

POLARIZATION COUPLING AND TRANSVERSE PATTERNS IN TYPE-II OPTICAL PARAMETRIC OSCILLATORS

Gonzalo Izús

Maxi San Miguel

Daniel Walgraef

Marco Santagiustina

Opt. Lett. 25, 1454 (2000); *Phys. Rev. E*, 64, 056231-1/15 (2001); *Phys. Rev. E* (2002)

http://www.imedea.uib.es/PhysDept

Polarization Coupling in Type-II OPO

Type-II Optical Parametric Oscillators: homogeneous solutions ($\Delta_e > 0$)

Polarization of Phase Locked States and Domain Walls

Polarization of Domain Walls

d= 1 Domain Walls

G. Izús, M. Santagiustina, and M. San Miguel, Opt. Lett. <u>23</u>, 1167 (2000) G. Izús, M. San Miguel, and M. Santagiustina, submitted (2001)

d=2 BLOCH WALLS

```
Re(A_x)
```


Defect: Point of change of chirality on the wall

BLOCH WALL DYNAMICS (II)

$\gamma_x \Delta_x \neq \gamma_y \Delta_y$ Walls with different chirality move in opposite directions

Persistent Dynamics

t=500

t=800

t=1100

t=2200

Front emission from array of defects

 $Re(A_x)$

Two armed rotating spiral centered in defect

ISING WALL DYNAMICS

Coarsening near the Bloch-Ising transition

Time Oscillatory Bloch Domain Walls

Type-II Optical Parametric Oscillators: Pattern Formation ($\Delta_e < 0$)

Lower threshold for pattern formation: two competing modes with equal growth rate
Uniform phase locked solutions (q=0) (Fabre et. al. Opt. Comm. <u>170</u>, 299 (1999))

Type-II OPO, $\Delta_e < 0$: *Symmetric coefficients*

Circular Polarized Intensity Patterns

Type-II OPO, $\Delta_e < 0$, $\Delta_{x_y} \neq \Delta_y$, $\gamma_x \neq \gamma_y$, $\alpha_x \neq \alpha_y$

Amplitude Equations

Type-II OPO, $\Delta_e < 0$, q = 0 mode selected

Symmetric coefficients

t=400

t=3200

t=6000

SUMMARY

Birefringent / Dichroic coupling breaks relative phase invariance in Type II OPO : PHASE LOCKED states

Inside the phase-locking regime

•Phase polarization domain walls

 $\Delta_{\rho} > 0$:

- •Bloch Ising transition controlled by polarization coupling
- •Core of the Bloch wall of orthogonal linear polarization
- Point defects on Bloch walls at points where chirality changes sign

Outside the phase-locking regime

•Oscillatory Bloch Domain Walls

 $\Delta_e < 0$: •Pattern formation

- •Standing waves for A_x and A_y
 - Two competing modes in each linear polarization component
 Nonlinear mode selection: mode coexistence far from threshold
 - one mode selection close to threshold

for asymmetric coefficients