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Jarzynski
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HOwo) —_—— H(/\(")) w: Work performed on the
t N system
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(e=Pw) = g=BAF Jarzynski, PRL 78, 2690 (1997).

(-): average over realizations of the same protocol
AF = F(1)— F(0), F(t)=-B"tInZ(t), Z(t)= Tre PHO®)

Jensen’s inequality = (w) > AF 2nd law



Crooks relation
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pa(w) = e AAF=W)pr(—w) | G.E. Crooks, PRE 60, 2721 (1999)

pn(w): pdf of work w during protocol M = A, A

Crooks =- Jarzynski



Applications

Pulling macromolecules in order to determine free energy
differencies between different confirmations: Liphardt et al.,
Science 296, 1832 (2002); Collin et al., Nature 437, 231 (2005);
Douarche et al., Europhys. Lett. 70, 593 (2005).

(N, 4 NN,

iof—h N-i,

0 N=20
S. Kim, Y.W. Kim, P. Talkner,
J.Yi, Phys. Rev. E 86, 041130
(2012).
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Work

Classical closed system:

w = H(z(r), (7)) = H(z.\(0))
- [ a0
0 t

- /0 CaHEDAD) 5y

Note that a proper gauge must be used in order that the
Hamiltonian yields the energy.

Work characterizes a process; it comprises information from states
at distinct times. Hence it is not an observable.

The measurement of the quantum versions of power- and
energy-based work definitions requires different strategies.



1. TWO ENERGY MEASUREMENTS:
One at the beginning, the other at the end of the protocol yield
eigenvalues e,(0) and ey, (7) of H(A(0)) and H(\(T)).

w® = em(7) — e,(0) = fluctuation theorems.

2. POWER-BASED WORK:

Requires a continuous measurement of power.

E.g. for H(A\) = Ho + AQ, a continuous observation of the
generalized coordinate @ is required leading to a freezing of the
systems dynamics in an eigenstate of Q.

Fluctuation theorems hold only if [Hp, Q; = 0 or equivalently
[H(\(t)), H(A(s))] = 0 for all t,s € (0, 7).

Hence the equivalence of the power- and energy-based work
definitions for classical systems fails to hold in quantum mechanics.
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Example: LANDAU-ZENER : H(t)

possible work-values:
2 2 1/2
—E0,0,E0}, Eo=((v7/2) +A})
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we =
WP = 2(/‘\//11)

2BEy =101

, 10%, energy based.

20h/A, N = 10, 102,
B.P. Venkatesh, G. Watanabe, P. Talkner, arXiv:1503.03228
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Work pdf

pA(w) = 5(w—em(7)+en(0)) Pa(m|n)p(n) :

Pa(m|n) = TrPm(r)U(A)Pa(0)UT(A)/d,(0)
HA() =D en(t)Pa(t),  dn(t) = TrPa(t)

n

p(n) = TrPA(0)p(0) = dp(0)e =7/ Z(0),
Z(0) =) dn(0)e

AN={x@®)o<t<r7}:
.0
UN) = U-o(N) , /ha Ues(N) = H(A(t))Urs(N)
J. Kurchan, arXiv:cond-mat/0007360.
H. Tasaki arXiv:cond-mat/0009244.
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CROOKS RELATION, pp(w)=e #AF=%)p(—w), follows from
(i) time-reversal invariance
A bh1= Uy o () gco) H(A(t)) = OH(exA(¢))6T

=

VY _
e ¢ ! Us e(A) = UL,(A) = 07U, s e(A)0

Q«f(o]

(92,

Qafct) D. Andrieux, P. Gaspard, Phys. Rev. Lett.
it (A)Dgar) 100, 230404. P. Talkner, M. Morillo, J. Yi,
P. Hanggi, New J. Phys. 15, 095001 (2013).

Pa(m|n)d,(T) = Px(n|m)dm(0), generalized detailed balance

(ii) Canonical initial states p(t) = Z~1(t)e PHA(®) for the forward
(t =0) and backward (t = 7) processes.

Zaw em(T)+€n(0))Pa(m|n) Zaw em(7)+en(0))




The Crooks relation implies the Jarzynski equality:

<efﬂw> — eBAF

Both fluctuation theorems can be expressed in terms of the
characteristic function

Ga(u) = /dwei“Wp/\(W)

Z(0)Gp(u) = Z(7)Gx(—u+iB) :  Crooks
Ga(iB) = (e P7) Jarzynski

P. Talkner, E. Lutz, P. Hianggi, Phys. Rev. E 75, 050102 (2007);
P.Talkner, P. Hanggi, J. Phys. A 40, F569 (2008).



Experiments

The classical fluctuation relations are experimentally confirmed for
mechanical, electrical and molecular systems and are the basis of a
method to determine free energy differences.

In quantum systems, projective energy measurements pose a severe
problem.

Proposal of an experiment:

G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. E 101, 070403
(2008).

First experiment:

S. An et al. Nat. Phys. 11, 193 (2015).

Alternative method avoiding projective measurements:

R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev.
Lett. 110, 230601 (2013); L. Mazzola, G. De Chiara, M. Paternostro, Phys.
Rev. Lett. 110, 230602 (2013); M. Campisi, R. Blattmann, S. Kohler, D.
Zueco, P. Hanggi, New J. Phys. 15, 105028 (2013).

Experimental confirmation:
T. Batalhdo et al., Phys. Rev. Lett. 113, 140601 (2014).



Single weak work measurement

G. De Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015).
U; = eirHs(0)P

/ — / ~ .
00 — Ut 7, U = eirHs(T)P

p L —Ue | UEEU(A),péP(O)

P momentum conjugate to the pointer position X.

] PA(x) =Y 00(x — Wi n) Pa(m|n)py
4 m,n

o] + correction term

1 S—
£ =0 if [p(0),H((0))]=0

1 oo(x) = (x|og|x) diagonal element

] of the initial pointer state wrt to the
°3210§%‘2J¥3 pointer-position basis. Gaussian with

different variances.



Open systems

- Hiot(A(t)) = Hs(A(t))

- + Hpg + Hsp
H, (xe) GSE\ initial states:

Prot(t) = Zigt (t)e PHhet(A(®)
Zior(t) = Tre AHe(M®) ¢+ =0, 7

pa(w) = e PAF T pr(—w)

w = work done on the total system = work done on S
AFiot = Fiot(7) — Fot(0) =  AFs
~—— ~—— ~—~—

Fs(r)+Fs Fs(0)+Fz  Fs(m)—Fs(0)

C. Jarzynski, J. Stat. Mech. P09005 (2004);
M. Campisi, P. Talkner, P. Hinggi, Phys. Rev. Lett. 102, 210401 (2009).



Statistical mechanics of an open system is based on the
Hamiltonian of mean force:

« T —BHkot
e_BH _ rBe
Zg
Zg = Tre PHs

H* in general is different from Hg; it yields the reduced density
matrix:

ps = Zste
Zs = TrsefﬂH*
= Ztot/ZB
with Fs = —3~ 1 In Z; one obtains
Fs = Fiot — FB

G.W. Ford, J.T. Lewis, R.F. OConnell, Ann. Phys. (N.Y.) 185, 270 (1988);
P. Hanggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008).



Weak coupling

Hiot(A(t)) = Hs(A(t)) + Hp +

In the weak coupling limit the interaction Hamiltonian Hsg is
vanishingly small of the order ¢. (Hsz)g = 0 (without loss of
generality) =

Zeor(t) = Z§(t) Zp(1 + O(<))

Change of internal energy, AE and exchanged heat @ can be
expressed in terms of the eigenvalues €7 (t) and e of Hs(\(t))
and Hp as

AE = e3(7) — e2(0)

1

Q=ef —ef

w=AE + Q + O(e?)



Hs(t) and Hg can be simultaneously measured, hence there is a
joint probability pr’Q(AE, Q) for AE and Q and consequently
also one for W and Q, p/"\V’Q(e, Q), satisfying

pr O (w, Q) = e‘ﬁ(AFS‘W)p,—"\”’Q(—m -Q)
implying for the marginal pp(w) = [ de W, Q)
pa(w) = e_B(AFS_W)P/‘\(—W)

Neither for AE nor for @ analogous relations do exist. Rather one
obtains PROTOCOL DEPENDENT correction factors:

pA(E) B(AFs— E)/dQ ﬁolj/;é(ic)\))pl_f(_l_:)
A

PE(E) = / dapy °(E. Q)

P. Talkner, M. Campisi, P. Hanggi, J. Stat. Mech. P02025 (2009)



Conclusions

» Two energy measurements for obtaining work
= em(7) — en(0).

» Closed system starting from canonical initial state undergoing
time-reversal Hamiltonian dynamics = fluctuation relations.
canonical initial state = free energy change;

micro-canonical initial state = entropy change;
P. Talkner, P. Hanggi, M. Morillo, Phys. Rev. E 77, 051131 (2008);

P. Talkner, M. Morillo, J. Yi, P. Hanggi, New J. Phys. 15, 095001 (2013).
grand-canonical initial state = grand potential change.
J.Yi, Y.W. Kim, P. Talkner, Phys. Rev. E 85, 051107

» In general, other than projective energy measurements
(generalized or weak) don't give fluctuation relations.
Measurement of power also does not lead to fluctuation
relations for quantum mechanical systems.



Conclusions (cont.)

» Single generalized measurements of work a la Paz allow one
to reconstruct the two-energy-measurement based work
distribution.

» Fluctuation relations hold for general open systems,
independent of the coupling strength between system and
environment. Only requirement is canonical initial state and
time-reversal Hamiltonian dynamics of the total system.

» For open systems coupling weakly to the environment the
joint distribution of work and heat exists but not for heat
alone, nor for the internal energy only.



