Transient quantum fluctuation relations

Peter Talkner Institut für Physik, Universität Augsburg

> QTD2 Mallorca, April 2015

Acknowledgments

Sekhar Burada

Michele Campisi

Peter Hänggi

Gert Ingold

Yong Woon Kim

APCTP, Pohang, Korea Foundation for Polish Science, FNT

Eric Lutz

Manuel Morillo

Prasanna Venkatesh

Gentaro Watanabe

Introduction

- Transient fluctuation relations by Jarzynski and Crooks
- Work
- Quantum work statistics and transient fluctuation relations
- Experimental verification and alternatives
- Open systems
- Summary

REVIEWS OF MODERN PHYSICS, VOLUME 83, JULY-SEPTEMBER 2011

Colloquium: Quantum fluctuation relations: Foundations and applications

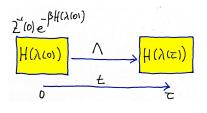
Michele Campisi, Peter Hänggi, and Peter Talkner Institute of Physics, University of Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany PERSPECTIVE | INSIGHT

The other QFT

Peter Hänggi and Peter Talkner

NATURE PHYSICS | VOL 11 | FEBRUARY 2015 |

Jarzynski



$$\Lambda = \{\lambda(t) | 0 \le t \le \tau\}$$
: protocol w : Work performed on the system

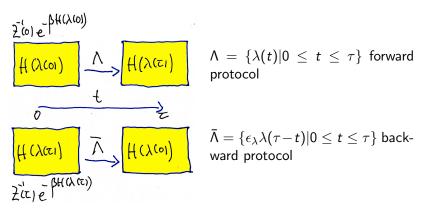
$$\langle e^{-\beta w} \rangle = e^{-\beta \Delta F}$$

Jarzynski, PRL 78, 2690 (1997).

 $\langle \cdot \rangle$: average over realizations of the same protocol $\Delta F = F(\tau) - F(0)$, $F(t) = -\beta^{-1} \ln Z(t)$, $Z(t) = \text{Tr} e^{-\beta H(\lambda(t))}$

Jensen's inequality $\Longrightarrow \langle w \rangle \ge \Delta F$ 2nd law

Crooks relation

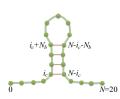


$$p_{\Lambda}(w) = e^{-\beta(\Delta F - w)} p_{\bar{\Lambda}}(-w)$$
 G.E. Crooks, PRE **60**, 2721 (1999)

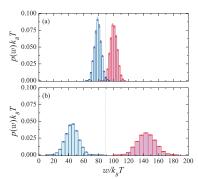
 $p_\Pi(w)$: pdf of work w during protocol $\Pi=\Lambda, \bar{\Lambda}$ Crooks \Rightarrow Jarzynski

Applications

Pulling macromolecules in order to determine free energy differencies between different confirmations: Liphardt et al., Science **296**, 1832 (2002); Collin et al., Nature **437**, 231 (2005); Douarche et al., Europhys. Lett. **70**, 593 (2005).



S. Kim, Y.W. Kim, P. Talkner, J.Yi, Phys. Rev. E **86**, 041130 (2012).



Jarzynski: $\Delta F = -\beta^{-1} \ln \langle e^{-\beta w} \rangle$ Crooks: $p_{\Lambda}(w) = e^{-\beta(\Delta F - w)} p_{\bar{\Lambda}}(-w) \Rightarrow p_{\Lambda}(w)$ and $p_{\bar{\Lambda}}(-w)$ cross at $w = \Delta F$

Work

Classical closed system:

$$w = H(z(\tau), \lambda(\tau)) - H(z, \lambda(0))$$

$$= \int_0^{\tau} dt \frac{dH(z(t), \lambda(t))}{dt}$$

$$= \int_0^{\tau} dt \frac{\partial H(z(t), \lambda(t))}{\partial \lambda} \dot{\lambda}(t)$$

Note that a proper gauge must be used in order that the Hamiltonian yields the energy.

Work characterizes a process; it comprises information from states at distinct times. Hence it is not an observable.

The measurement of the quantum versions of power- and energy-based work definitions requires different strategies.

1. Two energy measurements:

One at the beginning, the other at the end of the protocol yield eigenvalues $e_n(0)$ and $e_m(\tau)$ of $H(\lambda(0))$ and $H(\lambda(\tau))$.

$$w^e = e_m(\tau) - e_n(0) \Longrightarrow$$
 fluctuation theorems.

2. Power-based work:

Requires a continuous measurement of power.

E.g. for $H(\lambda) = H_0 + \lambda Q$, a continuous observation of the generalized coordinate Q is required leading to a freezing of the systems dynamics in an eigenstate of Q.

$$w_N^p = \sum_{k=1}^N \dot{\lambda}(t_k) q_{lpha_k} rac{ au}{N} \,, \quad Q = \sum_lpha q_lpha \Pi_lpha^Q \,.$$

Fluctuation theorems hold only if $[H_0, Q] = 0$ or equivalently $[H(\lambda(t)), H(\lambda(s))] = 0$ for all $t, s \in (0, \tau)$.

Hence the equivalence of the power- and energy-based work definitions for classical systems fails to hold in quantum mechanics.

Example: Landau-Zener: $H(t) = \frac{vt}{2}\sigma_z + \Delta\sigma_x$, $-\tau/2 \le t \le \tau/2$

possible work-values:

$$\mathcal{W}^{e} = \{-E_{0}, 0, E_{0}\}, E_{0} = \left((v\tau/2)^{2} + \Delta^{2}\right)^{1/2} \text{ energy-based power-based } 2\beta E_{0} = 10^{-1}$$

$$2\beta E_{0} = 10^{-1}$$

$$2\beta E_{0} = 10^{-1}$$

$$2\beta E_{0} = 10^{-1}$$

$$2\beta E_{0} = 10^{-1}$$

 $v = 5\Delta^2/\hbar, \ \tau = 20\hbar/\Delta, \ N = 10, \ 10^2, \ 10^3, \ 10^4, \ \text{energy based}.$

B.P. Venkatesh, G. Watanabe, P. Talkner, arXiv:1503.03228

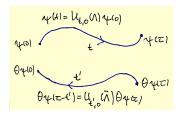
Work pdf

$$\begin{split} & p_{\Lambda}(w) = \sum_{n,m} \delta \big(w - e_m(\tau) + e_n(0) \big) P_{\Lambda}(m|n) p(n) : & \text{work pdf} \\ & P_{\Lambda}(m|n) = \text{Tr} P_m(\tau) U(\Lambda) P_n(0) U^{\dagger}(\Lambda) / d_n(0) & \text{transition prob.} \\ & H(\lambda(t)) = \sum_n e_n(t) P_n(t), \quad d_n(t) = \text{Tr} P_n(t) \\ & p(n) = \text{Tr} P_n(0) \rho(0) = d_n(0) e^{-\beta e_n(0)} / Z(0), & \text{can. in. st.} \\ & Z(0) = \sum_n d_n(0) e^{-\beta e_n(0)} \\ & \Lambda = \{\lambda(t) | 0 \leq t \leq \tau\} : & \text{protocol} \\ & U(\Lambda) = U_{\tau,0}(\Lambda) \,, \quad i\hbar \frac{\partial}{\partial t} U_{t,s}(\Lambda) = H(\lambda(t)) U_{t,s}(\Lambda) \,, \quad U_{s,s}(\Lambda) = \mathbb{I} \end{split}$$

- J. Kurchan, arXiv:cond-mat/0007360.
- H. Tasaki arXiv:cond-mat/0009244.

CROOKS RELATION, $p_{\Lambda}(w) = e^{-\beta(\Delta F - w)} p_{\bar{\Lambda}}(-w)$, follows from

(i) time-reversal invariance



$$H(\lambda(t)) = \theta H(\epsilon_{\lambda}\lambda(t))\theta^{\dagger} \Longrightarrow U_{s,t}(\Lambda) = U_{t,s}^{\dagger}(\Lambda) = \theta^{\dagger} U_{\tau-s,\tau-t}(\bar{\Lambda})\theta$$

D. Andrieux, P. Gaspard, Phys. Rev. Lett.100, 230404. P. Talkner, M. Morillo, J. Yi,P. Hänggi, New J. Phys. 15, 095001 (2013).

 $P_{\Lambda}(m|n)d_n(au)=P_{ar{\Lambda}}(n|m)d_m(0)\,,$ generalized detailed balance

(ii) Canonical initial states $\rho(t) = Z^{-1}(t)e^{-\beta H(\lambda(t))}$ for the forward (t=0) and backward $(t=\tau)$ processes.

$$\sum_{m,n} \delta(w - e_m(\tau) + e_n(0)) P_{\Lambda}(m|n) p_n(0) = \sum_{m,n} \delta(w - e_m(\tau) + e_n(0))$$

$$\times P_{\bar{\Lambda}}(m|n) p_m(\tau) \frac{p_n(0)}{p_m(\tau)}, \qquad \frac{p_n(0)}{p_m(\tau)} = e^{-\beta(\Delta F + e_n(0) - e_m(\tau))}$$

The Crooks relation implies the Jarzynski equality:

$$\langle e^{-\beta w} \rangle = e^{\beta \Delta F}$$

Both fluctuation theorems can be expressed in terms of the characteristic function

$$G_{\Lambda}(u)=\int dw e^{iuw}p_{\Lambda}(w)$$
 $Z(0)G_{\Lambda}(u)=Z(au)G_{ar{\Lambda}}(-u+ieta)$: Crooks $G_{\Lambda}(ieta)=\langle e^{-eta w}
angle$: Jarzynski

P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007);P.Talkner, P. Hänggi, J. Phys. A 40, F569 (2008).

Experiments

The classical fluctuation relations are experimentally confirmed for mechanical, electrical and molecular systems and are the basis of a method to determine free energy differences.

In quantum systems, projective energy measurements pose a severe problem.

Proposal of an experiment:

G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. E **101**, 070403 (2008).

First experiment:

S. An et al. Nat. Phys. 11, 193 (2015).

Alternative method avoiding projective measurements:

R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev.

Lett. 110, 230601 (2013); L. Mazzola, G. De Chiara, M. Paternostro, Phys.

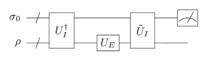
Rev. Lett. **110**, 230602 (2013); M. Campisi, R. Blattmann, S. Kohler, D. Zueco, P. Hänggi, New J. Phys. **15**, 105028 (2013).

Experimental confirmation:

T. Batalhão et al., Phys. Rev. Lett. 113, 140601 (2014).

Single weak work measurement

G. De Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015).

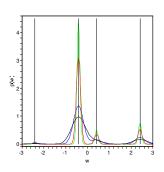


$$U_{I} = e^{i\kappa H_{S}(0)P},$$

$$\tilde{U}_{I} = e^{i\kappa H_{S}(\tau)P},$$

$$U_{E} \equiv U(\Lambda), \ \rho \equiv \rho(0)$$

P momentum conjugate to the pointer position X.

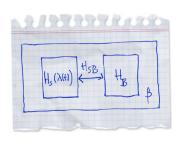


$$p_{\Lambda}^{X}(x) = \sum_{m,n} \sigma_{0}(x - \hbar \kappa w_{m,n}) P_{\Lambda}(m|n) p_{n}$$

$$+ \underbrace{\text{correction term}}_{=0 \text{ if } [\rho(0), H(\lambda(0))] = 0}$$

 $\sigma_0(x) = \langle x | \sigma_0 | x \rangle$ diagonal element of the initial pointer state wrt to the pointer-position basis. Gaussian with different variances.

Open systems



$$H_{ ext{tot}}(\lambda(t)) = H_{S}(\lambda(t)) \ + H_{B} + H_{SB}$$

initial states:

$$ho_{ ext{tot}}(t) = Z_{ ext{tot}}^{-1}(t)e^{-eta H_{ ext{tot}}(\lambda(t))} \ Z_{ ext{tot}}(t) = ext{Tr} e^{-eta H_{ ext{tot}}(\lambda(t))}, \ t = 0, au$$

$$p_{\Lambda}(w) = e^{-\beta \Delta F_{\text{tot}} - w} p_{\bar{\Lambda}}(-w)$$

w =work done on the total system =work done on S

$$\Delta F_{\text{tot}} = \underbrace{F_{\text{tot}}(\tau)}_{F_S(\tau) + F_B} - \underbrace{F_{\text{tot}}(0)}_{F_S(0) + F_B} = \underbrace{\Delta F_S}_{F_S(\tau) - F_S(0)}$$

C. Jarzynski, J. Stat. Mech. P09005 (2004);

M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).

Statistical mechanics of an open system is based on the Hamiltonian of mean force:

$$e^{-\beta H^*} = rac{\mathsf{Tr}_B e^{-\beta H_{\mathrm{tot}}}}{Z_B}$$
 $Z_B = \mathsf{Tr} e^{-\beta H_B}$

 H^* in general is different from H_S ; it yields the reduced density matrix:

$$\rho_S = Z_S^{-1} e^{-\beta H^*}$$

$$Z_S = \text{Tr}_S e^{-\beta H^*}$$

$$= Z_{\text{tot}} / Z_B$$

with $F_S = -\beta^{-1} \ln Z_S$ one obtains

$$F_S = F_{tot} - F_B$$

G.W. Ford, J.T. Lewis, R.F. OConnell, Ann. Phys. (N.Y.) **185**, 270 (1988); P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. **10**, 115008 (2008).

Weak coupling

$$H_{\text{tot}}(\lambda(t)) = H_{S}(\lambda(t)) + H_{B} + H_{SB}$$

In the weak coupling limit the interaction Hamiltonian H_{SB} is vanishingly small of the order ϵ . $\langle H_{SB} \rangle_B = 0$ (without loss of generality) \Longrightarrow

$$Z_{\mathrm{tot}}(t) = Z_{\mathrm{S}}^{0}(t)Z_{\mathrm{B}}(1+\mathcal{O}(\epsilon^{2}))$$

Change of internal energy, ΔE and exchanged heat Q can be expressed in terms of the eigenvalues $e_i^S(t)$ and e_α^B of $H_S(\lambda(t))$ and H_B as

$$\Delta E = e_{i'}^S(\tau) - e_i^S(0)$$

$$Q = e_i^B - e_{i'}^B$$

$$w = \Delta E + Q + \mathcal{O}(\epsilon^2)$$

 $H_S(t)$ and H_B can be simultaneously measured, hence there is a joint probability $p_{\Lambda}^{\Delta E,Q}(\Delta E,Q)$ for ΔE and Q and consequently also one for W and Q, $p_{\Lambda}^{w,Q}(e,Q)$, satisfying

$$p_{\Lambda}^{w,Q}(w,Q) = e^{-\beta(\Delta F_S - w)} p_{\bar{\Lambda}}^{w,Q}(-w,-Q)$$

implying for the marginal $p_{\Lambda}(w) = \int dQ p_{\Lambda}^{w,Q}(w,Q)$

$$p_{\Lambda}(w) = e^{-\beta(\Delta F_{S}-w)}p_{\bar{\Lambda}}(-w)$$

Neither for ΔE nor for Q analogous relations do exist. Rather one obtains PROTOCOL DEPENDENT correction factors:

$$p_{\Lambda}^{E}(E) = e^{-\beta(\Delta F_{S} - E)} \int dQ e^{\beta Q} \frac{P_{\bar{\Lambda}}(-E, Q)}{p_{\bar{\Lambda}}^{E}(-E)} p_{\bar{\Lambda}}^{E}(-E)$$
$$p_{\Lambda}^{E}(E) = \int dQ p_{\Lambda}^{E, Q}(E, Q)$$

P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech. P02025 (2009)

Conclusions

- ► Two energy measurements for obtaining work $= e_m(\tau) e_n(0)$.
- Closed system starting from canonical initial state undergoing time-reversal Hamiltonian dynamics ⇒ fluctuation relations. canonical initial state ⇒ free energy change; micro-canonical initial state ⇒ entropy change; P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008); P. Talkner, M. Morillo, J. Yi, P. Hänggi, New J. Phys. 15, 095001 (2013). grand-canonical initial state ⇒ grand potential change.
 J. Yi, Y.W. Kim, P. Talkner, Phys. Rev. E 85, 051107
- In general, other than projective energy measurements (generalized or weak) don't give fluctuation relations. Measurement of power also does not lead to fluctuation relations for quantum mechanical systems.

Conclusions (cont.)

- Single generalized measurements of work a la Paz allow one to reconstruct the two-energy-measurement based work distribution.
- ► Fluctuation relations hold for general open systems, independent of the coupling strength between system and environment. Only requirement is canonical initial state and time-reversal Hamiltonian dynamics of the total system.
- ► For open systems coupling weakly to the environment the joint distribution of work and heat exists but not for heat alone, nor for the internal energy only.