Quantum Hall thermoelectrics

Rafael Sánchez

Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

In collaboration with: Björn Sothmann (Genève) Andrew N. Jordan (Rochester)

Two terminal thermoelectrics

Charge current:

$$I_l^e = \frac{e}{h} \int dE \mathcal{T}(E) [f_l(E) - f_{\bar{l}}(E)]$$

Heat current:

$$I_l^h = \frac{1}{h} \int dE (E - E_{\rm F}) \mathcal{T}(E) [f_l(E) - f_{\bar{l}}(E)]$$

$$f_l(E) = \left[1 + e^{(E - eV_l)/k_{\mathsf{B}}T_l}\right]^{-1}$$

Seebeck effect

Peltier effect

Onsager reciprocity relations

$$\begin{split} I_l^e &= \frac{e}{2h} \sum_j \int dE[N\delta_{lj} - \mathcal{T}_{lj}(E)](-\partial_E f(E)) \left[eV_j + \frac{E}{T} \frac{T_j - T}{T} \right] \\ I_l^h &= \frac{1}{2h} \sum_j \int dE E[N\delta_{lj} - \mathcal{T}_{lj}(E)](-\partial_E f(E)) \left[eV_j + E \frac{T_j - T}{T} \right] \\ = \mathcal{L}_{lj}^{hV} \frac{eV_j}{k_B T} + \mathcal{L}_{lj}^{hT} \frac{k_B \Delta T_j}{(k_B T)^2} \right] \end{split}$$

$$\frac{1}{e} \mathcal{L}_{lj}^{eT} = \mathcal{L}_{jl}^{hV}$$
$$\mathcal{L}_{lj}^{hT} = \mathcal{L}_{jl}^{hT}$$

Three terminal thermoelectrics

Energy harvesting demands three terminal devices

Separation of heat and charge currents

Three terminal thermoelectrics

R. Sánchez and M. Büttiker, Phys. Rev. B 83, 085428 (2011)

O. Entin-Wohlman, Y. Imry, A. Aharony, Phys. Rev. B 82, 115314 (2010)

B. Sothmann, R. Sánchez, A. N. Jordan, M. Büttiker, Phys. Rev. B 85, 205301 (2012)

Verified experimentally!

B. Roche *et al.*, Nat. Comm. **6**, 6738 (2015) F. Hartmann *et al.*, Phys. Rev. Lett. **11**, 146805 (2015)

A. N. Jordan, B. Sothmann, R. Sánchez, M. Büttiker, Phys. Rev. B 87, 075312 (2013)

Review: B. Sothmann, R. Sánchez, A. N. Jordan, Nanotechnology 26, 032001 (2015)

(Classical) Hall effect

$$V_{\rm H} = -\alpha BI$$

Transverse resistance increases linearly with the magnetic field

Quantum Hall effect.

$$R_{\rm H} = \frac{h}{Ne^2}$$

Quantum Hall effect

$$V_{\rm H} = V_1 - V_3 = \frac{h}{e^2}I$$

Propagation without backscattering along edge states

B. I. Halperin, Phys. Rev. B 25, 2185 (1982)
M. Büttiker, Phys. Rev. B 38, 9375 (1988)

Back to three terminals

Scattering theory. Linear regime. No magnetic field

Scattering theory. Linear regime. No magnetic field

Energy harvesting:

 $\mathcal{L}_{13}^{eT} = k_{\mathsf{B}} T^2 G(S_2 - S_1)$

Energy harvesting if we break:

- Left-right symmetry
- Particle-hole symmetry

Scattering theory. Linear regime. No magnetic field

Energy harvesting:

No thermal rectification:

$$\mathcal{L}_{13}^{eT} = k_{\mathsf{B}}T^2G(S_2 - S_1)$$

$$\mathcal{L}_{12}^{hT} = \mathcal{L}_{21}^{hT}$$

Edge states in the Quantum Hall regime

$$\mathcal{X}_l = \frac{\kappa_{\mathsf{B}}T}{e^2} \frac{GG_l}{G_1 G_2} \left(eTS_l J_1 - J_2 \right)$$

Current in symmetric configurations!

Chiral (crossed) thermopower

$$\left. \begin{array}{l} S_2 = 0 \\ \mathcal{X}_1 = 0 \end{array} \right\} \Rightarrow \mathcal{L}_{13}^{eT}(B) = ek_{\mathsf{B}}T^2G_1S_1 \\ \end{array}$$

 $\left. \begin{array}{l} S_2 = 0 \\ \mathcal{X}_2 = -ek_{\mathsf{B}}T^2G_1S_1 \end{array} \right\} \Rightarrow \mathcal{L}_{13}^{eT}(-B) = 0$

 $\left. \begin{array}{l} S_1 = 0 \\ \mathcal{X}_1 = -ek_{\mathsf{B}}T^2G_2S_2 \end{array} \right\} \Rightarrow \mathcal{L}_{13}^{eT}(B) = 0$

 $\left. \begin{array}{l} S_1 = 0 \\ \mathcal{X}_2 = 0 \end{array} \right\} \Rightarrow \mathcal{L}_{13}^{eT}(-B) = ek_{\mathsf{B}}T^2G_2S_2$

Topological insulator

Spin polarized current controlled by the gates

Quantum point contacts

Quantum point contacts. Onsager matrix

Crossed thermoelectrics

Crossed thermoelectrics

Extreme Seebeck to Peltier asymmetry!

$$\frac{\mathcal{L}_{13}^{eT}(B)}{\mathcal{L}_{31}^{hV}(B)} = \infty$$

Crossed response for symmetric configurations: $\mathcal{L}_{13}^{eT} = e\mathcal{X}_1$

R. Sánchez, B. Sothmann, A.N. Jordan, Phys. Rev. Lett. 114, 146801 (2015)

Efficiency at maximum power: $\eta_{\max P,l}$

$$P_{\mathrm{m},l} = I_l^e(V_{\mathrm{m},l})V_{\mathrm{m},l}$$
$$\eta_{\mathrm{maxP},l} = \frac{P_{\mathrm{m},l}}{I_l^h(V_{\mathrm{m},l})}$$

R. Sánchez, B. Sothmann, A.N. Jordan, arXiv:1503.02926

Heat rectification

Thermal rectification. Turning heat around the bend

$$\mathcal{R}_{ij} = \frac{\mathcal{L}_{ij}^{hT}}{\mathcal{L}_{ji}^{hT}}$$

 $\mathcal{R}_{ij} = 1$: No thermal rectification

 $|\ln \mathcal{R}_{ij}| \gg 1$: Thermal diode

Quantum Nernst engines

Inject only heat. Measure only charge.

Quantum Nernst engines

J. Stark, K. Brander, U. Seifert, Phys. Rev. Lett. 112, 140601 (2014)

B. Sothmann, R. Sánchez, A.N. Jordan, Europhys. Lett. 107, 47003 (2014)

Conclusions

- o Chirality detected by thermoelectric measurements
- $\circ~$ Three terminal junctions separate heat and charge flows
- · Edge states permit the manipulation of heat currents
- Extreme asymmetries of Onsager matrix
- · Powerful and efficient energy harvesting in the crossed response
- o Ideal thermal diodes in the longitudinal terms
- · Gate control of spin polarization in topological insulators
- $\circ\,$ Heat engine based on the (quantum Hall) Nernst effect outperforms its classical version

- B. Sothmann, R. Sánchez, A.N. Jordan, Europhys. Lett. 107, 47003 (2014)
- R. Sánchez, B. Sothmann, A.N. Jordan, Phys. Rev. Lett. 114, 146801 (2015)
- R. Sánchez, B. Sothmann, A.N. Jordan, arXiv:1503:02926