Minimising the heat dissipation of information erasure

M. Hamed Mohammady, M. Mohseni, Y. Omar

Physics of Information Group, Instituto de Telecomunicacoes

Second Quantum Thermodynamics Conference Palma de Mallorca, 24th April 2015

To appear soon on arXiv

Overview

• The optimal unitary operator for probabilistic information erasure

• Examples: Maximally erasing a qubit with no a priori information

 Self-consistent Information erasure "beyond Landauer"

THE OPTIMAL UNITARY OPERATOR FOR PROBABILISTIC INFORMATION ERASURE

Information erasure as purification

	Classical Physics	Quantum Physics
Information erasure	Many-to-one mapping on configuration space $\Omega\mapsto\omega_1$	Many-to-one mapping on Hilbert space $\mathcal{H}\mapsto arphi_1 angle$
Landauer's limit	$\beta \Delta Q \geqslant \Delta S$	$\beta \Delta Q \geqslant \Delta S + \frac{2(\Delta S)^2}{\log^2(d-1)+4}$ NJP vol. 16, no. 10, p. 103011, 2014

• These lower bounds are reachable for *some* physical setting, but not all

The physical setting

- Reservoir has the Hamiltonian $H_{\mathcal{R}}$
- Object and reservoir initially uncorrelated $\rho = \rho_{\mathcal{O}} \otimes \rho_{\mathcal{R}}(\beta)$
- Global unitary on system $\rho \mapsto U \rho U^{\dagger} =: \rho'$
- Heat dissipation in reservoir: $\Delta Q := \operatorname{tr}[H_{\mathcal{R}}(\rho_{\mathcal{R}}' \rho_{\mathcal{R}}(\beta))]$

Maximising the probability of information erasure

$$\rho_{\mathcal{O}} = \sum_{l=1}^{d_{\mathcal{O}}} q_l |\varphi_l\rangle \langle \varphi_l | , \ \rho_{\mathcal{R}}(\beta) = \sum_{m=1}^{d} p_m |\xi_m\rangle \langle \xi_m |$$

$$\rho = \sum_{l,m} q_l p_m |\varphi_l\rangle \langle \varphi_l | \otimes |\xi_m\rangle \langle \xi_m | \equiv \sum_{n=1}^{d_{\mathcal{O}}d} \tilde{p}_n |\psi_n\rangle \langle \psi_n |$$

• All probability sets, such as $\{\tilde{p}_n\}_n$, are decreasing sets

$$p(\varphi_1|\rho_{\mathcal{O}}') := \sum_{n=1}^{d_{\mathcal{O}}d} \tilde{p}_n \langle \psi_n | U^{\dagger}(|\varphi_1\rangle \langle \varphi_1| \otimes \mathbb{1}_{\mathcal{R}}) U | \psi_n \rangle \leqslant \sum_{m=1}^{d} \tilde{p}_m$$

• $p_{\varphi_1}^{\max}$ when for all $m \in \{1, \ldots, d\}$, $U |\psi_m\rangle = |\varphi_1\rangle \otimes |\xi'_m\rangle$

Minimising the heat dissipation

$$\rho_{\mathcal{R}}' = \sum_{m=1}^{d} p_m' |\xi_m'\rangle \langle \xi_m'|, \quad \operatorname{tr}[H_{\mathcal{R}}\rho_{\mathcal{R}}'] = \sum_{m=1}^{d} p_m' \langle \xi_m' | H_{\mathcal{R}} |\xi_m'\rangle$$

- For arbitrary decreasing set $\{p'_m\}_m$, $\operatorname{tr}[H_{\mathcal{R}}\rho'_{\mathcal{R}}]$ is minimised when, for all m, $|\xi'_m\rangle = |\xi_m\rangle$
- To minimise $\operatorname{tr}[H_{\mathcal{R}}\rho'_{\mathcal{R}}]$, we must majorise $\{p'_m\}_m$

• For all
$$m \in \{1, \ldots, d\}, n \in \{(m-1)d_{\mathcal{O}} + 1, \ldots, md_{\mathcal{O}}\}, U|\psi_n\rangle = |\varphi_l^m\rangle \otimes |\xi_m\rangle$$

Minimising the heat dissipation for maximal information erasure

Trade-off between probability of information erasure and heat dissipation

- Require that $p(\varphi_1|\rho'_{\mathcal{O}}) \ge p_{\varphi_1}^{\max} \delta$ for $\delta \in [0, p_{\varphi_1}^{\max} q_1]$
- Optimal case: $U|\psi_n\rangle = \sum_i \alpha_i^n |\phi_i\rangle \otimes |\xi_i\rangle$
- Entanglement increases entropy, so best when $U|\psi_n\rangle$ are separable
- For an increasing set $\{\delta_j\}_j$, with decreasing set $\{\Delta Q_j\}_j$, swap subset of Π_0 with those of $\Pi_{m \ge 1}$, and permute them to preserve ordering structure
- To allow for continuous δ , replace SWAP with SWAP_{γ} SWAP_{γ} : $\begin{cases} |\varphi_1\rangle \otimes |\xi_{d-i}\rangle \mapsto \sqrt{1-\gamma} |\varphi_1\rangle \otimes |\xi_{d-i}\rangle + \sqrt{\gamma} |\varphi_{l+1}\rangle \otimes |\xi_m\rangle, \\ |\varphi_{l+1}\rangle \otimes |\xi_m\rangle \mapsto \sqrt{\gamma} |\varphi_1\rangle \otimes |\xi_{d-i}\rangle - \sqrt{1-\gamma} |\varphi_{l+1}\rangle \otimes |\xi_m\rangle, \end{cases}$

Effect of energy conserving, Markovian dephasing

• Hamiltonian cycle $H_{\mathcal{O}} + H_{\mathcal{R}} \Rightarrow H_1 \Rightarrow H_{\mathcal{O}} + H_{\mathcal{R}}$

$$U = e^{-i\tau H_1}$$

- ΔQ is the energy lost from a battery as a result of U
- System with dephasing with respect to the eigenbasis of H_1 : $\mathcal{V} = e^{\tau \mathscr{L}_1}$

$$\mathscr{L}_1: \rho \mapsto i[\rho, H_1]_- + \Gamma \sum_{n=1}^{d_{\mathcal{O}}d} \left(|\phi_n^1\rangle \langle \phi_n^1|\rho|\phi_n^1\rangle \langle \phi_n^1| - \frac{1}{2}[\rho, |\phi_n^1\rangle \langle \phi_n^1|]_+ \right)$$

• Environment does not exchange energy with system $\implies \Delta Q$ can still be interpreted as energy lost from a battery

EXAMPLES: MAXIMALLY ERASING A QUBIT WITH NO A PRIORI INFORMATION

The set-up

- $\mathcal{H}_{\mathcal{O}} \simeq \mathbb{C}^2$, $\rho_{\mathcal{O}} = \frac{1}{2} \mathbb{1}_{\mathcal{O}}$
- Consider two reservoir types: a spin chain of length N, and a d-dimensional subspace of a harmonic oscillator
- In each case we evaluate $p_{\varphi_1}^{\max}$ and

$$\Delta L := \Delta Q - \frac{1}{\beta} \left(\Delta S + \frac{2(\Delta S)^2}{\log^2(d-1) + 4} \right)$$

• Also, we consider the effect of energy-conserving, Markovian dephasing

Example 1: Reservoir as a spin chain

Example 2: Reservoir as d lowest energy levels of a single-mode harmonic oscillator of frequency ω

• Optimal case when spectrum of harmonic oscillator is approximately continuous

Comparison between two models: Unitary case

• In the unitary case, spin chain out-performs harmonic oscillator: $(N = 11, J = \beta = 1, \Theta = 0.25) \implies p_{\varphi_1}^{\max} \approx 1 \text{ and } \Delta L \approx 0.12$ while

$$(d = 2^{11}, \beta = 1, \omega = 0.1) \implies p_{\varphi_1}^{\max} \approx 1 \text{ and } \Delta L \approx 0.29$$

Comparison between two models: dephasing case

SELF-CONSISTENT INFORMATION ERASURE "BEYOND LANDAUER"

Change the conceptual framework

• Concepts to retain: Hamiltonian cycles. Temperature and hence thermal states

- Concepts to abandon:
 - Unitary evolution \rightarrow Generalised evolution
 - and/ or
 - Object initially uncorrelated with thermal reservoir \rightarrow Object initially a subsystem of a thermal state

Object, auxiliary and reservoir

 $\rho = \rho_{\mathcal{A} + \mathcal{O}} \otimes \rho_{\mathcal{R}}(\beta)$

 $U \in \mathcal{L}(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{O}} \otimes \mathcal{H}_{\mathcal{R}})$

- If rank of $\rho_{\mathcal{A}+\mathcal{O}} \leq d_{\mathcal{A}}$, full erasure without using reservoir
- This is achieved for states with no correlations, classical correlations, quantum discord, and pure entanglement
- Classical correlation $\implies \rho'_{\mathcal{A}}$ left the same, but this cannot be used as a catalyst using same U each time
- Pure entanglement $\implies \mathcal{A}$ also purified which can be used to cool \mathcal{R} , as shown in Nature 474, 61-63 (2011)

Object as subsystem of reservoir

$$H \in \mathcal{L}(\mathcal{H}_{\mathcal{O}} \otimes \mathcal{H}_{\mathcal{K}}) = \sum_{n=1}^{d_{\mathcal{O}}d_{\mathcal{K}}} \lambda_n |\xi_n\rangle \langle \xi_n | \qquad \rho(\beta) = \sum_{n=1}^{d_{\mathcal{O}}d_{\mathcal{K}}} p_n |\xi_n\rangle \langle \xi_n |$$

• Maximal information erasure when $U |\xi_n\rangle = |\Psi\rangle \otimes |\phi_j\rangle$ for the $d_{\mathcal{K}}$ largest probabilities p_n

$$\beta \Delta Q = S(\rho'||\rho(\beta)) = \sum_{n=1}^{d_{\mathcal{O}}d_{\mathcal{K}}} q_n^U \log\left(\frac{1}{p_n}\right) - S(\rho')$$
$$q_n^U := \sum_{m=1}^{d_{\mathcal{O}}d_{\mathcal{K}}} p_m |\langle \xi_m | U | \xi_n \rangle|^2$$

• Minimise ΔQ by majorising $\{q_n^U\}_n$ \implies as $\{U | \xi_n \rangle\}_{n=1}^{d_{\mathcal{K}}}$ are product vectors, then $\{|\xi_n \rangle\}_{n=1}^{d_{\mathcal{K}}}$ must be product vectors also

• γ is the Schmidt coefficient of $\{|\xi_n\rangle\}_n$

- As $\gamma \to 1$, the vectors $\{|\xi_n\rangle\}_n$ become separable
- In this limit, when $\beta \sim 1$, $\Delta Q \Delta S/\beta$ becomes negative, thereby "violating" Landauer's limit

Conclusions

- Determined the unitary operator that purifies an object with a desired probability, with the minimal consequent heat dissipation
- For a reservoir composed of a harmonic oscillator, minimal heat dissipation of full qubit erasure is the thermal energy of the reservoir, achieved when the frequency becomes vanishingly small.
- For a reservoir composed of a spin chain of length N, can achieve the same probability of qubit erasure as with a harmonic oscillator, but with a smaller heat cost.
- Harmonic oscillator most robust to dephasing when it is "like" a spin chain
- Enumerated two alterations to the set-up of information erasure so as to dissipate less heat than required by Landauer's principle, but in such a way that we do not make a category error regarding heat and temperature.

Acknowledgements

M. H. M, and Y. O. thank the support from Fundacao para a Ciencia e a Tecnologia (Portugal), namely through programmes PTDC/POPH and projects PEst-OE/EGE/UI0491/2013, PEst-OE/EEI/LA0008/2013, UID/EEA/50008/2013, IT/QuSim and CRUP-CPU/CQVibes, partially funded by EU FEDER, and from the EU FP7 projects LANDAUER (GA 318287) and PAPETS (GA 323901). Furthermore MHM acknowledges the support from the EU FP7 Marie Curie Fellowship (GA 628912).