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Quantum Dots



Trapped Ion Set-up

• Singly-charged ions (Be+, Ca+, Mg+, …) 

• Coulomb interaction between ions 

• Single ions & ion crystals 

• Control over motional & internal states (QIP)

H.C. Nägerl, W. Bechter, J. Eschner, F. Schmidt-Kaler & R. Blatt, Appl. Phys. B 66, 603 (1998) 
J. Eschner, G. Morigi, F. Schmidt-Kaler & R. Blatt, J. Opt. Soc. Am. B 20, 1003 (2003)



Examples  -  Experiments

Experiments on Heat TransportObserving Frustration in Spin Systems

• Internal states = effective spins 

• Interactions via collective modes 

• Determine ground states

LETTERS

Quantum simulation of frustrated Ising spins with
trapped ions
K. Kim1, M.-S. Chang1, S. Korenblit1, R. Islam1, E. E. Edwards1, J. K. Freericks2, G.-D. Lin3, L.-M. Duan3 & C. Monroe1

A network is frustrated when competing interactions between
nodes prevent each bond from being satisfied. This compromise
is central to the behaviour of many complex systems, from social1

and neural2 networks to protein folding3 and magnetism4,5.
Frustrated networks have highly degenerate ground states, with
excess entropy and disorder even at zero temperature. In the case
of quantum networks, frustration can lead to massively entangled
ground states, underpinning exotic materials such as quantum spin
liquids and spin glasses6–9. Here we realize a quantum simulation of
frustrated Ising spins in a system of three trapped atomic ions10–12,
whose interactions are precisely controlled using optical forces13.
We study the ground state of this system as it adiabatically evolves
from a transverse polarized state, and observe that frustration
induces extra degeneracy. We also measure the entanglement in
the system, finding a link between frustration and ground-state
entanglement. This experimental system can be scaled to simulate
larger numbers of spins, the ground states of which (for frustrated
interactions) cannot be simulated on a classical computer.

Linus Pauling predicted in 1945 that the frustrated oxygen–hydrogen
bond lengths in the pyrochloric lattice of ice would lead to a macro-
scopic degeneracy of the ground state near zero temperature14. This
zero-point entropy has been observed in spin-ice materials5,15, where
the competing interactions are magnetic in nature. In the simple case
of a two-dimensional triangular lattice with frustrated antiferromag-
netic Ising interactions, the ground-state degeneracy can easily be seen
(Fig. 1a): only two of the three spins on each triangular cell can align
antiparallel, so all possible mixed configurations in each triangle
(three-quarters of all cases) are ground states. Quantum super-
position of these degenerate states leads to massive entanglement that
is important in our understanding of the complex phase structure of
many frustrated materials, ranging from molecular and liquid crystals
to high-temperature superconductors5,16.

In our experiment, we implement a quantum simulation of the
smallest possible frustrated magnetic network, which consists of three
spins. This work builds on earlier results for two trapped ions12, in a
system that can be scaled to much larger numbers of spins. We control
the sign and strength of the individual magnetic interactions, directly
measure all possible spin correlation functions and characterize
entanglement using techniques borrowed from quantum information
science12,17. The experiment is based on a linear chain of three trapped
atomic 171Yb1 ions, where the effective spin-1/2 system is represented
by the 2S1/2 jF 5 1, mF 5 0æ and jF 5 0, mF 5 0æ hyperfine ‘clock’ states
in each ion, depicted by j"æz and j#æz, respectively18, and separated in
frequency by nHF 5 12.642821 GHz.

The ions are confined in a three-layer linear trap13 and form a
crystal along the trap’s z axis with a centre-of-mass trap frequency
of nz 5 1.49 MHz. The three normal modes of transverse motion
along the principal x axis occur at frequencies n1 5 4.334 MHz,

n2 5 4.074 MHz and n3 5 3.674 MHz. Off-resonance laser beams
uniformly illuminate the ions, driving stimulated Raman transitions
between the spin states and also imparting spin-dependent forces in
the x direction. As discussed in Methods, this allows quantum simu-
lation of the Ising Hamiltonian with a transverse field10–12
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where By is an effective uniform transverse magnetic field with each
spin having unit magnetic moment, and we have set Planck’s constant,
h, equal to one. For three spins, we define J1 ; J1,2 5 J2,3 as the nearest-
neighbour interaction and J2 ; J1,3 as the next-nearest-neighbour
interaction (Fig. 1b), and s(i)

a denote the Pauli matrices of the ith spin.
We initialize each spin parallel to a strong transverse field and then
adiabatically lower the field relative to the Ising couplings so that the
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Figure 1 | Frustrated Ising spins. a, Simplest case of spin frustration, with
three antiferromagnetic spins on a triangle. b, Image of three trapped atomic
171Yb1 ions in the experiment, taken with an intensified charge-coupled-
device camera, with nearest-neighbour (J1) and next-nearest-neighbour (J2)
interactions. c, Expected form of the Ising interactions J1 and J2, controlled
through the detuning, m, of an optical spin-dependent force, scaled to the
axial (nz) and transverse (n1) centre-of-mass (CM) normal-mode frequencies
of motion such that the CM, tilt and zigzag modes of transverse motion
occur at ~mm:(m2{n2

1)=n2
z 5 0, 21 and 22.4, respectively13.

Vol 465 | 3 June 2010 | doi:10.1038/nature09071

590
Macmillan Publishers Limited. All rights reserved©2010

LETTERS

Quantum simulation of frustrated Ising spins with
trapped ions
K. Kim1, M.-S. Chang1, S. Korenblit1, R. Islam1, E. E. Edwards1, J. K. Freericks2, G.-D. Lin3, L.-M. Duan3 & C. Monroe1

A network is frustrated when competing interactions between
nodes prevent each bond from being satisfied. This compromise
is central to the behaviour of many complex systems, from social1

and neural2 networks to protein folding3 and magnetism4,5.
Frustrated networks have highly degenerate ground states, with
excess entropy and disorder even at zero temperature. In the case
of quantum networks, frustration can lead to massively entangled
ground states, underpinning exotic materials such as quantum spin
liquids and spin glasses6–9. Here we realize a quantum simulation of
frustrated Ising spins in a system of three trapped atomic ions10–12,
whose interactions are precisely controlled using optical forces13.
We study the ground state of this system as it adiabatically evolves
from a transverse polarized state, and observe that frustration
induces extra degeneracy. We also measure the entanglement in
the system, finding a link between frustration and ground-state
entanglement. This experimental system can be scaled to simulate
larger numbers of spins, the ground states of which (for frustrated
interactions) cannot be simulated on a classical computer.

Linus Pauling predicted in 1945 that the frustrated oxygen–hydrogen
bond lengths in the pyrochloric lattice of ice would lead to a macro-
scopic degeneracy of the ground state near zero temperature14. This
zero-point entropy has been observed in spin-ice materials5,15, where
the competing interactions are magnetic in nature. In the simple case
of a two-dimensional triangular lattice with frustrated antiferromag-
netic Ising interactions, the ground-state degeneracy can easily be seen
(Fig. 1a): only two of the three spins on each triangular cell can align
antiparallel, so all possible mixed configurations in each triangle
(three-quarters of all cases) are ground states. Quantum super-
position of these degenerate states leads to massive entanglement that
is important in our understanding of the complex phase structure of
many frustrated materials, ranging from molecular and liquid crystals
to high-temperature superconductors5,16.

In our experiment, we implement a quantum simulation of the
smallest possible frustrated magnetic network, which consists of three
spins. This work builds on earlier results for two trapped ions12, in a
system that can be scaled to much larger numbers of spins. We control
the sign and strength of the individual magnetic interactions, directly
measure all possible spin correlation functions and characterize
entanglement using techniques borrowed from quantum information
science12,17. The experiment is based on a linear chain of three trapped
atomic 171Yb1 ions, where the effective spin-1/2 system is represented
by the 2S1/2 jF 5 1, mF 5 0æ and jF 5 0, mF 5 0æ hyperfine ‘clock’ states
in each ion, depicted by j"æz and j#æz, respectively18, and separated in
frequency by nHF 5 12.642821 GHz.

The ions are confined in a three-layer linear trap13 and form a
crystal along the trap’s z axis with a centre-of-mass trap frequency
of nz 5 1.49 MHz. The three normal modes of transverse motion
along the principal x axis occur at frequencies n1 5 4.334 MHz,

n2 5 4.074 MHz and n3 5 3.674 MHz. Off-resonance laser beams
uniformly illuminate the ions, driving stimulated Raman transitions
between the spin states and also imparting spin-dependent forces in
the x direction. As discussed in Methods, this allows quantum simu-
lation of the Ising Hamiltonian with a transverse field10–12

H~
X

ivj

Ji,js
(i)
x s(j)

x zBy

X

i

s(i)
y ð1Þ

where By is an effective uniform transverse magnetic field with each
spin having unit magnetic moment, and we have set Planck’s constant,
h, equal to one. For three spins, we define J1 ; J1,2 5 J2,3 as the nearest-
neighbour interaction and J2 ; J1,3 as the next-nearest-neighbour
interaction (Fig. 1b), and s(i)

a denote the Pauli matrices of the ith spin.
We initialize each spin parallel to a strong transverse field and then
adiabatically lower the field relative to the Ising couplings so that the

1Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA. 2Department of
Physics, Georgetown University, Washington DC 20057, USA. 3MCTP and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.

–3
–3 –2 –1 0

0

3

a b

J1 J1

J2

J2

J1

1 2 3?

CMTiltZigzagc

IIIIIIIV

J 
(k

H
z)

µ~

Figure 1 | Frustrated Ising spins. a, Simplest case of spin frustration, with
three antiferromagnetic spins on a triangle. b, Image of three trapped atomic
171Yb1 ions in the experiment, taken with an intensified charge-coupled-
device camera, with nearest-neighbour (J1) and next-nearest-neighbour (J2)
interactions. c, Expected form of the Ising interactions J1 and J2, controlled
through the detuning, m, of an optical spin-dependent force, scaled to the
axial (nz) and transverse (n1) centre-of-mass (CM) normal-mode frequencies
of motion such that the CM, tilt and zigzag modes of transverse motion
occur at ~mm:(m2{n2

1)=n2
z 5 0, 21 and 22.4, respectively13.

Vol 465 | 3 June 2010 | doi:10.1038/nature09071

590
Macmillan Publishers Limited. All rights reserved©2010

LETTERS

Quantum simulation of frustrated Ising spins with
trapped ions
K. Kim1, M.-S. Chang1, S. Korenblit1, R. Islam1, E. E. Edwards1, J. K. Freericks2, G.-D. Lin3, L.-M. Duan3 & C. Monroe1

A network is frustrated when competing interactions between
nodes prevent each bond from being satisfied. This compromise
is central to the behaviour of many complex systems, from social1

and neural2 networks to protein folding3 and magnetism4,5.
Frustrated networks have highly degenerate ground states, with
excess entropy and disorder even at zero temperature. In the case
of quantum networks, frustration can lead to massively entangled
ground states, underpinning exotic materials such as quantum spin
liquids and spin glasses6–9. Here we realize a quantum simulation of
frustrated Ising spins in a system of three trapped atomic ions10–12,
whose interactions are precisely controlled using optical forces13.
We study the ground state of this system as it adiabatically evolves
from a transverse polarized state, and observe that frustration
induces extra degeneracy. We also measure the entanglement in
the system, finding a link between frustration and ground-state
entanglement. This experimental system can be scaled to simulate
larger numbers of spins, the ground states of which (for frustrated
interactions) cannot be simulated on a classical computer.

Linus Pauling predicted in 1945 that the frustrated oxygen–hydrogen
bond lengths in the pyrochloric lattice of ice would lead to a macro-
scopic degeneracy of the ground state near zero temperature14. This
zero-point entropy has been observed in spin-ice materials5,15, where
the competing interactions are magnetic in nature. In the simple case
of a two-dimensional triangular lattice with frustrated antiferromag-
netic Ising interactions, the ground-state degeneracy can easily be seen
(Fig. 1a): only two of the three spins on each triangular cell can align
antiparallel, so all possible mixed configurations in each triangle
(three-quarters of all cases) are ground states. Quantum super-
position of these degenerate states leads to massive entanglement that
is important in our understanding of the complex phase structure of
many frustrated materials, ranging from molecular and liquid crystals
to high-temperature superconductors5,16.

In our experiment, we implement a quantum simulation of the
smallest possible frustrated magnetic network, which consists of three
spins. This work builds on earlier results for two trapped ions12, in a
system that can be scaled to much larger numbers of spins. We control
the sign and strength of the individual magnetic interactions, directly
measure all possible spin correlation functions and characterize
entanglement using techniques borrowed from quantum information
science12,17. The experiment is based on a linear chain of three trapped
atomic 171Yb1 ions, where the effective spin-1/2 system is represented
by the 2S1/2 jF 5 1, mF 5 0æ and jF 5 0, mF 5 0æ hyperfine ‘clock’ states
in each ion, depicted by j"æz and j#æz, respectively18, and separated in
frequency by nHF 5 12.642821 GHz.

The ions are confined in a three-layer linear trap13 and form a
crystal along the trap’s z axis with a centre-of-mass trap frequency
of nz 5 1.49 MHz. The three normal modes of transverse motion
along the principal x axis occur at frequencies n1 5 4.334 MHz,

n2 5 4.074 MHz and n3 5 3.674 MHz. Off-resonance laser beams
uniformly illuminate the ions, driving stimulated Raman transitions
between the spin states and also imparting spin-dependent forces in
the x direction. As discussed in Methods, this allows quantum simu-
lation of the Ising Hamiltonian with a transverse field10–12

H~
X

ivj

Ji,js
(i)
x s(j)

x zBy

X

i

s(i)
y ð1Þ

where By is an effective uniform transverse magnetic field with each
spin having unit magnetic moment, and we have set Planck’s constant,
h, equal to one. For three spins, we define J1 ; J1,2 5 J2,3 as the nearest-
neighbour interaction and J2 ; J1,3 as the next-nearest-neighbour
interaction (Fig. 1b), and s(i)

a denote the Pauli matrices of the ith spin.
We initialize each spin parallel to a strong transverse field and then
adiabatically lower the field relative to the Ising couplings so that the

1Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA. 2Department of
Physics, Georgetown University, Washington DC 20057, USA. 3MCTP and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.

–3
–3 –2 –1 0

0

3

a b

J1 J1

J2

J2

J1

1 2 3?

CMTiltZigzagc

IIIIIIIV

J 
(k

H
z)

µ~

Figure 1 | Frustrated Ising spins. a, Simplest case of spin frustration, with
three antiferromagnetic spins on a triangle. b, Image of three trapped atomic
171Yb1 ions in the experiment, taken with an intensified charge-coupled-
device camera, with nearest-neighbour (J1) and next-nearest-neighbour (J2)
interactions. c, Expected form of the Ising interactions J1 and J2, controlled
through the detuning, m, of an optical spin-dependent force, scaled to the
axial (nz) and transverse (n1) centre-of-mass (CM) normal-mode frequencies
of motion such that the CM, tilt and zigzag modes of transverse motion
occur at ~mm:(m2{n2

1)=n2
z 5 0, 21 and 22.4, respectively13.

Vol 465 | 3 June 2010 | doi:10.1038/nature09071

590
Macmillan Publishers Limited. All rights reserved©2010

AF AF

AF

K. Kim et al., Nature 465, 590 (2010) 
R. Islam et al., Science 340, 583 (2013) 
A. Bermudez et al., New J. Phys. 14, 093042 (2012)

M. Ramm et al., New J. Phys. 16, 063062 (2014) 
A. Bermudez et al., PRL 111, 040601 (2013)



Examples  -  Proposals

Verifying the Quantum Jarzynski Equality Single Ion Heat Engine (Otto Cycle)

�F = �kT lnhe�W/kT i

he�W/kT i =
Z

dWp(W )e�W/kT

!(0) !(⌧)

work on 
system

• Control over initial & final states 

• Resolve single Fock states 

• Determine work done on system

G. Huber, F. Schmidt-Kaler, S. Deffner & E. Lutz, PRL 101, 070403 (2008) 
R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold & V. Vedral, PRL 110, 230601 (2013) 
O. Abah, …, F. Schmdt-Kaler, … & E. Lutz, PRL 109, 203006 (2012)

Single-Ion Heat Engine at Maximum Power

O. Abah,1 J. Roßnagel,2 G. Jacob,2 S. Deffner,1,3 F. Schmidt-Kaler,2 K. Singer,2 and E. Lutz1,4

1Department of Physics, University of Augsburg, D-86159 Augsburg, Germany
2Quantum, Institut für Physik, Universität Mainz, 55128 Mainz, Germany

3Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland,
College Park, Maryland 20742, USA

4Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, D-14195 Berlin, Germany
(Received 17 May 2012; published 14 November 2012)

We propose an experimental scheme to realize a nanoheat engine with a single ion. An Otto cycle may

be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to

engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in

various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its

feasibility and its ability to operate at a maximum efficiency of 30% under realistic conditions.

DOI: 10.1103/PhysRevLett.109.203006 PACS numbers: 37.10.Ty, 05.70.!a, 37.10.Vz

Miniaturization has lead to the development of increas-
ingly smaller devices. This ongoing size reduction from the
macroscale to the nanoscale is approaching the ultimate
limit, given by the atomic nature of matter [1]. Prominent
macrodevices are heat engines that convert thermal energy
into mechanical work, and hence motion [2]. A fundamen-
tal question is whether these machines can be scaled down
to the single particle level, while retaining the same work-
ing principles as, for instance, those of a car engine. It is
interesting to note in this context that biological molecular
motors are based on completely different mechanisms
that exploit the constructive role of thermal fluctuations
[3,4]. At the nanoscale, quantum properties become impor-
tant and have thus to be fully taken into account. Quantum
heat engines have been the subject of extensive theoretical
studies in the last fifty years [5–14]. However, while clas-
sical micro heat engines have been fabricated, using opto-
mechanical [15], micro-electromechanical [16–18], and
colloidal systems [19], to date no quantum heat engine has
been built.

In this Letter, we take a step towards that goal by propos-
ing a single ion heat engine using a linear Paul trap.
Specifically, we present a scheme which has the potential
to implement a quantum Otto cycle using currently avail-
able state-of-the-art ion-trap technology. Laser-cooled ions
in linear Paul traps are quantum systems with remarkable
properties [20]: they offer an unprecedented degree of
preparation and control of their parameters, permit their
cooling to the ground state, and allow the coupling to
engineered reservoirs [21]. For these reasons, they have
played a prominent role in the experimental study of quan-
tum computation and information processing applications
[22,23]. They are also invaluable tools for the investigation
of quantum thermodynamics [24]. The quantum Otto cycle
for a harmonic oscillator is a quantum generalization of the
common four-stroke car engine and a paradigm for ther-
modynamic quantum devices [25–27]. It consists of two

isentropic processes during which the frequency of the
oscillator (the trap frequency) is varied, and of two iso-
choric processes, that correspond to a change of tempera-
ture at constant frequency, see Fig. 1(a). In the present
proposal, we simulate the Otto cycle by confining a single
ion in a novel trap geometry with an asymmetric electrode
configuration [see Fig. 1(c)] and coupling it alternatingly
to two engineered laser reservoirs. As for all realistic
machines, this Otto engine runs in finite time and has thus

FIG. 1 (color online). (a) Energy-frequency diagram of the
Otto cycle for the radial mode of the ion. The continuous line
represents the ideal process, while the dots show the results of
the Monte Carlo simulations. (b) The pictograms illustrate the
four individual strokes of the cycle for the radial state.
(c) Geometry of the tapered Paul trap: the rf electrodes have
an angle of ! ¼ 20# with the trap axis, the length of the trap
is 5 mm, the radial distance of the ion to the rf electrodes is
r0 ¼ 1 mm. The axial and radial frequencies of the trap are
!0;z=ð2"Þ ’ 6 MHz and !0;x=ð2"Þ ¼ !0;y=ð2"Þ ’ 35 kHz.
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ture at constant frequency, see Fig. 1(a). In the present
proposal, we simulate the Otto cycle by confining a single
ion in a novel trap geometry with an asymmetric electrode
configuration [see Fig. 1(c)] and coupling it alternatingly
to two engineered laser reservoirs. As for all realistic
machines, this Otto engine runs in finite time and has thus

FIG. 1 (color online). (a) Energy-frequency diagram of the
Otto cycle for the radial mode of the ion. The continuous line
represents the ideal process, while the dots show the results of
the Monte Carlo simulations. (b) The pictograms illustrate the
four individual strokes of the cycle for the radial state.
(c) Geometry of the tapered Paul trap: the rf electrodes have
an angle of ! ¼ 20# with the trap axis, the length of the trap
is 5 mm, the radial distance of the ion to the rf electrodes is
r0 ¼ 1 mm. The axial and radial frequencies of the trap are
!0;z=ð2"Þ ’ 6 MHz and !0;x=ð2"Þ ¼ !0;y=ð2"Þ ’ 35 kHz.
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We propose an experimental scheme to realize a nanoheat engine with a single ion. An Otto cycle may

be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to

engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in

various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its

feasibility and its ability to operate at a maximum efficiency of 30% under realistic conditions.
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Miniaturization has lead to the development of increas-
ingly smaller devices. This ongoing size reduction from the
macroscale to the nanoscale is approaching the ultimate
limit, given by the atomic nature of matter [1]. Prominent
macrodevices are heat engines that convert thermal energy
into mechanical work, and hence motion [2]. A fundamen-
tal question is whether these machines can be scaled down
to the single particle level, while retaining the same work-
ing principles as, for instance, those of a car engine. It is
interesting to note in this context that biological molecular
motors are based on completely different mechanisms
that exploit the constructive role of thermal fluctuations
[3,4]. At the nanoscale, quantum properties become impor-
tant and have thus to be fully taken into account. Quantum
heat engines have been the subject of extensive theoretical
studies in the last fifty years [5–14]. However, while clas-
sical micro heat engines have been fabricated, using opto-
mechanical [15], micro-electromechanical [16–18], and
colloidal systems [19], to date no quantum heat engine has
been built.

In this Letter, we take a step towards that goal by propos-
ing a single ion heat engine using a linear Paul trap.
Specifically, we present a scheme which has the potential
to implement a quantum Otto cycle using currently avail-
able state-of-the-art ion-trap technology. Laser-cooled ions
in linear Paul traps are quantum systems with remarkable
properties [20]: they offer an unprecedented degree of
preparation and control of their parameters, permit their
cooling to the ground state, and allow the coupling to
engineered reservoirs [21]. For these reasons, they have
played a prominent role in the experimental study of quan-
tum computation and information processing applications
[22,23]. They are also invaluable tools for the investigation
of quantum thermodynamics [24]. The quantum Otto cycle
for a harmonic oscillator is a quantum generalization of the
common four-stroke car engine and a paradigm for ther-
modynamic quantum devices [25–27]. It consists of two

isentropic processes during which the frequency of the
oscillator (the trap frequency) is varied, and of two iso-
choric processes, that correspond to a change of tempera-
ture at constant frequency, see Fig. 1(a). In the present
proposal, we simulate the Otto cycle by confining a single
ion in a novel trap geometry with an asymmetric electrode
configuration [see Fig. 1(c)] and coupling it alternatingly
to two engineered laser reservoirs. As for all realistic
machines, this Otto engine runs in finite time and has thus

FIG. 1 (color online). (a) Energy-frequency diagram of the
Otto cycle for the radial mode of the ion. The continuous line
represents the ideal process, while the dots show the results of
the Monte Carlo simulations. (b) The pictograms illustrate the
four individual strokes of the cycle for the radial state.
(c) Geometry of the tapered Paul trap: the rf electrodes have
an angle of ! ¼ 20# with the trap axis, the length of the trap
is 5 mm, the radial distance of the ion to the rf electrodes is
r0 ¼ 1 mm. The axial and radial frequencies of the trap are
!0;z=ð2"Þ ’ 6 MHz and !0;x=ð2"Þ ¼ !0;y=ð2"Þ ’ 35 kHz.
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• Control over trapping 

• Heating and cooling of single ions 

• Generate motion of axial mode



What are the basic tools?



Motional and Internal States

• Motional and internal states are decoupled 

• Manipulate internal states via laser coupling

motional states 
(harmonic trap)
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Optical Pumping - State Preparation

• Resonant driving of transition       to  

• Radiative decay into       and   

motional states 
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|0i
|1i
|2i
|ni

|ei

|gi

|fi

internal states 
(electron configuration)

V (x) =
1

2
m!

2
x

2

!ef

|ei |fi
|ei |gi

�



Resonance Fluorescence - Read Out

• Resonant driving of transition       to 

• See that level       is populated
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Resonance Fluorescence - Read Out

• Resonant driving of transition       to 

• See that level       is populated
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State-dependent Potential

• AC-Stark shift from far-detuned driving 

• Position-dependent intensity

Ve(x) =
⌦2(x)
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Couple Motional and Internal States

• Drive transitions that change HO state 

• Requires narrow HO states

|1, ei
|2, ei

|2, gi
|1, gi

|0, gi

|0, ei · · ·

red sideband

blue sideband
carrier



• Internal states act as spins 

• Spin-spin interactions via common mode)
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|0, ei

Spin-Mode Coupling
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Sideband Cooling

• Combine coherent driving & spontaneous decay 

• Control temperature down to       ~ 0.05 

• Doppler cooling       ~ 3 - 10
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• Thermal population of motional state  

• Start in       and observe population in       after fixed time
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Temperature Measurement
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Temperature Measurement
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• Thermal population of motional state  
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Collective Modes

Hamiltonian for motional ion states

Axial modes

Radial modes

harmonic oscillator modes ~ collective modes.
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Fourier’s Law



Fourier’s Law

J. Fourier, Théorie Analytique de la Chaleur (1822)



Fourier’s Law

J. Fourier, Théorie Analytique de la Chaleur (1822)



Fourier’s Law

• How does Fourier’s law emerge from microscopic laws? 

• When do temperature gradients occur? 

• Observe Fourier’s law on nanoscales?

Z. Rieder, J. L. Lebowitz & E. Lieb, J. Math. Phys. 8, 1073 (1967) 
M. Michel, G. Mahler & J. Gemmer PRL 95, 180602 (2005) 
A. Asadian, D. Manzano, M. Tiersch & H. J. Briegel, Phys. Rev. E 87, 012109 (2013)



Trapped-Ion Crystal Toolbox

Functionalities of ions 

• Bulk ions 

• Heat reservoir ions 

• Multi purpose ions

• Full control over internal states 

• Separation of time scales 

• Different atomic species



Vibron Hopping Model

Hamiltonian for motional ion states

H =
X
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Tight-binding model for vibron hopping

• Small radial oscillations above ground state (vibrons) 

• Coupling from dipole-dipole interaction 

• Heat transport by vibron hopping

D. Porras & J. I. Cirac, PRL 93, 263602 (2004)
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chain of weakly coupled 
harmonic oscillators



Heat Reservoirs

Tight-binding model for vibron hopping

• Effective cooling rate 

• Reservoirs at constant temperature 

• Cooling much faster than hopping

Continuous heating/cooling of edge ions
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Spin-Vibron Coupling

Tight-binding model for vibron hopping
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Couple internal states to vibrons

⊳  Photon-assisted tunneling

⊳  Probing & Disorder
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Ballistic Transport

• Ballistic transport of vibrons 

• Anomalous heat transport

Vibron occupations

Assume                  and project 
dynamics onto state 
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Spin-Induced Disorder

Strong spin-vibron coupling Spins in superposition

Random binary alloy (RBA) model (bosonic)

Binary diagonal disorder

B. Velicky, S. Kirkpatrick & H. Ehrenreich, Phys. Rev. 175, 747 (1968) 

B. Paredes, F. Verstraete & J. I. Cirac, PRL 95, 140501 (2005)

Exploit “quantum parallelism”
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Fourier’s Law

Ballistic Disorder

Clear signature of Fourier’s law
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Dephasing from Electrodes

Dynamic fluctuations from noisy electrodes

Tight-binding model with dephasing noise

Markovian noise with correlation length

V
oltage
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Description as Lindblad operator



Fourier’s Law

Ballistic Dephasing Disorder
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Thermal Quantum Dot

Single site & thermal leads

Photon-assisted tunneling Single-spin heat switch

Full control of heat current through TQD
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Nonequilibrium Schrödinger’s Cat

Single site & thermal leads

Photon-assisted tunneling Single-spin heat switch

Full control of heat current through TQD
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Verify Fluctuation Theorems

Single site & thermal leads

Verify fluctuation theorems for bosons (switch on)

Use Ramsey probe to measure current

N = number of vibrons

M. Esposito, U. Harbola & S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)
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Non-Invasive Ramsey Probe

|↓〉

|↑〉

 π/2 pulse

free induction  π/2 pulse

Operator couples weakly to spin

Spin evolution

1

-1

Measure occupations and thermal currents

MB and D. Jaksch, New J. Phys. 8, 87 (2006) 

G. B. Lesovik, F. Hassler & G. Blatter, PRL 96, 106801 (2006)

⊳  Oscillations with frequency � O  

⊳  Damping by fluctuations � δO²
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Summary

Control & manipulate 
heat flow 

Measure currents 
& local temperatures

Implement 
thermal 

reservoirs 



Analytical Results

A. Asadian, D. Manzano, M. Tiersch & H. J. Briegel, Phys. Rev. E 87, 012109 (2013)

Local vibron hopping and dephasing

Long-range coupling 1/d³ probably not essential

Vibron occupations

Vibron current



Zig-zag Crossover

Reduce radial trapping 
for zig-zag crossover 

K. Pyka et al., Nat. Commun. 4, 2291 (2013) 
A. Ruiz, D. Alonso, M. B. Plenio & A. del Campo, Phys. Rev. B 89, 214305 (2014) 
N. Freitas, E. Martinez & J. P. Paz, Preprint arXiv:1312.6644 (2013)

zig-zag

zag-zig

linear

• Anomalous transport for linear chain 

• Zig-zag results in temperature gradient and suppressed heat current 

• Nonlinearity & coupling of axial and radial modes



Experimental Status

M. Ramm, T. Pruttivarasin & H. Häffner, New J. Phys. 16, 063062 (2014) 
T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter & H. Häffner, New J. Phys. 13 075012, (2011)

• Heat transport in chain with up to 37 ions 

• Measure vibron occupation via cooling time  

• Coupling � 10kHz stronger than cooling rate (need                 )�↵ � Jij


