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Self-similarity of complex networks?

box-covering renormalization procedures                             

some systems (WWW, biological networks) have degree distributions that 
remain invariant and have finite “fractal” dimension 

scale-free degree distributions                                       

scale invariant property

Where is geometry?
C. Song, S. Havlin, H. A. Makse, 
Nature 433, 392-395 (2005); 
Nature Physics 2, 275-281 (2006)
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Self-similarity and scale invariance of complex networks 
are still not well defined in a proper geometrical sense

Lack of a metric structure 
except lengths of shortest paths       

geometric length scale transformations?

small world property
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Networks embedded in metric spaces
maybe “hidden”

(as variations of hidden variables)

• Geography as an obvious geometrical embedding: 
airport networks, urban networks…

• Hidden metric spaces: WWW (similarity between pages induced by 
content), social networks (closeness in social space)…

…how to identify these hidden metric spaces…
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• Some real scale-free networks are self-similar (degree distribution, 
degree-degree correlations, and clustering) with respect to a simple 
degree-thresholding renormalization procedure (purely topological)

• A class of hidden variable models with underlying metric spaces are 
able to accurately reproduce the observed self-similarity properties

We conjecture that hidden geometries underlying some 
real networks are a plausible explanation for their 
observed self-similar topologies 
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BGP map of the Internet at 
the AS level

SF with exponent 2.1
N=17446

<k>=4.68
PGP social web of trust

SF with exponent 2.5
N=57243

<k>=2.16

(also U.S. airports network)

Topological properties
of the subgraphs
as a function of
The inner degree 
Rescaled
by the average 
inner degree

Average nearest neighbors degree
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Degree dependent 
clustering coefficient
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A random model like the CM will produce self-similar 
networks regarding the degree distribution and degree- 
degree correlations, if the degree distribution of the 
complete graph is SF….

the key point is to reproduce self-similar clustering

metric space TRIANGLE INEQUALITYA
B

C
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• A class of hidden variable models with underlying metric spaces are 
able to accurately reproduce the observed self-similarity properties

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

cd
dr

Nodes that are close to 
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to be connected

To control the degree 
distribution, the characteristic 
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The S1 model

2
0

2

2
)1(

1
2

δκ
α

γ
γμ ><−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
k

RN πδ 2=



Self-similarity of complex networks and hidden metric spaces

The S1 model
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The S1 model
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• controls the degree distribution, SF

• independently,        controls the level of clustering , strong clustering

• given , the parameter                                       controls the  
average degree

• if                                        , small-world!!!  but underlying metric space!
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The S1 model



Self-similarity of complex networks and hidden metric spaces

Pajek

Self-similarity of the S1 model

Initial graph

Nodes in the 
complete 
graph can be 
represented 
such that 
higher 
degree nodes 
are closer to 
the center of 
the S1 ring
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Pajek

Self-similarity of the S1 model

A subgraph 
is formed by 
all nodes and 
their 
connections 
inside a 
circle of 
radius r  
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Self-similarity of the S1 model

Subgraph
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Self-similarity of the S1 model
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In particular, clustering spectrum and clustering…

Independent of
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The S1 model
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The S2 model
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In summary
hidden geometries underlying the observed topologies of some 

complex networks appear to provide a simple a natural 
explanation of their degree-renormalization self-similarity

real networks could be, after all, embedded in metric spaces

Future work
• fractality, C. Song, S. Havlin, H. A. Makse, Nature 433, 392-395 (2005); Nature 

Physics 2, 275-281 (2006). K.I. Goh, G. Salvi, B. Kahng, and D. Kim, PRL 96, 018701 
(2006); J.S. Kim, K.I. Goh, B. Kahng, and D. Kim, New J. Phys 9, 177 (2007); 

• k-core self-similarity, J. I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat and A. 
Vespignani , Networks and Heterogeneous Media, 3, 395-411 (2008).
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THANK YOU for your attention

Work supported by

marian.serrano@ifisc.uib-csic.es
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