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Excitable media are reacting systems that, despite of having a
stable homogeneous and stationary state, display a nontrivial
response to perturbations above a threshold.
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Excitable behaviour 1s typical of biological or chemical
systems: Beloutsov-Zabhotinsky chemical reaction, neuron
systems, plankton dynamics

Plankton Blooms: Explosive and
localised growth of phyto or
zooplankton populations

It 1s important the advection









EXCITABLE DYNAMICS + DIFFUSION + ADVECTION
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V chaotic flow that can be open or

closed

We study the
response of
the system to
a
perturbation

Characterised by a positive Lyapunov exponent
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Closed flows: All fluid trajectories are bounded (all particles
remain in a bounded region) and there is mixing in the whole
fluid.

E.g: flow In a lake, in a closed vessel (numerically periodic
boundary conditions)

Open flows: Fluid particles enter the system and, typically, after
some time leave the system. There is just mixing (Lyapunov positive)
in a fractal set of measure zero, the chaotic saddle, corresponding to
a set of trajectories never leaving the system

E.g.: flow after cylindrical object, flow circunventing an
1sland






OPEN FLOW:

A simple incompressible two-dimensional flow leading to

chaotic advection with escape:
THE BLINKING VORTEX-SINK FLOW:
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Numerical results:
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Closed flow

Very slow stirring:
excitation waves
travel into the
system: incoherent
excitation



Fast stirring:
filament
dilution

stops excitation
propagation




Intermediate stirring:

coherent excitation
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At fast stirring, the excitation
1s destroyed, as in the closed-
flow case. At slow stirring, the
excitation pattern is transient,
as in the absence of flow.

A novel phenomenon occurs at
intermediate stirring speeds.




In a range of intermediate
stirring speeds, a permanent
excitation pattern, linked to
the chaotic saddle, remains in
the system:

The flow has rendered
permanent an otherwise
transient excitation
phenomenon
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REDUCED MODELS

In order to understand the above process we have introduced two types of one-
dimensional reduced models:

e A BAKER-LIKE model
e A FILAMENT model

In the BAKER model, stretching and folding by the chaotic
flow is represented by a simple geometrical procedure:

After some iterations, the process is essentially onedimensional, transverse
to the filaments in the chaotic flow:
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A simple
modification gives to
the baker model

characteristics of an  — :D - - I:>
OPEN flow:

Again, the
qualitative
behavior of the
two-dimensional
flows is
recovered,
including the
permanent
pattern found at
intermediate
stirring speed

Intermediat
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selfsustain
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Filament model

Assume locally the same strain flow :
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There is a range of values of lambda for which we can
obtain a stationary (stable) one hump solution. This is the
coherent excitation

02k

With the shooting method we can also
obtain an unstable solution for the same
value of lambda.



Increasing the stirring the unstable and stable
solutions approach and this is why dissapears the
coherent excitation for fast stirring.
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Decreasing stirring there appears double humped
solutions that also can explain the lost of the
coherent excitation in the two dimensional

simulations
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SUMMARY AND OUTLOOK

e The interplay between excitable dynamics and chaotic
flow leads to interesting novel phenomena. In
particular, there is a kind of broad resonance between
chemical and hydrodynamic time scales such that:

—1In closed flows, it leads to a global coherent
excitation [1].

—In open flows, it leads to the stabilization of
excitation patterns that are transient in other
circumstances, or in the absence of flow [2].

® The introduction of reduced models allows to identify
Lagrangian stretching and folding as the essentials
ingredients in the flow to produce the above
phenomena. A simple filament model allows also some
auantitative nredictions.



