Dephasing and heat currents in flux qubits

Janine Splettstößer
Samuele Spilla, Fabian Hassler, and Anna Napoli

Applied Quantum Physics, MC2, Chalmers University of Technology
Institute for Theory of Statistical Physics, RWTH Aachen University
Institute for Quantum Information, RWTH Aachen University
Dipartimento di Fisica e Chimica, Università di Palermo

2nd Quantum Thermodynamics Conference, 19-24 April 2015, UIB Campus, Mallorca, Spain
Phase-sensitivity of heat currents in superconducting junctions (flux qubits)

- Introduction
 - Heat currents in superconducting junctions ⇒ Phase-dependence
 - Superconducting qubits: Delft qubit and fluxonium
- Sensitivity of heat currents to the qubit state
- Relate heat current sensitivity to dephasing time
 - Temperature gradients: decoherence due to qubit-state sensitive heat currents (example Delft qubit)
 - Heat currents as a phenomenological tool to study dephasing due to quasiparticle tunneling (example fluxonium)
(Heat) current through a superconducting junction

Josephson current carried by Cooper pairs forming the superconducting condensate:

\[I = I_0 \sin \varphi \]

Heat current carried by quasiparticles:

\[\dot{Q}^\ell = \frac{d}{dt} \langle H_\ell - \mu_\ell N_\ell \rangle = -\frac{i}{\hbar} \langle [H, H_\ell - \mu_\ell N_\ell] \rangle \]

⇒ Phase dependent through Andreev reflection processes.
(Phase-dependent quasiparticle tunneling.)

Phase-dependent heat current carried by quasiparticles

Weak tunneling - perturbative treatment

\[
\dot{Q}(T_1, T_2) = \frac{2}{e^2 R} \int_{|\Delta_{\text{max}}|}^{\infty} d\omega \omega \frac{\omega^2 - |\Delta(T_1)\Delta(T_2)| \cos(\varphi)}{\sqrt{\omega^2 - |\Delta(T_1)|^2} \sqrt{\omega^2 - |\Delta(T_2)|^2}} [f_1(\omega) - f_2(\omega)]
\]

- Pure quasiparticle contribution + interference part
- Temperature dependence enters via gaps and Fermi functions
- Divergent for small temperature gradients

Non-perturbative result, dominated by a weakly bound Andreev state

\[
\dot{Q}(T, \delta T) = - \left[\kappa_0 - \kappa_1 \sin^2 \left(\frac{\varphi}{2} \right) \ln \left(\sin^2 \left(\frac{\varphi}{2} \right) \right) + \kappa_2 \sin^2 \left(\frac{\varphi}{2} \right) \right] \delta T
\]

Measurement of phase-dependent heat currents

- Use the tunability of the superconducting phase in a SQUID.
- Measurement of temperature differences.
 ⇒ Flux-dependent heat current proves Maki’s result.
- Heat currents are coherently tunable.

Flux qubit (Delft design)

Fluxoid quantization

\[\varphi_a - \varphi_b + \varphi_c = -2\pi \frac{\Phi}{\Phi_0} \]

Charging + Josephson energy

\[H = -4E_C \frac{\partial^2}{\partial \varphi^2} + U(\varphi) \]

- Sweet spot at \(f = \frac{\Phi}{\Phi_0} = \frac{1}{2} \): States are degenerate and placed at \(\pm \varphi^* \).
- Small changes in the flux lead to shifts of the minima: \(\delta \varphi \propto \delta f \)
- Approximate well-localized states \(|\psi_L\rangle \) and \(|\psi_R\rangle \) by oscillator states.

Improving the performance: fluxonium

Effective fluxonium Hamiltonian

\[H = -4E_C \frac{\partial^2}{\partial \varphi^2} + \frac{1}{2} E_L \varphi^2 - E_J \cos (\varphi + 2\pi f) \]

with fluxoid quantization \(\varphi = M\varphi_L = -\varphi_b - 2\pi f \)

and effective superinductance

\[E_L = \frac{E_J}{\beta M} = \left(\frac{\Phi_0}{2\pi} \right)^2 \frac{1}{L_{\text{eff}}} \ll E_J \]

Outline

Phase-sensitivity of heat currents in superconducting junctions (flux qubits)

▶ Introduction
 ▶ Heat currents in superconducting junctions ⇒ Phase-dependence
 ▶ Superconducting qubits: Delft qubit and fluxonium

▶ Sensitivity of heat currents to the qubit state

▶ Relate heat current sensitivity to dephasing time
 ▶ Temperature gradients: decoherence due to qubit-state sensitive heat currents (example Delft qubit)
 ▶ Heat currents as a phenomenological tool to study dephasing due to quasiparticle tunneling (example fluxonium)
Qubit arms at different temperatures

Different "quasiparticle baths"

- Quasiparticle coherence length \ll arm length.

Different temperatures

- Heating due to operation.
- Model for non-equilibrium distribution of quasiparticles.

Heat current into different arms:

$$\dot{Q}^l = i \frac{\hbar}{\hbar} \langle [H, H_l - \mu_l N_l] \rangle = \dot{Q}_{qp} - \dot{Q}_{int} (\Delta \varphi)$$
Sensitivity of the heat currents to the qubit state

Expectation value of the heat currents in the two qubit states:

\[
\dot{Q}_L/R = \langle \psi_{L/R} | \dot{Q}_{qp} + \dot{Q}_{\text{int}}(\varphi) | \psi_{L/R} \rangle \\
\propto \dot{Q}_{qp} + \dot{Q}_{\text{int}}(\varphi_{L/R})
\]

- Microscopic details of the junctions in \(\dot{Q} \), qubit properties in \(|\psi_{L/R}\rangle \).

For the Delft qubit:

Sensitivity of the heat current detected in "reservoir" \(\ell \)

\[
s_\ell = \frac{\dot{Q}_R^\ell - \dot{Q}_L^\ell}{\dot{Q}_R^\ell + \dot{Q}_L^\ell}
\]

\[T_1 = 0.1T_{\text{crit}} \]
\[T_2 = 0.1T_{\text{crit}} \]
\[T_3 = 0.3T_{\text{crit}} \]
Sensitivity of the heat currents to the qubit state

- Heat currents are indeed sensitive to the qubit state!
- Approximately linear dependence of s_ℓ on the flux δf.
- No sensitivity at the sweet spot (at $f = 1/2$ qubit states are degenerate and have $\varphi_{R/L} = \pm \varphi^*$).
- What is the impact on / relation to the phase coherence of the qubit?

For the Delft qubit:

Sensitivity of the heat current detected in "reservoir" ℓ

$$s_\ell = \frac{\dot{Q}_R^\ell - \dot{Q}_L^\ell}{\dot{Q}_R^\ell + \dot{Q}_L^\ell}$$

<table>
<thead>
<tr>
<th>T_1</th>
<th>$0.1T_{crit}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_2</td>
<td>$0.1T_{crit}$</td>
</tr>
<tr>
<td>T_3</td>
<td>$0.3T_{crit}$</td>
</tr>
</tbody>
</table>
Toy model for the qubit in contact with quasiparticle baths

State/Phase-dependent coupling takes account for heat current sensitivity!

\[
H_{\text{toy}} = -\frac{\varepsilon}{2}T^3 - \frac{w}{2}T^1 + \sum_{l=1,3} \sum_{k,\sigma} (\varepsilon_l, k - \mu_l) a_{l,k,\sigma}^\dagger a_{l,k,\sigma} \\
+ \sum_{k,q,\sigma} \left[a_{1,k,\sigma}^\dagger a_{3,q,\sigma} (V_0 T^0 + V_3 T^3) + \text{H.c.} \right].
\]

Reproduce the macroscopic thermal current with:

\[
\dot{Q}_{L/R}^{\text{toy}} = \frac{\pi}{\hbar} \int_{-\infty}^{\infty} d\omega \omega (|V_0|^2 \pm |V_3|^2) N_1(\omega) N_2(\omega) [f_1(\omega) - f_2(\omega)]
\]

\[\Rightarrow \text{Extract } V_0(\varphi_L, \varphi_R) \text{ and } V_3(\varphi_L, \varphi_R)!\]
Time-evolution of the qubit-state pseudo-spin

Qubit reduced density matrix:

\[S = \begin{pmatrix}
\rho_{LR} + \rho_{RL} \\
i(\rho_{LR} - \rho_{RL}) \\
\rho_{LL} - \rho_{RR}
\end{pmatrix} \]

Pauli rate equation:

\[\dot{S}(t) = S(t) \times \begin{pmatrix}
(w \approx 0) \\
0 \\
\epsilon
\end{pmatrix} - \frac{1}{\tau_\phi} \begin{pmatrix}
S_1(t) \\
S_2(t)
\end{pmatrix} \]

The phase-sensitive heat current constitutes a measurement process!

\[\rho_{LL}(t) \approx \rho_{LL}(0) \]
\[\rho_{RR}(t) \approx \rho_{RR}(0) \]
\[\rho_{LR}(t) \approx \rho_{LR}(0)e^{-i\epsilon t}e^{-t/\tau_\phi} \]
\[\rho_{RL}(t) \approx \rho_{RL}(0)e^{+i\epsilon t}e^{-t/\tau_\phi} \]

With the dephasing time \(\tau_\phi\)

- Temperature **gradients** leading to heat currents cause decoherence.
- With the study of heat conductances we are able to capture (a part of) the dephasing mechanism due to quasiparticle tunneling.
Outline

Phase-sensitivity of heat currents in superconducting junctions (flux qubits)

- Introduction
 - Heat currents in superconducting junctions ⇒ Phase-dependence
 - Superconducting qubits: Delft qubit and fluxonium

- Sensitivity of heat currents to the qubit state

- Relate heat current sensitivity to dephasing time
 - Temperature gradients: decoherence due to qubit-state sensitive heat currents (example Delft qubit)
 - Heat currents as a phenomenological tool to study dephasing due to quasiparticle tunneling (example fluxonium)
Dephasing of the Delft qubit due to a temperature gradient

- Delft qubit with two different temperatures $T_1 \neq T_2$.
- Large temperature gradient, $\Delta(T_1) \neq \Delta(T_2)$

\[\frac{1}{\tau_\phi} = \frac{4\pi |V_3|^2 N_1^0 N_2^0}{\hbar} \int |\Delta| d\omega \omega^2 \frac{[1 - f_1(\omega)]f_2(\omega) + [1 - f_2(\omega)]f_1(\omega)}{\sqrt{\omega^2 - |\Delta(T_1)|^2} \sqrt{\omega^2 - |\Delta(T_2)|^2}} \]

- Zero dephasing for vanishing phase-sensitivity, $V_3 \approx 0$.
- No dephasing at the sweet spot, where $s = 0$.
- Compare dephasing time to response to temperature gradient

\[d = \frac{\tau_\phi}{|\Delta_{\text{max}}|} \left(\dot{Q}_L - \dot{Q}_R \right) \]
Dephasing times of the Delft qubit

\[d = \frac{\tau_\phi \left(\dot{Q}_L - \dot{Q}_R \right)}{|\Delta_{\text{max}}|} \]

Independent of microscopic details of the device!

For large \(\delta T \), we have \(d \approx 1 \)

Qubit dephases after the time \(\tau_\phi \), which it takes to transfer \(\Delta \) by the heat current difference!
Dephasing times of the Delft qubit

\[d = \frac{\tau_\phi \left(\dot{Q}_L - \dot{Q}_R \right)}{|\Delta_{\text{max}}|} \]

Independent of microscopic details of the device!

For large \(\delta T \), we have \(d \approx 1 \)

Qubit dephases after the time \(\tau_\phi \), which it takes to transfer \(\Delta \) by the heat current difference!

\[\tau_\phi \approx \frac{\Delta}{e^2 R n_{\text{qp}}} \]

\[\tau_\phi \approx 1 \text{ns for } \delta T >> T_{\text{min}} \]

\[\tau_\phi \approx 1 \mu\text{s for } T_{\text{min}} \approx T_{\text{max}} \leq 0.1 T_c \]
Phase-sensitivity of heat currents in superconducting junctions (flux qubits)

- Introduction
 - Heat currents in superconducting junctions ⇒ Phase-dependence
 - Superconducting qubits: Delft qubit and fluxonium

- Sensitivity of heat currents to the qubit state

- Relate heat current sensitivity to dephasing time
 - Temperature gradients: decoherence due to qubit-state sensitive heat currents (example Delft qubit)
 - Heat currents as a phenomenological tool to study dephasing due to quasiparticle tunneling (example fluxonium)
Dephasing of Fluxonium due to quasiparticles

- Small accidental temperature gradients – linear response.
- Heat **conductance** determines the dephasing.
- Heat conductance contains information about quasiparticle occupation and phase-dependent quasiparticle tunneling.
- Phenomenological approach to dephasing!
 J. Leppäkangas and M. Marthaler, Phys. Rev. B 85, 144503 (2012);
- Direct access to the **phase-dependent weak bound state**, dominant at small $T, \delta T$.

Response to small temperature gradients – linear response

$$\dot{Q}(\varphi, T, \delta T) = - \left(\kappa_0 - \kappa_1 \sin^2 \frac{\varphi}{2} \ln \left(\frac{\sin^2 \frac{\varphi}{2}}{2} \right) + \kappa_2 \sin^2 \frac{\varphi}{2} \right) \delta T$$

Dependence on the specific realization of the superinductance

Role of the superinductance for the dephasing? \((E_L = E_J / \beta M)\)

Total heat current into one "reservoir":

\[
\dot{Q} = \dot{Q}(-\varphi_b, T, \delta T) + \dot{Q}(\varphi_M, T_M, \delta T / M),
\]

Sensitivity does not depend on \(M\) or \(\beta\) separately:

- Only second part of \(\dot{Q}\) can depend on \(M\) or \(\beta\).
- \(\varphi_M = -(\varphi_b + 2\pi f) / M\) is very small \(\Rightarrow\) only \(\kappa_M^0\) contributes.
- \(\kappa_0^M\) is independent of the qubit state.
- Contribution to \(s = \dot{Q}_L - \dot{Q}_R\):
 \(\kappa_0^M \delta T / M + \kappa_0^b \delta T\) is independent of \(M\) or \(\beta\) and only depends on \(E_L\).

Response to small temperature gradients – linear response

\[
\dot{Q}(\varphi, T, \delta T) = -\left(\kappa_0 - \kappa_1 \sin^2 \frac{\varphi}{2} \ln \left(\sin^2 \frac{\varphi}{2}\right) + \kappa_2 \sin^2 \frac{\varphi}{2}\right) \delta T
\]

Sensitivity/Dephasing in the fluxonium limit $E_L \ll E_J$

Sensitivity suppressed with E_L/E_J

$$s \approx 2 \frac{\kappa_1}{\kappa_0} \left(\frac{\pi E_L}{E_J} \right)^2 \ln \left(\frac{\pi E_L}{2E_J} \right) \delta f$$

- Allows for large number of operations with $\tau_\phi \propto s^{-1}$.
- for $k_B T \leq 0.15 \Delta$, more than 10^4 operations.

Response to small temperature gradients – linear response

$$\dot{Q}(\varphi, T, \delta T) = - \left(\kappa_0 - \kappa_1 \sin^2 \frac{\varphi}{2} \ln \left(\sin^2 \frac{\varphi}{2} \right) + \kappa_2 \sin^2 \frac{\varphi}{2} \right) \delta T$$

Conclusions

- Heat currents through superconducting junctions are phase-dependent.
- Heat currents in superconducting qubits are sensitive to the qubit state.
- Temperature gradients lead to dephasing in flux qubits due to quasiparticles.
- Dephasing times can become of the order of the actual, known limitations (Delft qubit).
- Study of the heat conductance for vanishing δT is a powerful and insightful phenomenological approach to dephasing due to quasiparticle tunneling.
- Fluxonium is well protected against this mechanism due to the superinductance!