

Palma de Mallorca, Spain http://www.imedea.uib.es

HEXAGONAL PATTERN CORRELATIONS IN A KERR MEDIUM

Damià Gomila and Pere Colet

The authors acknowledge to the European Comission through QSTRUCT TMR Network project

Self-focusing Kerr medium in a ring cavity

 θ : cavity detuning, E_0 : input field, ∇^2 : transverse Laplacian, *a*: strength of diffraction Homogeneous state, $I_0 = I_s [1 + (2I_s - \theta)^2]$

Stability diagram

L. A. Lugiato & R. Lefever, Phys. Rev. Lett. 58, 2209, (1987).

Spatio-temporal regimes

20

$max(|E|^2) - I_s$

Fluctuations and Correlations

In order to model fluctuations we add a white Gaussian noise ξ :

 $< \xi(\mathbf{x},t) \xi^*(\mathbf{x}',t') \ge 2\epsilon \,\delta(\mathbf{x}-\mathbf{x}') \,\delta(t-t')$

$$\frac{\partial E}{\partial t} = -(1+i\theta)E + ia\nabla^2 E + E_0 + i2|E|^2 E + \xi(\vec{x},t)$$

We study correlations of the far field intensity and field fluctuations: $C_1(\mathbf{k},\mathbf{k'}) = \langle \delta \mathbf{I}(\mathbf{k}) \, \delta \mathbf{I}(\mathbf{k'}) \rangle$ $C_2(\mathbf{k},\mathbf{k'}) = \langle \delta \mathbf{E}(\mathbf{k}) \, \delta \mathbf{E}^*(\mathbf{k'}) \rangle$

where $\delta I(\mathbf{k}) = I(\mathbf{k}) - \langle I(\mathbf{k}) \rangle$, $\delta E(\mathbf{k}) = E(\mathbf{k}) - \langle E(\mathbf{k}) \rangle$, and $I(\mathbf{k}) = |E(\mathbf{k})|^2$. Angular brackets stand for average over noise realizations.

Correlations of the intensity fluctuations

* Strong correlations between the intensity fluctuations of the fundamental pattern modes (momentum conservation).

* Strong anticorrelation between the intensity fluctuations of the homogeneous mode and the pattern modes (energy conservation).

* Maximum correlation between intensity fluctuations of fundamental harmonics separated by 120°:

$$C_1(\alpha = 120^\circ) > C_1(\alpha = 180^\circ) > C_1(\alpha = 60^\circ)$$

* There are significative correlations between the intensity fluctuations of one the fundamental and higher order modes: $C_1(k,k_1)$ decays exponentially with |k|

Quantum Correlations

Four-wave mixing interaction

$$H_{int} = \frac{hg_0}{2} \int \int dx \, dy \, [A^+(x, y)]^2 [A(x, y)]^2$$

Homogeneous + six mode hexagonal pattern

A(x, y) =
$$\frac{1}{b} \sum_{n} a_n \exp[i\vec{k}_n\vec{x}], n = 0,...,6$$

$$[H_{int}, N_{i} + N_{i+1} - N_{i+3} - N_{i+4}] = 0$$

$$P_{y} = \frac{1}{2} \hbar k_{t} [N_{2} + N_{3} - N_{5} - N_{6}] = 0$$

$$P_{x} = \frac{1}{2} \hbar k_{t} [N_{4} - N_{5} + \frac{1}{2} (N_{3} + N_{5} - N_{2} - N_{6})] = 0$$
Momentum conservation
$$CORRELATIONS$$

* G. Grynberg and L.A. Lugiato, Opt. Comm. <u>101</u>, 69-73 (1993)

Structure of correlations

Microscopic mechanism for correlations:

correlation inequalities can be deduced from momentum conservation relations

$$P_{y} = \frac{1}{2}\hbar k_{t} [N_{2} + N_{3} - N_{5} - N_{6}] = 0$$

$$P_{x} = \frac{1}{2}\hbar k_{t} [N_{4} - N_{5} + \frac{1}{2}(N_{3} + N_{5} - N_{2} - N_{6})] = 0$$

 $<(\delta I(k_2)+\delta I(k_3)-\delta I(k_5))\delta I(k_6)>><(\delta I(k_2)+\delta I(k_3)-\delta I(k_5))\delta I(k_4)>$

$$<\!\!(\delta I(k_2) + \delta I(k_3) - \delta I(k_5)) \delta I(k_6) > > <\!\!(\delta I(k_2) + \delta I(k_3) - \delta I(k_5)) \delta I(k_1) >$$

Symmetry: correlations only depend on α

 $\langle \delta I(k_3) \delta I(k_4) \rangle = \langle \delta I(k_5) \delta I(k_4) \rangle, \langle \delta I(k_2) \delta I(k_6) \rangle = \langle \delta I(k_2) \delta I(k_4) \rangle$

 $C_1(\alpha = 180^\circ) > C_1(\alpha = 60^\circ)$

 $C_1(\alpha = 120^\circ) + C_1(\alpha = 180^\circ) > 2C_1(\alpha = 60^\circ)$

 $\langle \delta I(k_3) \delta I(k_1) \rangle = \langle \delta I(k_5) \delta I(k_1) \rangle, \langle \delta I(k_5) \delta I(k_6) \rangle = \langle \delta I(k_2) \delta I(k_1) \rangle$

k₁ Ω

k₆

k₃

k₅

k₀

Pattern Stability Analysis

The hexagonal pattern can be expanded in Fourier modes:

$$E_{h}(\vec{x}) = \sum_{n=1}^{N} a_{n} e^{i\vec{k}_{n} \cdot (\vec{x} - \vec{x}_{0})} \quad (N=169)$$

Taking $E = E_h + \delta E$, and linearizing:

$$\partial_t \delta E(\vec{x}) = -(1+i\theta) \ \delta E(\vec{x}) + ia\nabla^2 \delta E(\vec{x}) + i2(2 | E_h(\vec{x})|^2 \ \delta E(\vec{x}) + E_h^2(\vec{x})\delta E^*(\vec{x}))$$

This eigenvalue problem is a linear differential equation with periodic coefficients, so a general bounded solution can be found under a Floquet form *:

$$\begin{split} \delta E(\vec{x},\vec{q}) &= M_{+}(\vec{x})e^{i\vec{q}\vec{x}} + M_{-}(\vec{x})e^{-i\vec{q}\vec{x}} \text{, where } M_{\pm}(\vec{x}) = M_{\pm}(\vec{x} + \frac{k_{n}}{2\pi}\lambda_{0}) \\ \delta E(\vec{x},\vec{q}) &= \sum_{n=1}^{N} (\delta a_{n,\vec{q}}e^{i(\vec{k}_{n}+\vec{q})\vec{x}} + \delta a_{n,-\vec{q}}e^{i(\vec{k}_{n}-\vec{q})\vec{x}}) \\ \partial_{t}\delta a_{l,\vec{q}} &= [-(1+i\theta)-ia\,|\vec{k}_{l}+\vec{q}\,|^{2}]\,\delta a_{l,\vec{q}} + i2\sum_{n,m} \{2a_{n}a_{m}^{*}\delta a_{l-n+m,\vec{q}} + a_{n}a_{m}[\delta a_{-l+n+m,-\vec{q}}]^{*}\} \end{split}$$

For each q we have a set of N coupled linear equations \Rightarrow N eigenvalues σ_i^{q} and N eigenmodes v_i^{q} .

Moving q over half <u>1st Brillouin zone</u> one considers all possible perturbations. Any q'outside is equivalent to a q in the 1st Brillouin zone by translation with a pattern wavevector.

* P. Coullet and G. Iooss, PRL, 64, 866 (1990)

The amplitude Θ_i of each eigenmode v_i associated to the eigenvalue λ_i follows an Ornstein-Uhlenbeck process: $\partial_i \Theta_i = \lambda_i \Theta_i + \eta_i$, where η_i is the noise in the diagonal basis.

$$\langle \eta_i(t)\eta_j(t')\rangle = \frac{\varepsilon}{2}\delta(t-t')\sum_{k=1}^N C_{ik}^{-1}C_{jk}^{-1*}$$

$$\delta E(\vec{x}, \vec{q}) = \sum_{i=1}^{N} \Theta_i \vec{v_i} , \quad \delta E(\vec{x}) = \iint \delta E(\vec{x}, \vec{q}) \, \mathrm{d}\vec{q}$$
$$\left\langle |\Theta_i|^2 \right\rangle = \frac{\varepsilon}{-8 \operatorname{Re}[\lambda_i]} (1 - e^{2\operatorname{Re}[\lambda_i]t}) \sum_j^N |C_{ij}^{-1}|^2$$

 C_{ii} is the eigenvectors matrix

q_y

 q_x

Calculation of correlations

The field fluctuation are linear combinations of eigenmodes

$$\delta E(\vec{x}, \vec{q}) = \sum_{i=1}^{N} \Theta_i^q \vec{\mathbf{v}}_i^q \quad , \quad \delta E(\vec{x}) = \iint \delta E(\vec{x}, \vec{q}) \, \mathrm{d}\vec{q}$$

The amplitude Θ_i^q of each eigenmode v_i^q associated to the eigenvalue λ_i^q follows an Ornstein-Uhlenbeck process: $\partial_i \Theta_i^q = \lambda_i^q \Theta_i^q + \eta_i$, where η_i is the noise ξ in the diagonal basis (C_{ij} are the eigenvectors matrix coefficients):

$$\langle \eta_i(t)\eta_j(t')\rangle = \frac{\varepsilon}{2}\delta(t-t')\sum_{k=1}^N C_{ik}^{-1}C_{jk}^{-1*}$$

$$\left\langle |\Theta_i|^2 \right\rangle = \frac{\varepsilon}{-8\operatorname{Re}[\lambda_i]} (1 - e^{2\operatorname{Re}[\lambda_i]t}) \sum_{j}^{N} |C_{ij}^{-1}|^2$$

* The highest **correlation** is between the **field fluctuations** of opposite peaks.

*Correlations may be larger with higher harmonics than with some fundamental modes.

* The homogeneous mode is almost uncorrelated $Re[\delta E(\mathbf{x})] |\delta E(\mathbf{k})|$ t = 2000

Re[v(x)] |v(k)|

Low damped mode (λ=-0.01, q=(0.1,0.1))

Goldstone modes (λ =0, **q**=(0,0)) associated to translational invariance of the pattern

FIELD CORRELATIONS

* The highest correlation is between the field fluctuations of opposite peaks.

*Correlations may be larger with higher harmonics than with some fundamental modes.

* The homogeneous mode is almost uncorrelated

 $|C_2(k,k_3)|$

Correlations of intensity fluctuations

modes.

 $\delta I(\mathbf{k})$ is only important for \mathbf{k} being one of the pattern modes \mathbf{k}_{n} .

For any other
$$\mathbf{k}=\mathbf{k}_{n}+\mathbf{q}$$
, $\delta I(\mathbf{k})=0$ because $E_{h}(\mathbf{k})=0$.

Goldstone modes v^G , λ ^G=0. Despite they are the most excited by noise, they **do not contribute** to intensity fluctuations:

 $\vec{\mathbf{v}}^{G}(\vec{x}) \propto \nabla E_{h}(\vec{x}) \qquad \Longrightarrow \qquad \operatorname{Re}[E_{h}^{*}(\vec{k})\vec{\mathbf{v}}^{G}(\vec{k})] = 0$

The eigenmodes associated to these two complex conjugate eigenvalues are the most important ($\lambda \approx -0.2$) for the intensity correlations. They induce strong correlations between the intensity fluctuations of the pattern modes and the anticorrelation with the homogeneous mode.

MOMENTUM CONSERVATION

Due to momentum conservation, the fluctuations on the quantity $P_x = \sum_n k_x \delta I(\vec{k}_n)$, which is

the total transverse momentum in the x direction, are expected to be small (the same for P_y), and just the opposite for the fluctuations on x_0 , which fix the origin of the hexagons in the near field, due to **translational invariance** of the problem in the transverse direction *.

The Goldstone modes, which are associated to the translational invariance, induce great (λ =0) fluctuations on \mathbf{x}_0 . The excitation by noise of the Goldstone modes move the pattern in the transverse direction.

 P_x is zero for the intensity fluctuations associated to all the eigenmodes except for two, which are the **most damped** (λ =-2). The excitation by noise of these two eigenmodes induces the fluctuations on P_x . They are small because of the strong damping of these eigenmodes.

* G. Grynberg and L.A. Lugiato, Opt. Comm. <u>101</u>, 69-73 (1993)

Conclusions

• Field fluctuations:

•can be understood in terms of noise excitation of low damped eigenmodes

• for long times field fluctuations are dominated by **Goldstone modes** (λ =0). They induces great fluctuations on \mathbf{x}_0 (origin of the hexagons in the near field), as it is expected from the translational invariance of the problem.

•Intensity fluctuations:

•are not originated by Goldstone modes. They are explained by the noise excitation of the damped eigenmodes of the fluctuations for q=0. They became stationary for relatively short times.

•The structure of the correlations is:

- Strong anticorrelation between the intensity fluctuations of the homogeneous and the pattern modes (energy conservation).
- •The correlations between the intensity fluctuations of the pattern modes:

•are maxima between fundamental harmonics separated by 120°

 $C_1(\alpha = 120^\circ) > C_1(\alpha = 180^\circ) > C_1(\alpha = 60^\circ)$

-correlation of fundamental modes with higher harmonics decay exponentially with \boldsymbol{k}

•The fluctuations of the total transverse momentum are originated by the most damped eigenmodes (λ =-2), so they are small, as it is expected from momentum conservation.

•Extension: Quantum fluctuations