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‘ Self-focusing Kerr medium in a ring cavity I
input field E, y

/ N 2
L output field

A | E(3,2.1)= E(z.1) ! 0 = wol)
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\ < ~ x=(x.y) field envelope

Time evolution of field envelope

aa€=—(l+ie)E +iaV?E + E, + 2[E|"E

0:cavity detuning, FE| :input field, V?2 . transverse Laplacian, a :strength of diffraction
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L. A. Lugiato & R. Lefever, Phys. Rev. Lett. 58, 2209, (1987).
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‘ Spatio-temporal regimes I

near field far field

3. Oscillating
hexagons

\ Hexagonal pattern peaks are highly
focused = Far-field has not only six
mode but many higher harmonics.
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‘ Fluctuations and Correlations I

In order to model fluctuations we add a white Gaussian noise ¢ :

<E(x,1) E(X1)>=2€ 5(x-X") S(t-t")

0E

S = —(+i0)E+ VP E + B+ 2|E[ B+ £(5.1)

We study correlations of the far field intensity and field fluctuations:
C,(k,k) = <6I(k) o1(k")>
C,(k,k) = <0E(k) 6E*(k")>

where 6I(K) = I(K) - <I(k)>, 6E(K) = E(K) - <E(k)>, and I(K)=|E(K)|* . Angular
brackets stand for average over noise realizations.

Pattern fluctuations
SE(x) oL (k)




Correlations of the intensity fluctuations

Intensity correlations versus o angle
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* Strong correlations between the intensity fluctuations of the fundamental pattern modes (momentum conservation).
* Strong anticorrelation between the intensity fluctuations of the homogeneous mode and the pattern modes (energy

conservation).
* Maximum correlation between intensity fluctuations of fundamental harmonics separated by 120°:

C,(0=120°) > C,(0=180°) > C,(0=60°)
* There are significative correlations between the intensity fluctuations of one the fundamental and higher order
modes: C,(k,k,) decays exponentially with k|



‘ Quantum Correlations I

( Four-wave mixing interaction
hg 0 1%y
H.,, dx dy [A" (x, ' [AX, V)] Ky | o
{ L B
Homogeneous + six mode hexagonal pattern k, k,
1 - ) )
\ A(X, y):BZanexp[ikni], n=0,...,6 k, ks
[Hint> Ni + Niyp - Niz -Njg] =0
Py :%hkt[Nz +N3 -N5 _N6] =0
1 CORRELATIONS

P, =5hkt[N4 —Njs +%(N3 +Ns5-N, -N¢)]=0

Momentum conservation

* G. Grynberg and L.A. Lugiato, Opt. Comm. 101, 69-73 (1993)



‘ Structure of correlations I

Microscopic mechanism for correlations:

correlation inequalities can be deduced from K Ky
momentum conservation relations 2 9

1 kln (X>\ Y k4 >
Pyzihkt[N2 +N3-N5-N6]=O - .‘ko

1 1 D) D)
PX:Ehkt[N4—N5+5(N3+N5-N2-N6)]:() K, ks

<(T(k+01(k;)-6T(k))T(k)> > <(BT(k,)+T(ky)-01(ks))ST(k,)>
<(0I(ky)+ol(k;)-01(ks))oI(ke)> > <(0I(k, ) +01(ks)-01(ks))ol(k, )>
Symmetry: correlations only depend on o

<0l(ky) o0l(k,)>= <ol(ks) o0l(k,)>, <ol(k,) ol(k,)>= <ol(k,) ol(k,)>
<0l(ky) o0l(k,)>= <6l(ks) ol(k,)>, <6l(ks) ol(k,)>= <ol(k,) ol(k,)>

C,(0=180°) > C,(0:=60°)

C,(0=120°) +C ,(0=180°) > 2C,(0:=60")




‘ Pattern Stability Analysis I

N . -
The hexagonal pattern can be expanded in Fourier modes: E, (55 ) =3 anelkn (X=X) (N=169)
n=1

Taking E = E,+dF, and linearizing:
9,8E(x) = —(1+10) 8E(x) +iaV28E(x) +i2(2 | E; (x) |* SE(x)+ EF (X)SE " (x))

This eigenvalue problem is a linear differential equation with periodic coefficients, so a general
bounded solution can be found under a Floquet form *:

—

. o s ~ K
OE(x,q) = M_(X)e'? + M_(X)e """, where MJ_r(x)zMi(x+2—”7»0)
T

. N I L
SE(X,Q) - Z (San —q>el(kn+Q)x +6an —»el(kn_Q)X)

n=1 B

. - 17 -2 . *
0,8a, ~ =[—(1+i0)—ia|k; +q| ]Salj +i2 Y {2apa,,0a, p +a,a,[da

l,q nm

For each q we have a set of N coupled linear equations

—> N eigenvalues ;9 and N eigenmodes v;.

Moving q over half 1st Brillouin zone one considers all possible

perturbations. Any q’outside is equivalent to a q in the 1st
Brillouin zone by translation with a pattern wavevector.

* P. Coullet and G. Iooss, PRL, 64, 866 (1990) Y D) D)



Eigenvalues
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The amplitude O, of each eigenmode v, associated to the
eigenvalue A; follows an Ornstein-Uhlenbeck process:
d;©; = A; ©; + m; , where 1; is the noise in the diagonal basis.
N or
' € . 1 1% A; =0.00
(M) =8 =19 ) Ci'C oo
k=1 _
A A, =-0.30
— — N - _ - . 5—' 7\.i=—1.00
SEg)= Y O, . SEW=[[sEarag  § ~
i=1 P
N /
2 € 2Rel[A. 1t 1.2
16; )= (- ot =
—8Re[A; ] ,
J

C,;; is the eigenvectors matrix

Top view of Re[A] as a function of q

A




‘ Calculation of correlations I

Eigenvalues The field fluctuation are linear combinations of
>F j : eigenmodes
| x .. N - .
3 | SE(x,q)=Y.0fvi , SE(x)=[[8E(x,q)dg
- A\ r i=1
E ¢ _:/ \: The amplitude ©,9 of each eigenmode v 9 associated to the
-1} ! x eigenvalue A4 follows an Ornstein-Uhlenbeck process: 9,
, ' ©,9 =A% 04 + 1. , where 1 is the noise & in the diagonal
-2, i ’

' basis (C,; are the eigenvectors matrix coefficients):
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Re[v(x)] Iv(K)|

FIELD FLUCTUATIONS

Low damped mode

(A=-0.01, ¢=(0.1,0.1)) Re[OE(x)]

<|oE(K)]* >

Goldstone modes (A=0,

q=(0,0) ) associated to
translational invariance of the
pattern.

V.E,

V.E,

FIELD CORRELATIONS

|C2(kak3)| * The highest correlation is between the
field fluctuations of opposite peaks.

*Correlations may be larger with higher
harmonics than with some fundamental t=2000
modes.

* The homogeneous mode is almost
uncorrelated




Low damped mode
(A=-0.01, q=(0.1,0.1))

Goldstone modes (A=0,
q=(0,0) ) associated to
translational invariance of the
pattern
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FIELD FLUCTUATIONS
Re[SE(x)] <|OE(K)*>

_ Re[SE(] ____E(K)




FIELD CORRELATIONS

* The highest correlation is between the field
fluctuations of opposite peaks.

*Correlations may be larger with higher
harmonics than with some fundamental modes.

* The homogeneous mode is almost
uncorrelated

C, (k)|
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Correlations of intensity fluctuations

0l (k) =2Re[ £}, (k)OE (k)] 0/ (k) is only important for k being one of the pattern modes k..

N
Ey, (l; )= Z(Zﬂ)z a,o(k, —k) For any other k=k +q , d/(k) =0 because £,(k) =0.

n=1

i = bati . . .
Eigenvalues fo.r b .O p.ertur arom Goldstone modes vG , A6=0. Despite they are the most excited by noise,

they do not contribute to intensity fluctuations:

V(®)=VE,(x =  ReE (v (k)]=0

Fr T A A
4 . |

Eoort e The eigenmodes associated to these two complex
conjugate eigenvalues are the most important (A=-0.2)
for the intensity correlations. They induce strong
correlations between the intensity fluctuations of the
pattern modes and the anticorrelation with the
homogeneous mode.

15E

- 120 3

- —= 110 ® Numerical simulations 3

100 Pattern stability analysis ;

. ; 90

) Eigenmodes associated to these 80 ]

eigenvalues (A=-1.0) induce the $ g ¢

- differences between the ﬂ 70 N

\/ﬁ correlations of the intensity 80 ‘ ' ' ' 5
T T fluctuations of the fundamental 0 60 120 180 240 300

modes. 9



‘ MOMENTUM CONSERVATION I

Due to momentum conservation, the fluctuations on the quantity Px = ka ol(kn) , which is
n

the total transverse momentum in the x direction, are expected to be small (the same for Py), and
just the opposite for the fluctuations on x,,, which fix the origin of the hexagons in the near field,

due to translational invariance of the problem in the transverse direction *.

Eigenvalues for q=0 perturbations
The Goldstone modes, which are associated to the translational

A invariance, induce great (A=0) fluctuations on x,,. The excitation by

7 noise of the Goldstone modes move the pattern in the transverse direction.

P, is zero for the intensity SO .

fluctuations associated to all

the eigenmodes except for 150|

two, which are the most

damped (A=-2). The excitation

by noise of these two

eigenmodes induces the

fluctuations on P,. They are

> small because of the strong
s i = damping of these eigenmodes.

<P (P (0)>

* G. Grynberg and L.A. Lugiato, Opt. Comm. 101, 69-73 (1993)



‘ Conclusions I
* Field fluctuations:

«can be understood in terms of noise excitation of low damped eigenmodes

« for long times field fluctuations are dominated by Goldstone modes (A=0). They induces great
fluctuations on x,, (origin of the hexagons in the near field), as it is expected from the translational

invariance of the problem.

*Intensity fluctuations:

eare not originated by Goldstone modes. They are explained by the noise excitation of the
damped eigenmodes of the fluctuations for g=0. They became stationary for relatively short

times.
*The structure of the correlations is:

* Strong anticorrelation between the intensity fluctuations of the homogeneous and the
pattern modes (energy conservation).
*The correlations between the intensity fluctuations of the pattern modes:

eare maxima between fundamental harmonics separated by 120°
C(a=120°) > C,(a=180°) > C,(0=60°)

ecorrelation of fundamental modes with higher harmonics decay exponentially
with k

*The fluctuations of the total transverse momentum are originated by the most damped eigenmodes
(A=-2), so they are small, as it is expected from momentum conservation.




