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M.R.Maxey, J.J.Riley. Phys.Fluids 26, 883 (1983

v = particle’s velocity
u = fluid velocity

P,= fluid density

P, = particle density

a = radius of the particle
g = gravit
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The Maxey-Riley equation for neutrally huoyant particle:

dv:Du —St_l(v—u)—l dv  Du
dt Dt 2 dt Dt

n Du _ Ou
Where: Do quy7 Along the path of a fluid element
du _Ou (vim).  Along the trajectory of the particle
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2D steady flow with hyperbolic fixed points.

W(x,y) = Acos(x)cos(y)

U,=0y
Uy = _axw

Neutrally buoyant particles:

z (v—u)=-(v—-u) [@ St + Duj

dt

A.Babiano, J.H.E Cartwright, O.Piro and A.Provenzale, P.R.L, 84 (2000)



\Bailout embedding




-Invariant Submanifold.

CZ = f(x) -Dissipative System.
-Asymptotic Set.
Bailout embedding:
d

o (= £ ()= =k(x)(x - £ (x))

k(x)<0

Bailout function:

k(x)=(A+0u)

2D flows: Cu = Ho0 <
© o -




Map Balilout

The ODE bailout can be extended to maps 1n the obvious fashion:

xn+1 = f(xn)

(X2 = f(x,00)) =€ W0y = 15,

where as before, k(x) 1s an indicator function, < 0 on undesired
orbits. Specializing to the case = r - 1s straightforward:

(% = f o)) =€ Of | U,y — £(,))



Map Bailout at Work in 2D

Let f be the “Standard Map:

X .4 =X * k sin(27p )
27T

yn+1 :yn +xn+1

[ts bailout map is a 4D recurrence

— T FIG. 3: The standard map for ¥ = 7 has a chaotic sea covering

x n +1 - x n almost the entire torus, except for a tiny period-two KAM island near

position 0,2‘."3. 1000 random initial conditions were chosen, iterated

for 20000 steps, then the next 1000 iterations are shown. The images

here are a box —LDG < 2 < 005, 0.61 < p < 0.71. (a) Original
map, (b) ¥ =14, (c)y = 1.3, (d) ¥y =1-2.

o, =e 0T

Xn & Increasingly chaotic for increasing &

J.H.E Cartwright, M.O. Magnasco, O.Piro, Phys. Rev. E, 65 (2002)



ODE Bailout at Work in a Hamiltonian flow

Let / be the Henon-Heiles flow:

By
3

H(x,) =;(x2 +) +pl+p)) Xy

: : 0 .1 |
Constant Energy modification: A0 0F 03 0 W W 00 00

! oo 2000 3000 4000
t




Noisy dynamics




Invariant densities are powerful...

A lot of progress has been made in dynamical systems theory by
studyng the invariant measures (=probability densities) of a
dynamical system. The most interesting one is the BRS measure
(after Bowen-Ruelle-Sinai). This measure 1s obtained by
histogramming how often the dynamics visits each point in phase
space. There 1s one per attracting set.

There are powerful functional methods associated with this
formulation, since the invariant measure satisfies a Liouville
transport equation which 1s Fokker-Planck-like. Thus while they
are ‘elementary’ objects coming out straigth from the dynamics,
they can be studied with the full might of functional analysis.



But no interesting invariant measures
for Hamiltonian systems !!!

Study of Hamiltonian systems and KAM theory generally has
been hampered by theuninteresting features of their measures:

» if the system i1s ergodic, then it’s uniform (Lebesgue)
automatically due to the Liouville theorem.

e if 1t 1sn’t, then 1t does not have a unique invariant measure to
begin with: in the case of KAM systems, the measure disgregates
into a millefeuille of KAM lamins and ergodic regions.

Adding a white noise (=a thermal bath) makes the system ergodic
and the Lebesgue measure is the unique invariant measure.
Boring!

We will hack a framework within which we get interesting
invariant measures for Hamiltonian systems.



Noisy bailout dynamics
5n+1 :e_/]DT n +En

Under the assumption that the  are infinitesimally small, then we get
the classical orbits x_,,=T(x,) and then we can explicitly write down
the solution for the d. And evaluate the expectation value of. 5 :

BN G0 N SR
r(x) = <£2>_Z (e O] o )2

Xn

Where the <> are averages over the & process.

We can compute explicitly the above expression which depends
only on the current value of the position, defining a sort of

“temperature” amplitude 1(x) for the fluctuations O.



Detachment

Thus, when A equals the local Lyapunov-exponent at x, the series
defining T(x) stops being absolutly convergent at x and may blow
up. As A 1s lowered further, more and more points x have local
Lyapunov exponents greater than A and so T(x) formally diverges at
more and more points X.

Where 7(x)=oo it means that < 3> > is finite even if <&*> is
infinitesimally small. Thus the embedding trajectories have
detached from the actual trajectories, and the approximation given
above break down.

Detachment 1s the process that we first naively envisioned as
defining bail-out embeddings.



Avoidance

But when A is large enough

)2
Xn—k

converges to a well defined function 7(x) of the space that
modulates the fluctuations of 9. Particles tend to avoid the “hot™
regions (large local Lyapunov exponents) of the dynamics while
“cold” regions are visited more often.

Y (niry o
T(x)—<£2>—2(e El_l (]



“Temperature” and Distributions
2D (Standard Map)

Particle Distribution Temperature




“Temperature” and Distributions
2D (Standard Map)

Particle Distribution Temperature




Me\annd Distributions

2D (Standard Map)

Particle Distribution Temperature




m and Distributions

D (Standard Map)

Particle Distribution Temperature




\JD flows




Obvious importance from the point of view
of applications.

Very few simple time-dependent 3D
incompressible flow models there exist.
Alternative (qualitative) approach: to
model the flow by iterated 3D volume
preserving maps.

ABC maps, that display many of the basic
features of the evolution of the fluid flows
of our interest.



AB C IVI e @ Integrable map: p—|

x'=x+A4;senz+C,cosy

y'=y+B;senx'tA4,cosz

! — ' '
z'=z+C;seny'+B, cosx

Action-angle-angle: motion on two dimensional Tori
Resonant Tor1 break-up into tubes

Chaotic volumes around hyperbolic lines

Non-resonant tor1 persist

Action-action-angle: invariant circles that merge into
adiabatic invariant surfaces

o(I;,I,)=21k/n

M.Feingold, L.P.Kadanoff, O.Piro, J.Statist.Phys, 50, 529 (1988)



AB C IVI e @ Integrable map: p—|

6’=0+wx])

| J—
x'=x+A4;senz+C,cosy
y'=y+B;senx'tA4,cosz

! — ' '
z'=z+C;seny'+B, cosx

Action-angle-angle: motion on two dimensional Tori
Resonant Tor1 break-up into tubes

Chaotic volumes around hyperbolic lines

Non-resonant tor1 persist

Action-action-angle: invariant circles that merge into
adiabatic invariant surfaces

o(I;,I,)=21k/n

M.Feingold, L.P.Kadanoff, O.Piro, J.Statist.Phys, 50, 529 (1988)



Bailout embedding for the

ABC map

T(x):(xnaynazn) g (xn+1,yn+1,2n+1)

N

r —
X, =x, +Asenz +C,cosy,
Vo =Y, T Bsenx , +A4,co8z

z2,.,=2,+ C,seny ., +B,cosx .,

(xn+2 _T(xn+1)) - 8_/]

T

Xn

\xn+1 - T(xn ))




One action case

Neutrally buoyant particle Fluid parcel

f Colapse to the
KAM tori

Near hyperbolic
points
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Me” and Distributions

3D slices (ABC Map)

1 action 2 actions Higly chaotic




Continuous time verification.
Time-periodic-ABC flow

(1+ sin 2mt) - (Asin z + C cosy),

. . 1.. .
(1+sn 2n(t+ =)) - (Bsinr + Acosz),

(1 +sin : :w+— -(C'giny + Beosx).

FIG. 4: Stroboscopic sampling (Ad=1) of the position of 10 particles
initially dis |'.:_1|1L1 0§ ||| a fHow by Eq. (11) with

K. ; .-._~||| the positions of
these particles at the strobing perio )




Summary

We present a method to control and target chaos in
nonlinear dynamical systems: Bailout Embedding.

We make evident its usefulness 1n the description
of the phase space structure in complex dynamical
systems.

In particular, we have shown its power to make
qualitative predictions for the suspended
impurities dynamics in 3D time-periodic
incompressible flows, and to investigate the
structures of these flows as well.





