QUANTUM FLUCTUATIONS IN TYPE I OPO ABOVE THRESHOLD

R.Zambrini P.Colet M.San Miguel

S.Barnett

study <u>OUANTUM</u> <u>NON-LINEAR</u> correlations in optical patterns in type I OPO

When linearizing is acceptable?

V STABLE STEADY STATE and "small" fluctuations

×NEAR THRESHOLD: critical fluctuations

AIM:

×CONVECTIVE REGIME (walk-off): macroscopic amplified fluctuations

➤ PATTERN (walk-off): PHASE-AMPLITUDE and MULTIMODE COUPLINGS

× Spatial structures breaking translational invariance (large phase fluctuations)

Model

Type I phase matching

OPO

Classical equations

$$\partial_{t}A_{0} = \gamma_{0} \left[-(1 + i\Delta_{0})A_{0} + E_{0} + ia_{0}\nabla^{2}A_{0} + 2igA_{1}^{2} \right] + \sqrt{\varepsilon_{0}} \xi_{0}(\mathbf{r}, t)$$

$$\partial_{t}A_{1} = \gamma_{1} \left[-(1 + i\Delta_{1})A_{1} + \sqrt{\partial_{y}}A_{y} + ia_{1}\nabla^{2}A_{1} + igA_{1}^{*}A_{0} \right] + \sqrt{\varepsilon_{1}} \xi_{1}(\mathbf{r}, t)$$

paraxial, slowly varying, single mode and mean field approximations

 ∇^2 transverse Laplacian Γ_i cavity decay rates a_i diffraction coeff. g nonlinear coeff.

- signal detuning $\Delta_1 < 0$
- input > signal generation threshold

OUTLINE

PART 1 Type I O PO with walk-off

- Instability regimes.
- Two schemes featuring nonlinear Langevin equations.
- Quantum fluctuations and correlations at <u>threshold</u> and in the <u>convective</u> regime.
- Symmetry breaking effects on twin beams.

PART 2 Type I O PO without walk-off

- Quantum correlations below and at threshold
- Twin beams in multimode patterns.
- Twin beams in disordered structures.

Stability in presence of walk-off: 3 dynamical regimes

Absolutely Stable

Perturbation decays. Regime of Quantum Images

Absolutely unstable

Perturbation spreads faster than advection velocity

Convectively Unstable

Perturbation spreads slower than advection velocity NOISE SUSTAINED PATTERNS

M.Santagiustina & al., PRL, 79, 3633 (1997)

noise sustained pattern

Supercoustanpump

noise needed at all times noise amplification

MACROSCOPIC QUANTUM FLUCTUATIONS around unstable reference state

Quantum description of the convective regime $\hat{H}_{f} = \hbar \int d^{2}\vec{x} \left[\gamma_{0} \hat{A}_{0}^{+} \left(\Delta_{0} - a_{0} \nabla^{2} \right) \hat{A}_{0} + \gamma_{1} \hat{A}_{1}^{+} \left(\Delta_{1} - a_{1} \nabla^{2} + i \nu \partial_{y} \right) \hat{A}_{1} \right]$ $\hat{H}_{ext} = i\hbar \int d^2 x (E_0 \hat{A}_0^+ - E_0^* \hat{A}_0^-)$ Hamiltonian $\hat{H}_{int} = i\hbar \frac{g}{2} \int d^2 x \left[\hat{A}_0 \left(\hat{A}_1^+ \right)^2 - \hat{A}_0^+ \hat{A}_1^2 \right]$ Heisenberg $\partial_{t} \hat{A}_{0} = -\gamma_{0} (1 + i\Delta_{0} - ia_{0}\nabla^{2})\hat{A}_{0} + E_{0} - \frac{g}{2}\hat{A}_{1}^{2} + \hat{F}_{0}$ equations $\partial_{t} \hat{A}_{1} = -\gamma_{1} (1 + i\Delta_{1} - ia_{1}\nabla^{2} - v\partial_{y})\hat{A}_{1} + g\hat{A}_{0}\hat{A}_{1}^{+} + \hat{F}_{1}$ $\left[\hat{F}_{j}(\vec{x},t), \hat{F}_{k}^{+}(\vec{x}',t')\right] = \delta_{jk} 2\gamma_{j}\delta(\vec{x}-\vec{x}')\delta(t-t')$ Problems in phase space description: W, P, P_{\perp} , Q Linearization not useful: fluctuations amplified from an unstable state Two proposals of **NONLINEAR** approximations:

• time dependent parametric approximation (W-representation)

• Langevin equations in the *Q*-representation

OUTLINE

PART 1 Type I O PO with walk-off

- Instability regimes.
- Two schemes featuring nonlinear Langevin equations.
- Quantum fluctuations and correlations at <u>threshold</u> and in the <u>convective</u> regime.
- Symmetry breaking effects on twin beams.

PART 2 Type I O PO without walk-off

- Quantum correlations below and at threshold
- Twin beams in multimode patterns.
- Twin beams in disordered structures.

Time dependent parametric approximation

Convective regime:

amplification of quantum noise in signal field

macroscopic stable pump

approximation

Â₀ A₀ classical macroscopic pump field
Then H^{eff} quadratic Hamiltonian for the operator Â₁
Functional Fokker-Planck equation for W
partial differential Langevin equation for the signal

$$\partial_{t} \alpha_{1} = -\gamma_{1} \left(1 + i\Delta_{1} - ia_{1}\nabla^{2} - \nu\partial_{y} \right) \alpha_{1} + gA_{0}\alpha_{1}^{*} + \sqrt{\gamma_{1}} \xi(\vec{x}, t)$$

$$Heisenberg equation for the pump \hat{A}_{0}$$

$$\cdot F_{0} = 0$$

$$\cdot \hat{A}_{1}^{2} \longrightarrow \alpha_{1}^{2} \text{ c-number field}$$

$$\partial_{t} A_{0} = -\gamma_{0} \left(1 + i\Delta_{0} - ia_{0}\nabla^{2} \right) A_{0} + E_{0} - \frac{g}{2}\alpha_{1}^{2}$$

Mean value = expectation value of Heisenberg equation

Q-representation

Functional derivative equation for $Q(\alpha_0,\alpha_1)$

$$\frac{\partial Q}{\partial t} = \left[-\left(\frac{\delta}{\delta\alpha_{i}} V_{i} + c.c.\right) - \frac{g}{2} \left(\alpha_{0} \frac{\delta^{2}}{\delta\alpha_{1}^{2}} + c.c.\right) + 2\gamma_{i} \frac{\delta^{2}}{\delta\alpha_{i}\delta\alpha_{i}^{*}} \right] Q$$

$$V_{0} = -\gamma_{0} \left(1 + i\Delta_{0} - ia_{0}\nabla^{2}\right) \alpha_{0} + E_{0} - \frac{g}{2}\alpha_{1}^{2}$$

$$V_{1} = -\gamma_{1} \left(1 + i\Delta_{1} - v\partial_{y} - ia_{1}\nabla^{2}\right) \alpha_{1} + g\alpha_{0}\alpha_{1}^{*} \right] drift$$

$$\left|\alpha_{0}\right| < 2\frac{\gamma_{1}}{g} = 2\left|\alpha_{0}^{\text{thr}}\right| \qquad D>0$$
partial differential Langevin equations
$$\partial_{1}\alpha_{0} = V_{0} \left(\alpha_{0}, \alpha_{1}\right) + \sqrt{2\gamma_{0}}\xi_{0} \left(\vec{x}, t\right)$$

$$\partial_{1}\alpha_{1} = V_{1} \left(\alpha_{0}, \alpha_{1}\right) + \sqrt{2\gamma_{1}}\xi_{1} \left(\vec{x}, t\right)$$

$$\frac{\langle \xi_{0}(\vec{x},t)\xi_{0}^{*}(\vec{x},t) \rangle = \delta(\vec{x} - \vec{x}')\delta(t - t')}{\langle \xi_{1}(\vec{x},t)\xi_{1}(\vec{x}',t') \rangle = -\frac{g}{2\gamma_{1}}\alpha_{0}(\vec{x},t)\delta(\vec{x} - \vec{x}')\delta(t - t')}$$

OUTLINE

PART 1 Type I O PO with walk-off

- Instability regimes.
- Two schemes featuring nonlinear Langevin equations.
- Quantum fluctuations and correlations at <u>threshold</u> and in the <u>convective</u> regime (TDPA).
- Symmetry breaking effects on twin beams.

PART 2 Type I O PO without walk-off

- Quantum correlations below and at threshold
- Twin beams in multimode patterns.
- Twin beams in disordered structures.

time

From TRAJECTORIES to probability DISTRIBUTIONS

$W(\alpha_1(\mathbf{k})+\alpha_1(\mathbf{-k}))$

precursors of peaks above threshold

NON GAUSSIAN DISTRIBUTION nonlinear regime

NONLINEAR QUANTUM CORRELATIONS AT THRESHOLD

Squeezing in quadratures of FF modes

• <u>Linear</u> model: divergence of fluctuations in unsqueezed quadratures $(\sim A_0/(A_0-1))$

• Near field correlations in quadratures

 $\langle : \operatorname{Re}(\alpha_1(\vec{x})) \operatorname{Re}(\alpha_1(\vec{x}')) : \rangle$

Finite amplitude
 of oscillations

Critical behavior

good agreement with linear analytical results below thr.

NONLINEAR QUANTUM CORRELATIONS in CONVECTIVE REGIME (1< E₀/E_{thr} <1.035)

very near to threshold ($E_0/E_{thr} \approx 1.001$) Gaussian fluctuations:

- squeezing in quadratures below S.N. $\langle :(\operatorname{Re}[\alpha_1(k_c) \alpha_1(-k_c)])^2 : \rangle = -0.5 \, \text{S.N.}$
- twin beams perfect intensity correlations $\langle :(\delta \hat{N}_1(k_c) \delta \hat{N}_1(-k_c))^2 : \rangle \cong -0.5 \text{ s.n.}$

E₀/E_{thr}~1.01 <u>NONLINEAR</u> MACROSCOPIC FLUCTUATIONS Squeezing of macroscopic non Gaussian fluctuations, but <u>not</u> below S.N. distributions classical correlations $\left\langle \operatorname{Re}\left\{ \left[\alpha_{1}(k_{c}) - \alpha_{1}(-k_{c}) \right] e^{i\theta} \right\} \right\rangle^{2} : \right\rangle > 0 \\ \left\langle : \left(\delta \hat{N}_{1}(k_{c}) - \delta \hat{N}_{1}(-k_{c}) \right)^{2} : \right\rangle > 0$

50

OUTLINE

PART 1 Type I O PO with walk-off

- Instability regimes.
- Two schemes featuring nonlinear Langevin equations.
- Quantum fluctuations and correlations at <u>threshold</u> and in the <u>convective</u> regime.
- Symmetry breaking effects on twin beams
- PART 2 Type I O PO without walk-off
- Quantum correlations below and at threshold
- Twin beams in multimode patterns.
- Twin beams in disordered structures.

SYMMETRY BREAKING EFFECTS Transverse walk-off - conserves momentum (translational invariance) - breaks the FF reflection symmetry $k \leftarrow \rightarrow - k$

questions: Spatial <u>twin</u> beams in presence of walk-off? $N_1(k_c) = N_1(-k_c)$?

A bsolutely stable regime with walk-off (flat pump)

Linearized problem around the steady state below thr. $H_{int}^{L} = i\hbar \frac{g}{2} \int dk \left[A_{0}^{st} \hat{A}_{1}^{+}(k) \hat{A}_{1}^{+}(-k) - h.c. \right] \\ \left[H_{int}^{L}, N_{1}(k_{c}) - N_{1}(-k_{c}) \right] = 0$ Twin beams in the linear regime

Non-linear <u>3 MODES</u> interaction

$$H_{int}^{L} = i\hbar \frac{g}{2} [\hat{A}_{0}(0)\hat{A}_{1}^{+}(k_{c})\hat{A}_{1}^{+}(-k_{c}) - h.c.] \\ \left[H_{int}^{(3)}, N_{1}(k_{c}) - N_{1}(-k_{c})\right] = 0$$

Momentum conservation: twin beams

Non-linear <u>5 MODES</u> interaction

$$\begin{array}{c} H_{int}^{(5)} \left(\hat{A}_{0}(0), \hat{A}_{1}(\pm k_{c}), \hat{A}_{0}(\pm 2k_{c}) \right) \\ H_{int}^{(5)}, N_{1}(k_{c}) - N_{1}(-k_{c}) \right] \neq 0 \\ \text{if } A_{i}(k) = A_{i}(-k) \text{ then } [,] = 0 \end{array}$$

Dependence on $A_i(k)$ and $A_i(-k)$: different for the broken symmetry!

walk-off

not a constant of motion

 $N_1(k_c) - N_1(-k_c)$

Numerical result: $N_1(k_c) \ge N_1(-k_c)$ depending on the sign of walk-off

$\begin{array}{c} 3 \text{ modes} \\ \hline 0 & \sqrt{k} \\ 2 & 0 \\ \hline 0 & \sqrt{k} \\ 2 & 0 \\ \hline 0 & \sqrt{k} \\ 2 & 0 \\ \hline 0 & \sqrt{k} \\ \hline 0 & \sqrt{k} \\ 2 & 0 \\ \hline 0 & \sqrt{k} \\ 0 & \sqrt{k$

Conservation of the total transversal momentum $\int dk [N_0(k) + N_1(k)] k$

Twin beams correlations in non equivalent beams: one beam is more intense and more noisy, but the intensity difference is sub-Poissonian

 $\left\langle :(\delta \hat{N}_{1}(k_{c}) - \delta \hat{N}_{1}(-k_{c}))^{2}: \right\rangle \simeq -6$ $\overline{S.N.(k_c)}$

OUTLINE

PART 1 Type I O PO with walk-off

- Instability regimes.
- Two schemes featuring nonlinear Langevin equations.
- Quantum fluctuations and correlations at <u>threshold</u> and in the <u>convective</u> regime.
- Symmetry breaking effects on twin beams.

PART 2 Type I O PO without walk-off

- Quantum correlations below and at threshold
- Twin beams in multimode patterns.
- Twin beams in disordered structures.

Type I OPO with vanishing walk-off Model: Iarge range

Q-representation $|\alpha_0| < 2 \frac{\gamma_1}{q} = 2 |\alpha_0^{thr}|$ D>0

partial differential Langevin equations

$$\partial_{t} \alpha_{0} = -\left[\left(1 + i\Delta_{0}\right) - i\nabla^{2}\right] \alpha_{0} + E_{0} - \frac{1}{2}\alpha_{1}^{2} + \sqrt{\frac{2}{\sqrt{a}}}\frac{g}{\gamma}\xi_{0}(x,t)$$

$$\partial_{t}\alpha_{1} = -\left[\left(1 + i\Delta_{1}\right) - 2i\nabla^{2}\right] \alpha_{1} + \alpha_{0}\alpha_{1}^{*} + \sqrt{\frac{2}{\sqrt{a}}}\frac{g}{\gamma}\xi_{1}(x,t)$$

vanishing walk-off !

phase sensitive multiplicative noise depending on α_0

of validity !

AIM: study of the FF spatial twin beams correlations from below threshold to 1.5E_{thr} – stripe patterns(harmonics), frozen chaos –

Below threshold $(0.999E_{thr})$

time

time

Quadrature and twin beams correlations below threshold can be analytically calculated within linear approximation.

At threshold (E_{thr})

Linear approximations fail in predicting correlations of undamped quantities. NONLINEAR calculations of critical fluctuations correlations.

Squeezed quadrature A greement with analytical linear results

<:(X_(k_))²:>/N,

1010

108

108

10

102

Unsqueezed quadrature:agreement below threshold Divergence at threshold in linear treatment. Nonlinear saturation at threshold: finite variance!

a.90 b.92 b.94 b.96 b.98 f.00 E Intensity correlations $\frac{\langle :(\delta \hat{N}_1(k_c) - \delta \hat{N}_1(-k_c))^2 : \rangle}{S.N.(k_c)} \cong -0.5$ **Twin beams correlations crossing the threshold**

-Nonlinear processes of harmonics generation. Twin beams in multimode interaction? No momentum conservation constraint.

20,-21

0.-k

2ω,0

 $\left\langle :(\delta \hat{N}_1(k_c) - \delta \hat{N}_1(-k_c))^2 : \right\rangle$

S.N.(k_c) -0.30 -0.40 -0.50 -0.60 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Twin beams correlations between the critical modes survive in multimode interactions!

Incoherent

depletion?

Secondary processes

Generation of the spatial third harmonic in the signal

Reduction of the twin beams correlations for the third harmonic ±3k_c

Further above threshold $(1.5E_{thr})$

0.0

00

2 homogeneous stable solutions connected by fronts with oscillatory tails

Twin beams in a disordered structure

bandwidth •

 dependence on selected spatial structure (ex: from rolls, step)

Summary

• Proposal of two new methods (TDPA and Q-representation) to describe nonlinear quantum fluctuations in OPO.

Type I OPO with walk-off (TDPA method) :

- Quantum correlations of critical fluctuations at threshold.
- Convective regime, patterns sustained by quantum noise:
 - nongaussian Wigner distribution;

- intensity and quadrature correlations degraded when fluctuations are <u>macroscopic</u>: classical correlations.

• Symmetry breaking effects due to walk-off in multimode patterns:

one mode is more intense and fluctuates more than the opposite mode, but twin beams correlations are preserved.

Summary (continue)

<u>Type I OPO without walk-off (O-representation method)</u> :

- Spatial twin beams quantum correlations in a wide parameter region (50% above threshold)
- at threshold for all k (momentum conservation);
- in multimode stripe patterns for all k. (secondary processes = no momentum conservation constraint).
- in disordered structures (frozen chaos) for a bandwidth of k.
- Influence of the selected spatial structure on the spatial spectrum of squeezing.

References:

• "Macroscopic quantum fluctuations in noise-sustained optical patterns" Roberta Zambrini, Stephen M. Barnett, Pere Colet and Maxi San Miguel Phys. Rev. A 65, 023813 (2002). (Erratum 65, 049901 (2002)).

 "Twin beams, non linearity and walk-off in Optical Parametric Oscillators" Roberta Zambrini and Maxi San Miguel Phys. Rev. A 66, 023807 (2002).

"Non-classical behavior in multimode and disordered transverse structures in OPO. Use of the Q representation." Roberta Zambrini, Stephen M. Barnett, Pere Colet, and Maxi San Miguel Eur. Phys. J. D 22, 461 (2003).

Use of Q representation method in SHG:

• "Quantum properties of transverse pattern formation in second-harmonic generation" Morten Bache, Pierre Scotto, Roberta Zambrini, Maxi San Miguel and Mark Saffman, Phys. Rev. A 66, 013809 (2002).