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Setting: observable equilibration

The observable equilibration approach:
does some system approach a particular steady state, and
remain close to it, when probed by an observable A?

Consider a closed system:

initial state ρ0 and Hamiltonian H

Unitary evolution: ρt = e−iHtρ0eiHt

As “distance” between states: weak-distinguishability:

D̃A(ρ, σ) ≡ 1
4‖A‖2

∣∣∣Tr[ρA]− Tr[σA]
∣∣∣2

‖A‖ = max {|eig(A)|} is the spectral norm
if D̃A(ρ, σ)� 1 =⇒ hard to distinguish between ρ and σ via
expectation values of A
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For finite dimensional systems revivals exist
⇒ no equilibration in the strict sense.

Hence, we look for equilibration in average:
is ρt close to some equilibrium state ω for most times?
(as measured by D̃A)
So, our criterion for equilibration:〈

D̃A(ρt , ω)
〉
∞
� 1

where 〈f (t)〉T = 1
T

∫ T
0 f (t)dt denotes time averaging

In such a case D̃A(ρt , ω) is small for most times t
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Conditions for equilibration

It has been proven that the average distance is bounded1,2〈
D̃A(ρt , ω)

〉
∞
≤ 1

4deff

where ω ≡ 〈ρt〉∞

and the effective dimension of the system is

deff ≡
1∑

j
(
Tr
[
Pjρ0

])2

(
deff∼ number levels populated

)
Pj projects onto different energies Ej

Assumption: non-degenerate energy gaps
(Ej − Ek ) = (En − Em) 6= 0⇐⇒ j = n and k = m

1P. Reimann, PRL 2008
2N. Linden, S. Popescu, A.J. Short, A. Winter, PRE 2009

3 / 17



Equilibration of closed quantum systems
Equilibration time scales

Conclusion

Conditions for equilibration

It has been proven that the average distance is bounded1,2〈
D̃A(ρt , ω)

〉
∞
≤ 1

4deff

where ω ≡ 〈ρt〉∞
and the effective dimension of the system is

deff ≡
1∑

j
(
Tr
[
Pjρ0

])2

(
deff∼ number levels populated

)
Pj projects onto different energies Ej

Assumption: non-degenerate energy gaps
(Ej − Ek ) = (En − Em) 6= 0⇐⇒ j = n and k = m

1P. Reimann, PRL 2008
2N. Linden, S. Popescu, A.J. Short, A. Winter, PRE 2009

3 / 17



Equilibration of closed quantum systems
Equilibration time scales

Conclusion

Conditions for equilibration

It has been proven that the average distance is bounded1,2〈
D̃A(ρt , ω)

〉
∞
≤ 1

4deff

where ω ≡ 〈ρt〉∞
and the effective dimension of the system is

deff ≡
1∑

j
(
Tr
[
Pjρ0

])2

(
deff∼ number levels populated

)
Pj projects onto different energies Ej

Assumption: non-degenerate energy gaps
(Ej − Ek ) = (En − Em) 6= 0⇐⇒ j = n and k = m

1P. Reimann, PRL 2008
2N. Linden, S. Popescu, A.J. Short, A. Winter, PRE 2009

3 / 17



Equilibration of closed quantum systems
Equilibration time scales

Conclusion

Conditions for equilibration

Therefore, assuming non degenerate energy gaps and
high effective dimension〈

D̃A(ρt , ω)
〉
∞
≤ 1

4deff
� 1 =⇒ equilibration!

What can we say, in these general terms, about the time scales
of equilibration?
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Extremely slow equilibration time scales
The search for realistic time scales

Finite time equilibration

We now look for equilibration in a finite time T , i.e. focus on〈
D̃A(ρt , ω)

〉
T

=
1
T

∫ T

0
D̃A(ρt , ω)dt

we want to find Teq such that〈
D̃A(ρt , ω)

〉
Teq
� 1

⇒ ρt close to ω for most times in [0,Teq]
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Extremely slow observables

It turns out that one can find examples of observables with
extremely slow equilibration time scales3

For any pure initial state there exist observables with4

T slow
eq & deff

σE
,

σE – energy standard deviation

Typically, if N is the number of constituents of the system,
σE ∼ O

(√
N
)

while deff ∼ O(exp N)

=⇒ time scales exponentially long in system’s size

Therefore conditions are needed on the trio {ρ0,A,H} in order
to prove physically reasonable time scales

3S. Goldstein, T. Hara, H. Tasaki, PRL 2013
4A. Malabarba, LPGP, N. Linden, T. Farrelly, A.J. Short, PRE 2014
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The search for realistic time scales

We can prove〈
D̃A(ρt , ω)

〉
T
≤ c d Tr

[
ρ2

0

]
ξp
( 1

T

)
; c < 5, d = dim(H).

For H =
∑

j Ej |j〉〈j |, consider the normalized distribution

pα ≡ p{j,k} =
|ρjkAkj |∑
jk |ρjkAkj |

α denotes pairs of levels with energy gap Gα = (Ej − Ek )

Notice that pα involves all the operators that define time
scales: {ρ0,A,H}
pα gives us information about the relevant frequencies
(energy gaps)
For example, its standard deviation σG roughly gives the
maximum relevant frequency
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Out of the distritubion pα, we construct the function ξp(x):

ξp(x) ≡ max
G

∑
Gα∈[G,G+x ]

pα

ξp(x) quantifies the maximum probability that fits x :

8 / 17
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We have distribution pα ∝ |ρjkAjk |, the function ξp(x) which
quantifies the probability that fits an interval x , and

〈
D̃A(ρt , ω)

〉
T
≤ c d Tr

[
ρ2

0

]
ξp
( 1

T

)
; c < 5, d = dim(H).

We want to find the equilibration time scale.
For example, Teq such that〈

D̃A(ρt , ω)
〉

Teq
≤ c d Tr

[
ρ2

0

]
ξp

(
1

Teq

)
= 10−4.

Estimate for ξp
( 1

T

)
: if the standard deviation σG quantifies

the width of distribution pα, then

ξp
( 1

T

)
≈ a
σG

1
T
, a ∼ 1.
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A few illustrating examples, for continuous distributions:

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

approximately unimodal distributions

 

 
gaussian: a

1
 = 0.398

uniform: a
2
 = 0.288 

arbitrary: a
3
 = 0.390

−300 −200 −100 0 100 200 300
0

0.05

0.1

0.15

0.2
bimodal distribution

 

 
superposition of gaussians: a

4
 = 34.25

(
ξp
( 1

T

)
= a

σG

1
T

)

(
a� 1

)
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Putting the equations together〈
D̃A(ρt , ω)

〉
Teq
≤ c d Tr

[
ρ2

0

]
ξp

(
1

Teq

)
= 10−4

ξp
( 1

T

)
≈ a
σG

1
T

gives

Teq ≈
c a

10−4

d Tr
[
ρ2

0
]

σG
, c < 5, a ∼ 1.

11 / 17
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Extremely slow equilibration time scales
The search for realistic time scales

System interacting with a thermal bath

Physically relevant scenario: system (dim dS) interacting
with a bath (dim dB), H = HS + HB + HI

We focus on system observables A = AS ⊗ 1B

Let’s start with bath in maximally mixed state, ρ0 = ρS ⊗ 1B
dB

:

Teq ≈
c a

10−4

d Tr
[
ρ2

0
]

σG
=

c a
10−4

dSTrS
[
ρ2

S

]
σG

We’ve found a case in which Teq does not grow with bath
⇒ a lot better than the slow time scale scenario of Teq ∝ d
Moreover, up to constant prefactors, for small systems Teq
scales like the fastest relevant time scale 1

σG
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The search for realistic time scales

System interacting with a thermal bath

So prefactor
(

d Tr
[
ρ2

0
])

does not scale with d for a bath in
the maximally mixed state – i.e. infinite temperature case –
What about the finite temperature case?

By truncating the Hilbert space, we prove that for a bath
with exponential density of states

Teq ≈
c a

10−4

dtrunc Tr
[
ρ2

0
]

σG

dtrunc Tr
[
ρ2

0

]
. dS Tr

[
ρ2

S

]
O

(
exp

[
β‖HS‖+ (1 +

√
2ds)Kβ‖HI‖

])
,

where K controls error in truncating the space

Teq does not scale with size of the bath!

13 / 17
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Truncating the Hilbert space

Take the bath in the microcanonical ensemble:
energy window of width ∆, centered around EB, state

ρmc
0 = ρS ⊗

1
∆
B

d∆
B

Not enough, since we would have

d Tr
[
ρ2

0

]
= Tr

[
ρ2

S

]dSdB

d∆
B

But, one does not need to consider the full Hilbert space...
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ρmc
0 is contained in an energy window of

(
HS + HB

)
.

Including HI can take the state out of the window
Still, one can truncate the Hilbert space to a window of(
HS + HB + HI

)
, with ‖ρmc

t − Πρmc
t Π‖1 ≤ 2

K
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The full result

We now give the full, exact result:〈
D̃A
(
ρmc

t , ωmc)〉
T
≤ c a

dtrunc Tr
[
ρ2

0
]

TσG
+ c δ dtrunc Tr

[
ρ2

0

]
+

18
K 2

For approximately unimodal distributions pα spread over
many values one finds that a ∼ 1 and δ � 1
Finally, Teq can be expressed in terms of {ρ0,A,H} from

1
σG
≤

(
dtrunc Tr

[
ρ2

0
])1/4√∣∣∣Tr

([
[ρ0,H],H

]
A
)∣∣∣
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Conclusion

There exist observables with extremely long equilibration
time scales Teq ∼ d

σE
=⇒ further conditions are needed in order to prove
physically realistic equilibration times
We found conditions over {ρ0,A,H} (more specifically over
pα ∝ |ρjkAkj |) which ensure equilibration time scales that
do not scale with the dimension of the space
future work – can we prove that the conditions hold for
certain class of systems (e.g. spin lattices with local
interactions?)

Thank you!
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EXTRAS - distinguishability

Stricter notion: measurement outcomes {a1, . . . ,aN}, with
associated operatorsM = {M1, . . . ,MN}.
The distinguishability is defined

DM(ρ, σ) =
1
2

N∑
j

∣∣∣Tr
[
ρMj

]
− Tr

[
σMj

]∣∣∣
One can see〈

DM(ρt , ω)
〉

T ≤
√

N
√∑

j

〈
D̃Mj (ρt , ω)

〉
T
.

Each term
〈
D̃Mj (ρt , ω)

〉
T

can be bounded as shown.
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