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Overview

* The optimal unitary operator for probabilistic
information erasure

 Examples: Maximally erasing a qubit with no a
priori information

e Self-consistent Information erasure “beyond
Landauer”



THE OPTIMAL UNITARY OPERATOR FOR
PROBABILISTIC INFORMATION ERASURE



Information erasure as purification

_ Classical Physics Quantum Physics

Information erasure Many-to-one mapping on Many-to-one mapping on
configuration space Hilbert space
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e These lower bounds are reachable for some physical setting, but not all



The physical setting

Reservoir has the Hamiltonian Hz

Object and reservoir initially uncorrelated p = po ® pr(5)
Global unitary on system p — UpUT =: o/

Heat dissipation in reservoir: AQ = tr|[Hg (0% — pr(5))]



Maximising the probability of
information erasure
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e All probability sets, such as {p, },, are decreasing sets
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Minimising the heat dissipation
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e For arbitrary decreasing set {p), }m, tr|[Hrp%] is minimised
when, for all m, £, .) = |&n)

e To minimise tr[Hg p' ], we must majorise {p,, }m

e Forallme{l,...,d},ne{(m—1)do +1,...,mdop},
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Minimising the heat dissipation for
maximal information erasure
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Trade-off between probability of
information erasure and heat dissipation

e Require that p(p1]pp) = pg™ — 0 for § € [0, p3™ — q1]

e Optimal case: Uly,) = > . al'|pi) @ |&;)

e Entanglement increases entropy, so best when U |,,)
are separable

e For an increasing set {J;};, with decreasing set {AQ;};,
swap subset of Il with those of II,,>1, and permute
them to preserve ordering structure

e To allow for continuous 0, replace SWAP with SWAP,,

SWAP. - 1) @ [€a—i) = VI =7 |01) @ [€a—i) + VT [0141) @ [€m)
T o) @ [€m) = VA le1) @ 1€ami) — VI = 7 |@is1) @ [€m)
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Effect of energy conserving, Markovian
dephasing
e Hamiltonian cycle Hp + Hr = H1 = Ho + Hp,

[J = e—?lTH1

o A() is the energy lost from a battery as a result of U
e System with dephasing with respect to the eigenbasis of Hi:

Y = ™4
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e Environment does not exchange energy with system
—> A can still be interpreted as energy lost from a battery



EXAMPLES: MAXIMALLY ERASING A
QUBIT WITH NO A PRIORI
INFORMATION



The set-up

Ho ~C? |, po=3lo

Consider two reservoir types: a spin chain of length N,
and a d-dimensional subspace of a harmonic oscillator

In each case we evaluate pi™ and
1 2(AS)? )
AL :=AQ — — | AS +
@ /6( log®(d — 1) + 4

Also, we consider the effect of energy-conserving,
Markovian dephasing



Example 1: Reservoir as a spin chain
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Example 2: Reservoir as d lowest
energy levels of a single-mode
harmonic oscillator of frequency w
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e Optimal case when spectrum of harmonic oscillator is
approximately continuous



Comparison between two models:
Unitary case

harmonic oscillator spin chain
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e In the unitary case, spin chain out-performs harmonic oscillator:
(N=11,J=03=1,06=0.25) = poi* ~ 1 and AL =~ 0.12

while

(d=2"8=1,w=01) = pP> ~1and AL ~0.29



Comparison between two models:

dephasing case

h6armonic oscillator
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SELF-CONSISTENT INFORMATION
ERASURE “BEYOND LANDAUER”



Change the conceptual framework

e Concepts to retain: Hamiltonian cycles. Temperature and
hence thermal states

e Concepts to abandon:

e Unitary evolution

— Generalised evolution

and/ or

e Object initially uncorrelated with thermal reservoir
— Object initially a subsystem of a thermal state



Object, auxiliary and reservoir

p=pito  pr(B)

UeL(Ha®@Ho @ HR)

If rank of p41o < d 4, full erasure without using reservoir

This is achieved for states with no correlations,
classical correlations, quantum discord, and pure entanglement

Classical correlation = p’; left the same, but this cannot be
used as a catalyst using same U each time

Pure entanglement —> A also purified which can be
used to cool R, as shown in Nature 474, 61-63 (2011)



Object as subsystem of reservoir
dodx dodx

H e L(Ho ®Hi) = Z Aal€n)(Enl  p(B) = D palén)(&nl
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e Maximal information erasure when U |€,) = |U) & |¢;)
for the dix largest probabilities p,
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e Minimise AQ by majorising {q" }.,
— as {U|£,) 9%, are product vectors,

n=1
then {|£,)}%< | must be product vectors also
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e v is the Schmidt coefficient of {|£,,)}n

e As v — 1, the vectors {|&,)},. become separable

e In this limit, when 8 ~ 1, AQ — AS/ becomes negative,

thereby “violating” Landauer’s limit



Conclusions

Determined the unitary operator that purifies an object with a desired
probability, with the minimal consequent heat dissipation

For a reservoir composed of a harmonic oscillator, minimal heat
dissipation of full qubit erasure is the thermal energy of the reservoir,
achieved when the frequency becomes vanishingly small.

For a reservoir composed of a spin chain of length N, can achieve the
same probability of qubit erasure as with a harmonic oscillator, but with a
smaller heat cost.

Harmonic oscillator most robust to dephasing when it is “like” a spin chain

Enumerated two alterations to the set-up of information erasure so as to
dissipate less heat than required by Landauer’s principle, but in such a way
that we do not make a category error regarding heat and temperature.
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