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Self-focusing Kerr medium in a ring cavity

Time evolution of field envelope
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Hexagonal pattern peaks are highly 
focused ⇒ Far-field has not only six 
mode but many higher harmonics.



In order to model fluctuations we add a white Gaussian noise x :

<x(x,t) x*(x´,t´)>=2e d(x-x´) d(t-t´)
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Fluctuations and Correlations

We study correlations of the far field intensity and field fluctuations:
C1(k,k´)  =  <dI(k) dI(k´)>

C2(k,k´)  =  <dE(k) dE*(k´)>
where   dI(k) = I(k) - <I(k)>, dE(k) = E(k) - <E(k)>, and  I(k)=|E(k)|2 . Angular 

brackets stand for average over noise realizations.

δE(x) δE(k)
Pattern fluctuations
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Top view

* Strong correlations between the intensity fluctuations of the fundamental pattern modes  (momentum conservation).
* Strong anticorrelation between the intensity fluctuations of the homogeneous mode and the pattern modes (energy 
conservation).
* Maximum correlation between intensity fluctuations of fundamental harmonics separated by 120o :

C1(α=120o) > C1(α=180o) > C1(α=60o)  
* There are significative correlations between the intensity fluctuations of one the fundamental and higher order 
modes: C1(k,k1) decays exponentially with |k|

Correlations of the intensity fluctuations

Intensity correlations versus α angle
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* G. Grynberg  and L.A.  Lugiato, Opt. Comm. 101, 69-73 (1993)
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CORRELATIONS
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Homogeneous + six mode hexagonal pattern

Four-wave mixing interaction

Quantum Correlations
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Momentum conservation
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Microscopic mechanism for correlations:
correlation inequalities can be deduced from 
momentum conservation relations

<(dI(k2)+dI(k3)-dI(k5))dI(k6)> > <(dI(k2)+dI(k3)-dI(k5))dI(k4)>
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<(dI(k2)+dI(k3)-dI(k5))dI(k6)> > <(dI(k2)+dI(k3)-dI(k5))dI(k1)>

Symmetry: correlations only depend on  α

<dI(k3) dI(k4)>= <dI(k5) dI(k4)>, <dI(k2) dI(k6)>= <dI(k2) dI(k4)>

<dI(k3) dI(k1)>= <dI(k5) dI(k1)>, <dI(k5) dI(k6)>= <dI(k2) dI(k1)>

C1(αααα=180o) > C1(αααα=60o)  

C1(αααα=120o) +C1(αααα=180o) > 2C1(αααα=60o) 

Structure of correlations
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Pattern Stability Analysis
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The hexagonal pattern can be expanded in Fourier modes: ( N=169)

Taking  E = Eh+δE, and linearizing:
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For each q we have a set of N coupled linear equations 
⇒⇒⇒⇒ N eigenvalues σi

q and N eigenmodes vi
q.

Moving q over half 1st Brillouin zone one considers all possible
perturbations. Any q’outside is equivalent to a q in the 1st 
Brillouin zone by translation with a pattern wavevector. 
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* P. Coullet and G. Iooss, PRL, 64, 866 (1990)

This eigenvalue  problem is a linear differential equation with periodic coefficients, so a general 
bounded solution can be found under a Floquet form *:
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The amplitude Θi of each eigenmode vi associated to the 
eigenvalue λi follows an Ornstein-Uhlenbeck process:            
∂i Θi = λi Θi + ηi ,, where ηi is the noise in the diagonal basis. 

Eigenvalues
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Cij  is the eigenvectors matrix
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Top view of Re[λ] as a function of q



The amplitude Θi
q of each eigenmode vi

q associated to the 
eigenvalue λi

q follows an Ornstein-Uhlenbeck process:    ∂∂∂∂i 
ΘΘΘΘi

q = λλλλi
q ΘΘΘΘi

q + ηηηηi ,, where ηi is the noise ξ in the diagonal 
basis (Cij  are the eigenvectors matrix coefficients):

Eigenvalues
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Calculation of correlationsCalculation of correlations

The field fluctuation are linear combinations of  
eigenmodes 



* The highest correlation is between the 
field fluctuations of opposite peaks.

*Correlations may be larger with higher 
harmonics than with some fundamental 
modes.

* The homogeneous mode is almost 
uncorrelated

|C2(k,k3)|
FIELD CORRELATIONS

FIELD FLUCTUATIONS

t = 2

t = 2000

t = 100

Re[δδδδE(x)] <|δδδδE(k)|2 >

Re[δδδδE(x)] |δδδδE(k)|

Goldstone modes (λ=0, 
q=(0,0) ) associated to 
translational invariance of the 
pattern.

—yEh

—xEh 

Low damped mode
(λ=-0.01, q=(0.1,0.1))

Re[v(x)]              |v(k)|



Goldstone modes (λ=0,       
q=(0,0) ) associated to  
translational invariance of the 
pattern

—yEh

—xEh 

Low damped mode
(λ=-0.01, q=(0.1,0.1))

Re[v(x)]              |v(k)|
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FIELD FLUCTUATIONS

t = 2

t = 2000

t = 100

Re[δδδδE(x)] <|δδδδE(k)|2 >

Re[δδδδE(x)] |δδδδE(k)|



* The highest correlation is between the field 
fluctuations of opposite peaks.

*Correlations may be larger with higher 
harmonics than with some fundamental modes.

* The homogeneous mode is almost 
uncorrelated

|C2(k,k3)|

FIELD CORRELATIONS



Correlations of intensity fluctuations
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Eigenvalues for q=0 perturbations Goldstone modes vG , λG=0. Despite they are the most excited by noise, 
they do not contribute to intensity fluctuations:

)()(v xEx h

G
∇∝ 0)](v)(Re[ * =kkE

G

h

The eigenmodes associated to these two complex 
conjugate eigenvalues are the most important (λ≈-0.2) 
for the intensity correlations. They induce strong 
correlations between the intensity fluctuations of the 
pattern modes and the anticorrelation with the 
homogeneous mode.

Eigenmodes associated to these 
eigenvalues (λ=-1.0) induce the 
differences between the 
correlations of the intensity 
fluctuations of the fundamental 
modes.

Numerical simulations

Pattern stability analysis

δI (k) is only important for k being one of the pattern modes kn.

For any other k=kn+q , δI(k) =0 because Eh(k) =0.

⇒⇒⇒⇒
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MOMENTUM CONSERVATION

Due to momentum conservation, the fluctuations on the quantity , which is 

the total transverse momentum in the x direction, are expected to be small (the same for Py), and
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Eigenvalues for q=0 perturbations

Px is zero for the intensity 
fluctuations associated to all 
the eigenmodes except for  
two, which are the most 
damped (λ=-2). The excitation 
by noise of these two 
eigenmodes induces the 
fluctuations on Px. They are 
small because  of the strong 
damping of these eigenmodes.

The Goldstone modes, which are associated to the translational 
invariance, induce great (λ=0) fluctuations on x0. The excitation by 
noise of the Goldstone modes move the pattern in the transverse direction.

* G. Grynberg and L.A.  Lugiato, Opt. Comm. 101, 69-73 (1993)

just the opposite for the fluctuations on x0, which fix the origin of the hexagons in the near field, 
due to translational invariance of the problem in the transverse direction *.



Conclusions

• Field fluctuations:
•can be understood in terms of noise excitation of  low damped eigenmodes
• for long times field fluctuations are dominated by Goldstone modes (λλλλ=0). They induces great 
fluctuations on x0 (origin of the hexagons in the near field), as it is expected from the translational 
invariance of the problem. 

•Intensity fluctuations:

•are not originated by Goldstone modes. They are explained by the noise excitation of the 
damped eigenmodes of the fluctuations for q=0. They became stationary for relatively short 
times. 
•The structure of the correlations is:

• Strong  anticorrelation between the intensity fluctuations of the homogeneous and the 
pattern modes (energy conservation).
•The correlations between the intensity fluctuations of the pattern modes:

•are maxima  between fundamental harmonics separated by 120o    

C1(α=120o) > C1(α=180o) > C1(α=60o)
•correlation of fundamental modes with higher harmonics decay exponentially 
with k

•The fluctuations of the total transverse momentum are originated by the most damped eigenmodes 
(λλλλ=-2), so they are small, as it is expected from momentum conservation. 

•Extension: Quantum fluctuations


