4nite, that is 〈�2〉¡∞
(or q ∈ [5=3; 3)) [38]. Such a cutoH is justi4ed a posteriori, analyzing the probability
distribution obtained from the simulations.

With the potential given by Eq. (11), A(x) and B(x) have the form

A(x) =
(x3 − x)

1 + �(3x2 − 1)[1 + �
2D (q− 1)(x3 − x)2]

;

B(x) =
{

[1 + �
2D (q− 1)(x3 − x)2]

1 + �(3x2 − 1)[1 + �
2D (q− 1)(x3 − x)2]

}2

:

In order to obtain the MFPT and related quantities, we have integrated Eq. (9)
numerically.

2.2. Two-state-theory

We consider a system described by a discrete random dynamical variable x that
adopts two possible values: c1 and c2 = −c1, with probabilities n1;2(t) respectively.
Such probabilities satisfy the condition n1(t) + n2(t) = 1. The master equation [20]
governing the evolution of n1(t) (and similarly for n2(t) = 1 − n1(t)) is

dn1

dt
= −dn2

dt
=W2(t)n2(t) −W1(t)n1(t) ;

=W2(t) − [W2(t) +W1(t)]n1 ; (12)

where the W1;2(t) are the transition rates out of the x = c1;2 states.
If the system is subject (through one of its parameters) to a time dependent signal

of the form F cos(!st), up to 4rst order in the amplitude F (assumed to be small),
the transition rates may be expanded as

W1(t) = $1 − %1F cos(!st) ;

W2(t) = $2 + %2F cos(!st) ; (13)

where the constants $1;2 and %1;2 depend on the detailed structure of the system under
study. For the symmetric case we have $1 = $2 = $ and %1 = %2 = % [18].
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Following the procedure of Ref. [19] to compute the SNR, integrating Eq. (12), we
can calculate the correlation function 〈x(t+�)x(t)|x0; t0〉. From this correlation function
we obtain the t-averaged correlation function C(�) = 〈limt0→−∞〈x(t + �)x(t)|x0; t0〉 〉t ,
given by

C(�) = R1 exp(−$|�|) + R2 cos(!s�) ; (14)

with

R1 = 4c21 + O(F2) ;

R2 =
2A2c21%

2

($2 + !2)
: (15)

We compute the t-averaged psd (〈S̃(!)〉t) as the Fourier transform of C(�). Next, we
compute the one-sided t-averaged psd (S(!)), de4ned for !¿ 0, as S(!) = 〈S̃(!)〉t +
〈S̃(−!)〉t : We 4nally get

S(!) = 4R1
$

($2 + !2)
+ 2)R2
(!− !s) : (16)

In the one-sided t-averaged psd (Eq. (16)), two contributions can be distinguished: the
signal output which is given by the 
 function centered at the signal frequency and
the broadband noise output, given by a dominant (O(A0)) Lorentzian term plus some
less important (O(A2)) terms that have been neglected.

We de4ne R, the SNR, as the ratio of the strength of the output signal and the
broadband noise output evaluated at the signal frequency, obtaining

R=
)R2

R1(2$=($2 + !2
s ))

=
F2)%2

2$
: (17)

According to Eqs. (9) and (13), the relevant quantities $ and % are given by

$ =
1
T |S(t)=0

(18)

%=
[

1
T 2

dT
dS(t)

]
S(t)=0

; (19)

with S(t) the applied signal.

2.3. Theoretical results

Here, we present the results for the SNR obtained evaluating Eq. (17). We show
results for R, the SNR, as a function of D, the noise intensity, for two diHerent situa-
tions: 4xed q and several �, 4xed � and various q.

In Fig. 1 we depict R vs. D, for a 4xed value of the time correlation � (�=0:1) and
various q. The general trend is that the maximum of the SNR curve increases when
q¡ 1, this is when the system departs from the Gaussian behavior. Fig. 2 again shows
R vs. D, but for a 4xed value of q (q=0:75) and several values of �. The general trend
agrees with the results for colored Gaussian noises [39], where it was shown that the
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Fig. 1. Theoretical value of SNR vs. D, for �= 0:1 and the following values of q= 0:25; 0:75; 1:0; 1:25 (from
top to bottom).

Fig. 2. Theoretical value of SNR vs. D, for q = 0:75 and the following values of � = 0:25; 0:75; 1:5 (from
top to bottom).

increase of the correlation time induces a decrease of the maximum of SNR as well as
its shift towards larger values of the noise intensity. The latter fact is a consequence
of the suppression of the switching rate with increasing �. Both qualitative trends are
con4rmed by Monte Carlo simulations of the system in Eq. (1).

2.4. Simulations

We have integrated Eqs. (1) and (2) numerically using the Heun method. With
only a few exceptions, in most cases the results were obtained averaging over 2000
trajectories (5000 trajectories for �= 0).

Fig. 3 shows the simulation results for the same situation and parameters indicated
in Fig. 1. Here, in addition to the increase of the maximum of the SNR curve for
values of q¡ 1, we see also an aspect that is not well reproduced or predicted by the
eHective Markovian approximation. It is the fact that the maximum of the SNR curve
Gattens for lower values of q, indicating that the system, when departing from Gaussian
behavior, does not require a 4ne tuning of the noise intensity in order to maximize its
response to a weak external signal. Fig. 4 shows the simulation results for the same
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Fig. 3. Simulation results of SNR vs. D, for �=0:1 and the following values of q=0:25; 0:75; 1:0; 1:25 (from
top to bottom).

Fig. 4. Simulation results of SNR vs. D, for q = 0:75 and the following values of � = 0:25; 0:75; 1:5 (from
top to bottom).

situation and parameters indicated in Fig. 2. Again we found an agreement with the
behavior found for colored Gaussian noises [39].

We have also obtained the spectral ampli4cation factor � [40]. The results not shown
here, are in complete agreement with those for the SNR.

3. Conclusions

In this contribution, and motivated by some experimental results in sensory
systems [22,23], we have analyzed the problem of SR when the noise source is non
Gaussian. We have chosen a colored non Gaussian noise source with a probability
distribution based on the generalized thermostatistics [27–29]. Making use of a path
integral approach, we have obtained an eHective Markovian approximation that allows
us to get some analytical results. In addition, we have performed exhaustive Monte
Carlo simulations. Even though the agreement between theory and numerical simula-
tions is only partial and qualitative, the eHective Markovian approximation turns out
to be extremely useful to (qualitatively) predict general trends in the behavior of the
system under study.
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Our numerical and theoretical results indicate that:

• For a 4xed value of �, the maximum value of the SNR increases with decreasing q.
• For a given value of q, the optimal noise intensity (that one that maximizes SNR)

decreases with q and its value is approximately independent of �.
• For a 4xed value of the noise intensity, the optimal value of q is independent of �

(except for �= 0 where the only allowed value is q= 1) and in general it turns out
that q �= 1.

In general terms we observe that the SNR, as we depart from Gaussian behavior (with
q¡ 1), shows two main aspects: 4rstly its maximum as a function of the noise intensity
increases, secondly it becomes less dependent on the precise value of the noise intensity.
Both aspects are of great relevance for technological applications [3]. However, as
was indicated in Ref. [23], non Gaussian noises could be an intrinsic characteristic
in biological systems, particularly in sensory systems [10,22,23]. In addition to the
increase in the response (SNR), the reduction in the need for tuning a precise value
of the noise intensity is of particular relevance in order to understand how a biological
system can exploit this phenomenon. The present results indicate that the noise model
used here oHers an adequate framework to analyze such a problem. A detailed analysis
and comparison with experimental data will be the subject of further work.
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