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PATTERN FORMATION
self-organization phenomenon in complex systems, arising from the interplay between 

nonlinear dynamics and spatial coupling in systems out of equilibrium
Haken ‘74, Nicolis & Prigogine ‘77

fundamental universal character, unified approach

Belousov-Zhabotinsky Reaction

nanoparticle stripe patterns through 
dewetting
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OPTICAL PATTERN FORMATION

theory: existence of solutions, stability, 
amplitude equations; patterns, solitons, 

defects, vortices....
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OPTICAL PATTERN FORMATION

theory: existence of solutions, stability, 
amplitude equations; patterns, solitons, 

defects, vortices....

cavity losses, driving field, diffraction
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OPTICAL PATTERN FORMATION

experiments: fast temporal scales, size, quality, control of conditions, direct access FF...
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OPTICAL PATTERN FORMATION

Lange’ group in Münster
Istituto Nazionale di Ottica

Rolls in LCLV (‘93) soliton in semic.(02)

Inst. No Lineal Nice

Vilnius University

rolls in OPO (2007) OPA (?)

experiments: fast temporal scales, size, quality, control of conditions, direct access FF...
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QUANTUM ASPECTS OF OPF
 80s              from single mode to spatial multimode Quantum Optics. Mainly PDC. 

complex systemsquantum optics

|HH〉 + |V V 〉

Applications: Quantum information, quantum imaging and metrology...
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QUANTUM ASPECTS OF OPF

QUANTUM IMAGES

BELOW THRESHOLD

 noisy precursors: anticipation of some temporal (w)  or spatial (k) characteristics of the  
state. Less damped modes excited by noise, spontaneous emission.

Jeffries & Weisenfeld (’85)

the FF.

(a) (b)

(d)(c)

FIG. 11: Experimental (a,c) near-field and (b,d) far field intensity patterns for decreasing pump

intensity. (a,c) I=85 W/cm2 and (b,d) I=80 W/cm2. σ = −14.5 and w = 140ld.

For input intensities above the cycle, an hexagonal lattice of spots is obtained [Fig. 11(a)

and Fig. 12(a)], as predicted by the theory (see section II). This pattern appears first in

the central part of the beam where the intensity is above threshold and then extends in the

transverse plane. The FF exhibits 6 spots arranged on a hexagon [Fig. 11(b) and Fig. 12(b)],

where each pairs of opposite spots have equal intensities corresponding to standing waves

in the near field. Secondary spots are also observable as combination of primary wave

numbers. For input intensities below the threshold µU
c , the NF pattern is composed of noisy

spots evolving in time with no specific organization [Fig. 11(c) and Fig. 12(c)]. On the other

hand, the associated optical Fourier transform (FF) consists of concentric rings [Fig. 11(d)

and Fig. 12(d)] where the radius of inner ring is the same to that of the wave number of the

hexagonal pattern appearing at threshold. For lower values of the input field, the contrast

and the number of spots decrease further and further but the FF ring organization remains

on a wide pump range. Note that time averages performed on periods much longer than the

system dynamics display no more spatial structure for the NF, apart from the background

associated with the Gaussian profile of the input beam [Fig. 13(a) and Fig. 13(c)], whereas

17 (May 24, 2006)

of a thin slice of nematic liquid crystal illuminated by a laser field and subjected to an

optical feedback. The thermal fluctuations that induce random fluctuations around the

mean orientation of the liquid crystal director act as a classical noise source for the system.

In section II, we introduce the stochastic model for this system. Then, in section III, we give

the analytical expression of the time averaged far field intensity which reveals the existence

of both 1D and 2D pattern wave number precursors. In section IV, we extend and complete

our previous work on 1D precursors. Finally, in section V, we study the 2D precursors

and show the existence of wave vector precursors by the calculus of the far field angular

correlation function.

II. STOCHASTIC MODEL

mirrorLC

d
z

g(r)

r

F B

Bout

FIG. 1: Schematic setup of the system. A thin slice of Kerr medium (nematic liquid crystal LC)

is illuminated from the left by a laser field F of transverse profile g(r). A mirror at a distance d

reflects this field back (B).

We consider the passive optical system of Fig. 1 [14], first proposed by Akhmanov et al.

, later simplified by Firth [15], and widely studied theoretically [16–20] and experimentally

[21, 22]. A thin slice of liquid crystal is irradiated by a laser field F and subjected to

an optical feedback (the counter-propagating field B) provided by a mirror located at a

distance d from the liquid crystal. Above a critical value of the input field intensity, an

hexagonal pattern arises in the transverse profile of the laser [21, 22]. This pattern stems

from the interplay of two mechanisms: first, the nonlinear interaction between the input

laser beam and the refractive index n of the liquid crystal; second, the spatial local coupling

due to diffraction in the feedback loop. These two mechanisms are responsible of the spatial

3 (May 24, 2006)
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FIG. 8: Experimental results obtained below threshold. (a) temporal evolution of the near-field

intensity. (b) temporal evolution of far-field intensity.

This roll pattern is washed out on the time-averaged near-field intensity [Fig. 9(a)]. There

subsist only small spatial structurations due to experimental imperfections. The correspond-

ing time-averaged far-field is displayed on figure 9(b) (solid line). We have superimposed

(dashed line) the fit of the analytical expression Eq. (14) (using a least square method).

The value found for the distance d corresponds to the experimental value (d =-18 mm).

For higher input pump power, we cross the threshold for pattern formation and have a well

established standing wave pattern as it can be seen on the time-averaged intensity plot of

Fig. 10(a). The FF intensity is composed of several peaks [Fig. 10(b)]. The two peaks

located at k = ±0.054 µm−1 correspond to the critical wave number kc, and the second

harmonics are also observable.

In summary, our analytical expressions fit very well the one dimensional precursor sig-

natures, especially the time averaged FF intensity. This demonstrates theoretically and

experimentally, for the one dimensional case, that the wave number of the pattern that will

appear above threshold is anticipated below threshold in the far-field intensity.

14 (May 24, 2006)

Agez, Louvergneaux, Glorieux & Szwaj (2007)
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FIG. 8: Experimental results obtained below threshold. (a) temporal evolution of the near-field

intensity. (b) temporal evolution of far-field intensity.

This roll pattern is washed out on the time-averaged near-field intensity [Fig. 9(a)]. There

subsist only small spatial structurations due to experimental imperfections. The correspond-

ing time-averaged far-field is displayed on figure 9(b) (solid line). We have superimposed

(dashed line) the fit of the analytical expression Eq. (14) (using a least square method).

The value found for the distance d corresponds to the experimental value (d =-18 mm).

For higher input pump power, we cross the threshold for pattern formation and have a well

established standing wave pattern as it can be seen on the time-averaged intensity plot of

Fig. 10(a). The FF intensity is composed of several peaks [Fig. 10(b)]. The two peaks

located at k = ±0.054 µm−1 correspond to the critical wave number kc, and the second

harmonics are also observable.

In summary, our analytical expressions fit very well the one dimensional precursor sig-

natures, especially the time averaged FF intensity. This demonstrates theoretically and

experimentally, for the one dimensional case, that the wave number of the pattern that will

appear above threshold is anticipated below threshold in the far-field intensity.

14 (May 24, 2006)

Agez, Louvergneaux, Glorieux & Szwaj (2007)

quantum images: “spatial structures manife-
sted by the correlation functions” between the 

field at different points, and also by the “very 
noisy images” of the spatial fluctuations

 Lugiato & al. (96).

1.4 Optical quantum structures 35

in the transverse profile of the near field (a) and of the far field (b) of a type I OPO below threshold.

The quantum images are similar to the noisy precursors presented in the Sect.1.3.2: however in the

quantum images noise has a quantum nature [Gatti & al. (97)2]. An extensive literature is devoted

to the analysis of the quantum images generated by quantum fluctuations in several optical devices

[Gatti & Lugiato, Lugiato & al. (96), Marzoli & al., Gatti & al. (97)1, Lugiato & al. (97), Gatti & al. (99)a,

Lugiato & al. (99), Szwaj & al., Lodahl & Saffman, Bache & al.]. In these papers a description of this

phenomenon is given taking into account the whole infinite set of transverse cavity modes (continu-

ous models) in the fluctuation field operators, and linearizing the dynamics around the homogeneous

steady states.

Most features of the intensity correlations between different spatial modes below the threshold of

pattern formation are due to the microscopic process of generation of twin photons. For instance, in the

case of the OPOwith a flat pump, an approximated quadratic Hamiltonian can be introduced to describe

the small fluctuations around the stable homogeneous solution. The fundamental interaction consists

in the destruction of homogeneous pump photons, to create tilted signal photons, with any opposite

transverse moments [Gatti & Lugiato, Gatti & al. (97)1, Szwaj & al.]. The linearized Hamiltonian in type

I phase matching (see Appendix B) is

Ĥ = i
g
2
A0

∫
d2!k

[
ˆ

A†
1(

!k)
ˆ

A†
1(−!k)− h.c.

]
(1.57)

where A0 is the homogeneous constant classical pump, and Â1(!k) are the continuous of far field trans-

verse modes in the down-converted beam. This Hamiltonian describes the simultaneous generation

of photons pairs with opposite transverse momentum ±!k, where !k varies continuously in the far field

plane. Hence twin beams correlations are found measuring the intensity difference in any symmetric

portions of the far field (see two circles in Fig.1.15b). The less damped modes lie on the circle of

radius kc (precursors of the wavenumber that becomes unstable at threshold) and are more intense

(Fig.1.15b). But the intensity difference of any two opposite modes show the same amount of noise

reduction with respect to the shot noise level. An example of intensity correlations due to twin photons

processes in the quantum images regime is presented in Ch.5.

Figure 1.15: Near Field (a) and
far field (b) of the down-converted
field of a type I OPO, 2% below
threshold. In (b) the two small cir-
cles correspond to symmetric re-
gions.

twin 
photons
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QUANTUM ASPECTS OF OPF

QUANTUM IMAGES INTENSE FIELDS

above threshold
‘macroscopically’ populated spatial modes. 

Quantum effects?

below threshold: twin beams, 
2 mode squeezed vacuum...
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out is given by,
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This is a measure of the correlations between the outgoing

signal N0
out and the outgoing meter N1#2

out . Strong correla-

tions correspond to small values of V(0"1#2).
Additionally, we study how the fluctuations of the homo-

geneous mode are transferred from the input to the output of

the cavity %the nondemolition character of the measurement&,
and also from the input to the pattern modes %accuracy of the
measurement&. This information is given by the following
normalized correlations (42),
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out'N0
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where the x-polarized input fluctuations are given by,

'N0
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in%k! ,t &#H.c.)

!!
R0

d2k! "Fx
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in%k!!0,t &#H.c. %48&

The last equality comes from the fact that the input field

mean value Fx
in(k! ) has only contributions at k!0. Since the

input beam is in a coherent state, the fluctuations correspond

to the shot-noise level: !'N0
in'N0

in"#!1.
In order to perform a QND measurement of the input field

fluctuations 'N0
in using the pattern fluctuations 'N1#2

out as a

meter, it is required that V(0"1#2)$1 and Cs#Cm%1.
Another quantity of interest %not related to the QND con-

ditions&, which is able to show the quantum nature of fluc-

tuations, is the correlation between the two opposite pattern

modes k! c and "k! c . In parametric down conversion it is
known that the conservation of transverse momentum leads

to the emission of correlated photons that propagate in sym-

metrical directions; this implies a high correlation between

fluctuations in the two symmetric portion of the beam cross

section in the far field (9,10). In the process of four wave
mixing, present in a * (3) medium, the same situation ap-
pears. In this case the correlation has been studied with a

semiclassical model (40). The appropriate variable that gives
us information about the quantum correlation of the pattern

modes is the conditional variance of N1
out given a measure-

ment on N2
out ,

V%1"2 &!S1# 1"
"!'N1

out'N2
out"#"2

S1S2
$ . %49&

FIG. 7. Conditional variance V(0"1#2) given by Eq. %45&. The
solid line represents the three-modes model while the dots represent

the continuous model. Parameters: +!"1 %self-defocusing case&,
E0!0.919, and ,!1.7.

FIG. 8. Correlations Cs %a& and Cm %b& given by Eq. %47&. The
solid lines represent the three-modes model while the dots represent

the continuous model. Same parameters as in Fig. 7.
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Lugiato & Grynberg (’95), Hoyuelos et al. (‘99), Zambrini et al., (2001)

466 The European Physical Journal D

reference [20]:

V±(k,−k) = eiΦ±δA1(k) ± δA∗
1(−k) (22)

eiΦ±(k) = ∓
i∆1 + 2ik2 ∓

√
|Ast

0 |2 − (∆1 + 2k2)2

Ast
0

·

The solution V+(k,−k) gives the direction of amplifica-
tion of fluctuations, while fluctuations are damped for
V−(k,−k), giving rise to quadrature squeezing. In partic-
ular, for the critical wave-vector kc and for our choice of
parameter (real Ast

0 ) we obtain V±(kc,−kc) = δA1(kc) ±
δA∗

1(−kc). Therefore, the largest squeezing at threshold
will be in the difference of real parts and the sum of imag-
inary parts of the field for wave-numbers kc and −kc.

We define the real quadrature operator:

X̂(k) = Â1(k) + Â†
1(k) (23)

and the quadrature superpositions

X̂−(k) = X̂(k) − X̂(−k) (24)
X̂+(k) = X̂(k) + X̂(−k), (25)

corresponding, respectively, to damped and undamped
quantities at threshold for k = kc.

Below threshold, within a linearization approxima-
tion [13], the normal-ordered variances normalized to the
shot noise (NX) [45] are:

〈: (X̂−(kc))2 :〉
NX

=
−E

1 + E
(26)

〈: (X̂+(kc))2 :〉
NX

=
E

1 − E
· (27)

These quantities coincide with the variances since the
mean values are zero: 〈X̂±(k)〉 = 0. The normal order-
ing allows us to immediately identify non-classical fea-
tures associated with squeezing such as negative variances.
Equation (26) shows an increasing degree of squeezing,
approaching the value −0.5 at threshold. In Figure 2 the-
oretical predictions and numerical results are shown to
be in good agreement, confirming the validity of equa-
tions (12, 13) below threshold. On the other hand equa-
tion (27) is always positive indicating that the the fluctua-
tions in the direction of instability are essentially classical
and larger than those found for a coherent state. In Fig-
ure 3 we show the agreement between theoretical predic-
tions and numerical results for the undamped quadrature,
even as close as 1 to threshold. The limits of the linear
treatment, discussed above, are now evident in the diver-
gence of equation (27) for E → 1. In contrast, numerical
simulation of the nonlinear equations (12, 13) gives the
expected saturation at the critical point, at a value which
depends on the noise level.

4.2 Intensity correlations

We can find non-classical features in the intensities of the
twin beams by evaluating the normal-ordered variance in

Fig. 2. Normal ordered variance of the damped quadrature
X̂−(kc) normalized to shot noise: diamonds are results ob-
tained by numerical simulation, while the continuous line cor-
responds to the analytical expression equation (26). For any
trajectory at given pump intensity, we average during a time
of 107, integrating with a time discretization of 10−3 (with time
scaled as in Eq. (11)).

Fig. 3. Variance of the undamped quadrature X̂+(kc): the
diamonds are results obtained with numerical simulation, while
the continuous line corresponds to the analytical expression
(Eq. (27)). At the last point, corresponding to E = 1, the linear
treatment gives an infinite variance (the asymptotic behavior
is represented by a dashed line), while our non-linear treatment
gives the expected saturation.

the difference of the two intensities:

V(k) =
〈: [δN̂1(k) − δN̂1(−k)]2 :〉

NN (k)
, (28)

normalized to the corresponding shot noise value NN (k).
This value is proportional to the sum of the intensities
of the two beams with wavevectors ±k. Negative values
of V indicate sub-Poissonian statistics for the intensity
difference of the two signal beams at ±k [21]. In a lin-
ear analytical treatment below threshold V(k) = −0.5,
independently of the pump intensity and of the wave-
vector [13,21]. In other words the normalized intensity
correlations, equation (28), do not show a non-classical
behavior which is stronger for the critical wave vector or
at the critical point. This is in contrast with the behavior
of the quadratures correlations equations (26, 27). Nev-
ertheless, the critical conditions are of significant interest
because of presence of higher intensities.

The numerical expression of V(k) for different spatial
modes (0 < k ≤ 5kc) is compared, in Figure 4, with the

...  in stationary patterns
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in the transverse profile of the near field (a) and of the far field (b) of a type I OPO below threshold.

The quantum images are similar to the noisy precursors presented in the Sect.1.3.2: however in the

quantum images noise has a quantum nature [Gatti & al. (97)2]. An extensive literature is devoted

to the analysis of the quantum images generated by quantum fluctuations in several optical devices

[Gatti & Lugiato, Lugiato & al. (96), Marzoli & al., Gatti & al. (97)1, Lugiato & al. (97), Gatti & al. (99)a,

Lugiato & al. (99), Szwaj & al., Lodahl & Saffman, Bache & al.]. In these papers a description of this

phenomenon is given taking into account the whole infinite set of transverse cavity modes (continu-

ous models) in the fluctuation field operators, and linearizing the dynamics around the homogeneous

steady states.

Most features of the intensity correlations between different spatial modes below the threshold of

pattern formation are due to the microscopic process of generation of twin photons. For instance, in the

case of the OPOwith a flat pump, an approximated quadratic Hamiltonian can be introduced to describe

the small fluctuations around the stable homogeneous solution. The fundamental interaction consists

in the destruction of homogeneous pump photons, to create tilted signal photons, with any opposite

transverse moments [Gatti & Lugiato, Gatti & al. (97)1, Szwaj & al.]. The linearized Hamiltonian in type

I phase matching (see Appendix B) is

Ĥ = i
g
2
A0

∫
d2!k

[
ˆ

A†
1(

!k)
ˆ

A†
1(−!k)− h.c.

]
(1.57)

where A0 is the homogeneous constant classical pump, and Â1(!k) are the continuous of far field trans-

verse modes in the down-converted beam. This Hamiltonian describes the simultaneous generation

of photons pairs with opposite transverse momentum ±!k, where !k varies continuously in the far field

plane. Hence twin beams correlations are found measuring the intensity difference in any symmetric

portions of the far field (see two circles in Fig.1.15b). The less damped modes lie on the circle of

radius kc (precursors of the wavenumber that becomes unstable at threshold) and are more intense

(Fig.1.15b). But the intensity difference of any two opposite modes show the same amount of noise

reduction with respect to the shot noise level. An example of intensity correlations due to twin photons

processes in the quantum images regime is presented in Ch.5.

Figure 1.15: Near Field (a) and
far field (b) of the down-converted
field of a type I OPO, 2% below
threshold. In (b) the two small cir-
cles correspond to symmetric re-
gions.

http://ifsc.uib-csic.es
http://ifsc.uib-csic.es


http://ifsc.uib-csic.es

Control of spatial quantum fluctuations using PC
O

U
TL

IN
E

    OPTICAL PATTERN FORMATION: FROM CLASSICAL TO QUANTUM

    PHOTONIC CRYSTALS

   THE MODEL: OPO WITH PC

   RAISING AND LOWERING THE PARAMETRIC THRESHOLD

   PC AND QUANTUM IMAGES

   TWIN BEAMS

   CONSERVATION OF MOMENTUM

   CONCLUSIONS AND OUTLOOK

10

http://ifsc.uib-csic.es
http://ifsc.uib-csic.es


http://ifsc.uib-csic.es

Control of spatial quantum fluctuations using PC

11

PHOTONIC CRYSTALS

movement of e- in a semiconductor                     light in a photonic crystal

PERIODICITY of CRYSTAL:  BAND-GAP for e- PERIODICITY of n:   BAND-GAP for photons

http://ab-initio.mit.edu/index.html

Control of Light

Nature 424, 839 (2003)

Nature 422, 147 (2003)

discrete solitons

micro-cavities

PC fibers
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Photonic Band-Gap Inhibition of Modulational Instabilities

Damià Gomila, Roberta Zambrini, and Gian-Luca Oppo
Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom

(Received 31 October 2003; published 24 June 2004)

Spatial structures as a result of a modulational instability are studied in a nonlinear cavity with a
photonic crystal. The interaction of the modulated refractive index with the nonlinearity inhibits the
instability via the creation of a photonic band gap. A novel mechanism of light localization due to
defects and pattern inhibition is also described.

DOI: 10.1103/PhysRevLett.92.253904 PACS numbers: 42.70.Qs, 05.65.+b, 42.65.Sf, 89.75.Kd

The investigation of spontaneous spatial structures in
nonlinear systems is a fast expanding research area, not
just in physics but also across science and technology [1].
In particular, spatially extended dissipative nonlinear
optical systems display, through self-organization and
control, a large variety of outputs and structures with
potential applications in photonics, such as optical mem-
ories, multiplexing, optical processing, and imaging [2].

There has also been a lot of scientific interest in pho-
tonic crystals [3] since the existence of band gaps in such
structured materials was predicted by Yablonovitch and
John in 1987 [4]. Their unique way of controlling light
has provided the field of photonics with new applications,
mostly related to guided light modes [5].

More recently, nonlinear effects in photonic crystals
were shown to play an important role in achieving all-
optical operations in switching devices [6,7]. Transverse
effects have been mainly studied in propagation in fiber
Bragg gratings within the coupled-mode theory or in
infinite coupled arrays of waveguides within the tight-
binding approximation. Studies on grating devices focus
on the so-called gap (or Bragg) solitons [8], which are
pulses with frequencies in the forbidden gaps and ex-
tended over a large number of grating periods. In arrays
of waveguides, two remarkable features are the forma-
tion of the so-called discrete solitons and the fact
that the (discrete) diffraction can be engineered [7,9].
Finally, modulation instability shifts due to periodically
modulated media have been studied in conservative sys-
tems [8,10].

Despite the considerable potential of (nonlinear) pho-
tonic crystals for controlling light, only a few recent
works [11,12] have considered their role in the formation
of dissipative spatial structures. The study of spatial
structures in nonlinear periodic systems has important
implications not only in nonlinear optics but also in many
branches of science, such as biology [13], solid state
physics [14], and Bose-Einstein condensates [15].

In this Letter we study the effects of a photonic crystal
in the formation of a spontaneous pattern on a nonlinear
dissipative system driven out of equilibrium. In particu-
lar, we show how the linear phenomenon of photonic band
gap affects the selection of a nonlinear spatial structure,

allowing for the complete inhibition of the off-axis emis-
sion associated with finite wavelength modulation insta-
bilities (MI).

We consider an optical cavity containing a self-
focusing Kerr medium and a linear medium with spa-
tially varying refractive index, i.e., a photonic crystal (see
Fig. 1). Both media are antireflection coated. In the mean
field approximation, the dynamics of the slowly varying
amplitude of the paraxial electric field E can be described
by [16,17]

@tE ! "#1$ i%!$ f&'E$ ir2E$ E0 $ ijEj2E; (1)

where ! is the average detuning between the frequency of
the pump and the frequency of the cavity, f accounts for
the weakly modulated refractive index in the transverse
direction of the photonic crystal, r2 is the transverse
Laplacian, and E0 is the input field. All quantities are
scaled as in [17].

In model (1) both modulations introduced by sponta-
neous pattern formation and by the periodic variation of
the photonic crystal are described within the paraxial
approximation. At difference with the coupled-mode
theory, which is limited to spatial structures extended
over a large number of photonic crystal wavelengths,
Eq. (1) can properly describe transverse structures
even smaller than a single period of the photonic
crystal. Moreover, while in the tight-binding approxima-
tion (discrete) diffraction appears only through the eva-

FIG. 1. Ring cavity containing a medium with a cubic non-
linearity ("%3&) and a photonic crystal (PC)slab. E0 is the plane
wave input field partially transmitted into the cavity. The other
mirrors are assumed to be perfectly reflecting.
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nescent coupling between the strongly localized (guided)
modes in the photonic crystal, model (1) fully describes
diffraction.

In the absence of any modulation of the refractive
index, the intensity of the homogeneous steady-state so-
lution Is is implicitly given by

I0 ! Is"1# $Is % !&2'; (2)

where I0 ! jE0j2. We consider !<
!!!

3
p

to avoid homoge-
neous state bistability. In this case, above a certain thresh-
old (Is ! 1:0) a modulation instability takes place,
leading to off-axis emission with a critical transverse
wave number [18]:

qc !
!!!!!!!!!!!!!!!!

2Is % !
p

: (3)

In 1D systems, the case considered here, a stripe pattern
arises.We study how this mechanism of pattern formation
is strongly influenced by the addition of a modulated
refractive index.

We recall first the behavior of a simple device consist-
ing of a linear cavity with totally reflecting mirrors. In
this case, Eq. (1) reduces to

@tE ! %i"!# f$x&'E# ir2E: (4)

This equation is formally equivalent to the Gross-
Pitaevskii equation with a periodic lattice potential in
the limit of noninteracting Bose-Einstein condensate
[19]. For f$x& ! 0, the modes eiqx of the cavity are such
that q !

!!!!!!!

%!
p

compensates for the cavity detuning
[Fig. 2(a)]. However, when the cavity is filled with a
photonic crystal, a band gap may appear; i.e., for a given
modulation amplitude, there may be detuning values for
which no field can propagate in the cavity [see the band
gap in Fig. 2(b)].

Comparing the modes q of the linear cavity and the
nonlinear critical wave number qc of Eq. (3), one can see
that in both cases off-axis emission compensates for the
effective detuning. In particular, the term 2Is in the
square root of Eq. (3) accounts for the contribution of
the nonlinearity to the detuning. Above the MI threshold,
off-axis emission in the nonlinear case may take place not
only at the critical wave number but also within a whole
band of unstable transverse modes. Figure 3(a) shows the
unstable wave numbers q of a nonlinear cavity without
photonic crystals for each value of the detuning ! and
Is ! 1:12.

In the presence of the photonic crystal, the linear
calculation leading to Fig. 2(b) cannot describe the be-
havior of the nonlinear cavity. The appearance of a pho-
tonic band gap, however, has important consequences for
the MI leading to off-axis emissions.

We first find the fundamental solution of the problem
with the modulated refractive index (see Fig. 4). This
solution is now modulated at the frequency of the pho-
tonic crystal. Then, we proceed with a numerical stability
analysis [20] of this solution for a pump intensity 12%
above the MI (Is ! 1:12), just in the same way as Fig. 3(a)
was obtained in the case without photonic crystal. Note,
however, that the linear stability analysis of the funda-
mental solution now requires solving the eigenvalue prob-
lem associated to a linear differential operator with
periodic coefficients. Then, from the Bloch-Floquet theo-
rem, the eigenmodes can be written in the form of Bloch
waves  ! M$x&eiqx,M$x& being a function with the same
periodicity as the photonic crystal. The wave number q of
the Bloch functions takes values within the first Brillouin
zone of the lattice defined by the wave vectors of the
photonic crystal 0< q< 0:5qPC. The results are shown in
Fig. 3(b) [21]. The presence of the photonic crystal in-
hibits the pattern forming instability for detuning values
%3:35< !<%2:39. This can be interpreted as follows.
For detuning values within this band, the overall effect of
the photonic crystal and nonlinearity is to create a pho-
tonic band gap for which no extra off-axis emission can

BANDGAP

FIG. 2 (color online). (a) Dispersion relation of a perfect
linear cavity without photonic crystal [f$x& ! 0], and (b) with
a photonic crystal [we assume f$x& to be a step function
between %0:75 and 0:75 of wave number qPC ! 4:0]. The
band gap appears for detuning values %4:47< !<%3:51.
For a better comparison, in both cases the calculations have
been performed on the basis of Bloch waves in order to reduce
the wave number q to the first Brillouin zone. In (a) this results
in a reflection of the dispersion relation at q ! 0:5. q is given in
units of qPC.

BANDGAP

FIG. 3 (color online). (a) The shadowed region indicates the
unstable wave numbers of a homogeneous nonlinear Kerr
cavity at 12% above MI threshold (Is ! 1:12). (b) The same
as in (a) in the presence of the same photonic crystal as
Fig. 2(b). For this value of Is, the band gap appears for %2:35<
!<%1:75.
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Spatial structures as a result of a modulational instability are studied in a nonlinear cavity with a
photonic crystal. The interaction of the modulated refractive index with the nonlinearity inhibits the
instability via the creation of a photonic band gap. A novel mechanism of light localization due to
defects and pattern inhibition is also described.
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The investigation of spontaneous spatial structures in
nonlinear systems is a fast expanding research area, not
just in physics but also across science and technology [1].
In particular, spatially extended dissipative nonlinear
optical systems display, through self-organization and
control, a large variety of outputs and structures with
potential applications in photonics, such as optical mem-
ories, multiplexing, optical processing, and imaging [2].

There has also been a lot of scientific interest in pho-
tonic crystals [3] since the existence of band gaps in such
structured materials was predicted by Yablonovitch and
John in 1987 [4]. Their unique way of controlling light
has provided the field of photonics with new applications,
mostly related to guided light modes [5].

More recently, nonlinear effects in photonic crystals
were shown to play an important role in achieving all-
optical operations in switching devices [6,7]. Transverse
effects have been mainly studied in propagation in fiber
Bragg gratings within the coupled-mode theory or in
infinite coupled arrays of waveguides within the tight-
binding approximation. Studies on grating devices focus
on the so-called gap (or Bragg) solitons [8], which are
pulses with frequencies in the forbidden gaps and ex-
tended over a large number of grating periods. In arrays
of waveguides, two remarkable features are the forma-
tion of the so-called discrete solitons and the fact
that the (discrete) diffraction can be engineered [7,9].
Finally, modulation instability shifts due to periodically
modulated media have been studied in conservative sys-
tems [8,10].

Despite the considerable potential of (nonlinear) pho-
tonic crystals for controlling light, only a few recent
works [11,12] have considered their role in the formation
of dissipative spatial structures. The study of spatial
structures in nonlinear periodic systems has important
implications not only in nonlinear optics but also in many
branches of science, such as biology [13], solid state
physics [14], and Bose-Einstein condensates [15].

In this Letter we study the effects of a photonic crystal
in the formation of a spontaneous pattern on a nonlinear
dissipative system driven out of equilibrium. In particu-
lar, we show how the linear phenomenon of photonic band
gap affects the selection of a nonlinear spatial structure,

allowing for the complete inhibition of the off-axis emis-
sion associated with finite wavelength modulation insta-
bilities (MI).

We consider an optical cavity containing a self-
focusing Kerr medium and a linear medium with spa-
tially varying refractive index, i.e., a photonic crystal (see
Fig. 1). Both media are antireflection coated. In the mean
field approximation, the dynamics of the slowly varying
amplitude of the paraxial electric field E can be described
by [16,17]

@tE ! "#1$ i%!$ f&'E$ ir2E$ E0 $ ijEj2E; (1)

where ! is the average detuning between the frequency of
the pump and the frequency of the cavity, f accounts for
the weakly modulated refractive index in the transverse
direction of the photonic crystal, r2 is the transverse
Laplacian, and E0 is the input field. All quantities are
scaled as in [17].

In model (1) both modulations introduced by sponta-
neous pattern formation and by the periodic variation of
the photonic crystal are described within the paraxial
approximation. At difference with the coupled-mode
theory, which is limited to spatial structures extended
over a large number of photonic crystal wavelengths,
Eq. (1) can properly describe transverse structures
even smaller than a single period of the photonic
crystal. Moreover, while in the tight-binding approxima-
tion (discrete) diffraction appears only through the eva-

FIG. 1. Ring cavity containing a medium with a cubic non-
linearity ("%3&) and a photonic crystal (PC)slab. E0 is the plane
wave input field partially transmitted into the cavity. The other
mirrors are assumed to be perfectly reflecting.
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The investigation of spontaneous spatial structures in
nonlinear systems is a fast expanding research area, not
just in physics but also across science and technology [1].
In particular, spatially extended dissipative nonlinear
optical systems display, through self-organization and
control, a large variety of outputs and structures with
potential applications in photonics, such as optical mem-
ories, multiplexing, optical processing, and imaging [2].

There has also been a lot of scientific interest in pho-
tonic crystals [3] since the existence of band gaps in such
structured materials was predicted by Yablonovitch and
John in 1987 [4]. Their unique way of controlling light
has provided the field of photonics with new applications,
mostly related to guided light modes [5].

More recently, nonlinear effects in photonic crystals
were shown to play an important role in achieving all-
optical operations in switching devices [6,7]. Transverse
effects have been mainly studied in propagation in fiber
Bragg gratings within the coupled-mode theory or in
infinite coupled arrays of waveguides within the tight-
binding approximation. Studies on grating devices focus
on the so-called gap (or Bragg) solitons [8], which are
pulses with frequencies in the forbidden gaps and ex-
tended over a large number of grating periods. In arrays
of waveguides, two remarkable features are the forma-
tion of the so-called discrete solitons and the fact
that the (discrete) diffraction can be engineered [7,9].
Finally, modulation instability shifts due to periodically
modulated media have been studied in conservative sys-
tems [8,10].

Despite the considerable potential of (nonlinear) pho-
tonic crystals for controlling light, only a few recent
works [11,12] have considered their role in the formation
of dissipative spatial structures. The study of spatial
structures in nonlinear periodic systems has important
implications not only in nonlinear optics but also in many
branches of science, such as biology [13], solid state
physics [14], and Bose-Einstein condensates [15].

In this Letter we study the effects of a photonic crystal
in the formation of a spontaneous pattern on a nonlinear
dissipative system driven out of equilibrium. In particu-
lar, we show how the linear phenomenon of photonic band
gap affects the selection of a nonlinear spatial structure,

allowing for the complete inhibition of the off-axis emis-
sion associated with finite wavelength modulation insta-
bilities (MI).

We consider an optical cavity containing a self-
focusing Kerr medium and a linear medium with spa-
tially varying refractive index, i.e., a photonic crystal (see
Fig. 1). Both media are antireflection coated. In the mean
field approximation, the dynamics of the slowly varying
amplitude of the paraxial electric field E can be described
by [16,17]

@tE ! "#1$ i%!$ f&'E$ ir2E$ E0 $ ijEj2E; (1)

where ! is the average detuning between the frequency of
the pump and the frequency of the cavity, f accounts for
the weakly modulated refractive index in the transverse
direction of the photonic crystal, r2 is the transverse
Laplacian, and E0 is the input field. All quantities are
scaled as in [17].

In model (1) both modulations introduced by sponta-
neous pattern formation and by the periodic variation of
the photonic crystal are described within the paraxial
approximation. At difference with the coupled-mode
theory, which is limited to spatial structures extended
over a large number of photonic crystal wavelengths,
Eq. (1) can properly describe transverse structures
even smaller than a single period of the photonic
crystal. Moreover, while in the tight-binding approxima-
tion (discrete) diffraction appears only through the eva-

FIG. 1. Ring cavity containing a medium with a cubic non-
linearity ("%3&) and a photonic crystal (PC)slab. E0 is the plane
wave input field partially transmitted into the cavity. The other
mirrors are assumed to be perfectly reflecting.
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nescent coupling between the strongly localized (guided)
modes in the photonic crystal, model (1) fully describes
diffraction.

In the absence of any modulation of the refractive
index, the intensity of the homogeneous steady-state so-
lution Is is implicitly given by

I0 ! Is"1# $Is % !&2'; (2)

where I0 ! jE0j2. We consider !<
!!!

3
p

to avoid homoge-
neous state bistability. In this case, above a certain thresh-
old (Is ! 1:0) a modulation instability takes place,
leading to off-axis emission with a critical transverse
wave number [18]:

qc !
!!!!!!!!!!!!!!!!

2Is % !
p

: (3)

In 1D systems, the case considered here, a stripe pattern
arises.We study how this mechanism of pattern formation
is strongly influenced by the addition of a modulated
refractive index.

We recall first the behavior of a simple device consist-
ing of a linear cavity with totally reflecting mirrors. In
this case, Eq. (1) reduces to

@tE ! %i"!# f$x&'E# ir2E: (4)

This equation is formally equivalent to the Gross-
Pitaevskii equation with a periodic lattice potential in
the limit of noninteracting Bose-Einstein condensate
[19]. For f$x& ! 0, the modes eiqx of the cavity are such
that q !

!!!!!!!

%!
p

compensates for the cavity detuning
[Fig. 2(a)]. However, when the cavity is filled with a
photonic crystal, a band gap may appear; i.e., for a given
modulation amplitude, there may be detuning values for
which no field can propagate in the cavity [see the band
gap in Fig. 2(b)].

Comparing the modes q of the linear cavity and the
nonlinear critical wave number qc of Eq. (3), one can see
that in both cases off-axis emission compensates for the
effective detuning. In particular, the term 2Is in the
square root of Eq. (3) accounts for the contribution of
the nonlinearity to the detuning. Above the MI threshold,
off-axis emission in the nonlinear case may take place not
only at the critical wave number but also within a whole
band of unstable transverse modes. Figure 3(a) shows the
unstable wave numbers q of a nonlinear cavity without
photonic crystals for each value of the detuning ! and
Is ! 1:12.

In the presence of the photonic crystal, the linear
calculation leading to Fig. 2(b) cannot describe the be-
havior of the nonlinear cavity. The appearance of a pho-
tonic band gap, however, has important consequences for
the MI leading to off-axis emissions.

We first find the fundamental solution of the problem
with the modulated refractive index (see Fig. 4). This
solution is now modulated at the frequency of the pho-
tonic crystal. Then, we proceed with a numerical stability
analysis [20] of this solution for a pump intensity 12%
above the MI (Is ! 1:12), just in the same way as Fig. 3(a)
was obtained in the case without photonic crystal. Note,
however, that the linear stability analysis of the funda-
mental solution now requires solving the eigenvalue prob-
lem associated to a linear differential operator with
periodic coefficients. Then, from the Bloch-Floquet theo-
rem, the eigenmodes can be written in the form of Bloch
waves  ! M$x&eiqx,M$x& being a function with the same
periodicity as the photonic crystal. The wave number q of
the Bloch functions takes values within the first Brillouin
zone of the lattice defined by the wave vectors of the
photonic crystal 0< q< 0:5qPC. The results are shown in
Fig. 3(b) [21]. The presence of the photonic crystal in-
hibits the pattern forming instability for detuning values
%3:35< !<%2:39. This can be interpreted as follows.
For detuning values within this band, the overall effect of
the photonic crystal and nonlinearity is to create a pho-
tonic band gap for which no extra off-axis emission can

BANDGAP

FIG. 2 (color online). (a) Dispersion relation of a perfect
linear cavity without photonic crystal [f$x& ! 0], and (b) with
a photonic crystal [we assume f$x& to be a step function
between %0:75 and 0:75 of wave number qPC ! 4:0]. The
band gap appears for detuning values %4:47< !<%3:51.
For a better comparison, in both cases the calculations have
been performed on the basis of Bloch waves in order to reduce
the wave number q to the first Brillouin zone. In (a) this results
in a reflection of the dispersion relation at q ! 0:5. q is given in
units of qPC.

BANDGAP

FIG. 3 (color online). (a) The shadowed region indicates the
unstable wave numbers of a homogeneous nonlinear Kerr
cavity at 12% above MI threshold (Is ! 1:12). (b) The same
as in (a) in the presence of the same photonic crystal as
Fig. 2(b). For this value of Is, the band gap appears for %2:35<
!<%1:75.
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In this way one reduces the stability analysis of the steady
state of the initial partial differential equations with periodic
coefficients !1" and !2" to diagonalize the 4!4 complex ma-
trix L. In the case k=0 one has to consider that a±

+=a±
−.

The eigenvalue of L with largest real part is

"1 = − 1 +#E2 − $k2 + % kpc

2
&2

+ # −#$2 + 4k2% kpc

2
&2'2

!7"

for −!kpc /2"2%# and

"2 = − 1 +#E2 − $k2 + % kpc

2
&2

+ # +#$2 + 4k2% kpc

2
&2'2

!8"

for #%−!kpc /2"2. By setting "1="2=0 we obtain four mar-
ginal stability curves

#1!k,E" = − d1!k" + d2!k" + d3!E" ,

#2!k,E" = − d1!k" + d2!k" − d3!E" ,

#3!k,E" = − d1!k" − d2!k" + d3!E" ,

#4!k,E" = − d1!k" − d2!k" − d3!E" , !9"

where d1!k"= !kpc /2"2+k2, d2!k"=#4k2!kpc /2"2+$2, and
d3!E"=#E2−1.

Figure 2 shows the marginal stability curves for different
values of the pump E. Note that, due to definition !4", k
indicates the relative distance from the wave number of a
perturbation to the limit of the first Brillouin zone. Therefore
it is convenient to plot # as a function of k!= !kpc /2
−k" /kpc, which is the real wave number of the perturbations
in units of kpc. Dashed lines are the results from the coupled-
mode theory !9", while solid lines have been obtained from a
numerical stability analysis of the full model—i.e., solving
the eigenvalue problem associated with the linear differential
operator with periodic coefficients on the right-hand side of
Eq. !3" (13). The coupled-mode theory provides a very good
analytical approximation for thresholds and unstable wave
numbers, allowing us to predict the existence and size of a
band gap in the modulation instability analytically. In the
following we analyze the results of the coupled-mode theory
in more detail.

FIG. 2. Marginal stability curves of a DOPO for !a" E=1.0, !b"
E=1.02, !c" E=1.05, !d" E=#1+$2=1.118034, and !e" E=1.2 in
the presence of a periodically modulated media !kpc=2,$=0.5".
Solid lines correspond to results obtained with a numerical analysis
of the full model equations, while dashed lines are the analytical
results from the coupled-mode theory !9". For each value of # the
wave numbers within the shaded region are unstable. Note that, for
moderate values of the input intensity, there is a gap of detuning
values, indicated by the horizontal dotted lines, for which the sys-
tem is stable.

FIG. 3. Pump threshold as a function of the detuning from the
theoretical result !10" obtained by means of the coupled- mode
theory !solid black and gray lines". The dashed line is the result
obtained from a numerical stability analysis of the full model. The
dotted line is the threshold for a DOPO without photonic crystal.
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values of the pump E. Note that, due to definition !4", k
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perturbation to the limit of the first Brillouin zone. Therefore
it is convenient to plot # as a function of k!= !kpc /2
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mode theory !9", while solid lines have been obtained from a
numerical stability analysis of the full model—i.e., solving
the eigenvalue problem associated with the linear differential
operator with periodic coefficients on the right-hand side of
Eq. !3" (13). The coupled-mode theory provides a very good
analytical approximation for thresholds and unstable wave
numbers, allowing us to predict the existence and size of a
band gap in the modulation instability analytically. In the
following we analyze the results of the coupled-mode theory
in more detail.
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E=1.02, !c" E=1.05, !d" E=#1+$2=1.118034, and !e" E=1.2 in
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Solid lines correspond to results obtained with a numerical analysis
of the full model equations, while dashed lines are the analytical
results from the coupled-mode theory !9". For each value of # the
wave numbers within the shaded region are unstable. Note that, for
moderate values of the input intensity, there is a gap of detuning
values, indicated by the horizontal dotted lines, for which the sys-
tem is stable.

FIG. 3. Pump threshold as a function of the detuning from the
theoretical result !10" obtained by means of the coupled- mode
theory !solid black and gray lines". The dashed line is the result
obtained from a numerical stability analysis of the full model. The
dotted line is the threshold for a DOPO without photonic crystal.
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some sections of the system will attain the first solution
while others will move to the second one, leading to the
formation of domain walls. This is illustrated in Fig. 7. The
solid line is the result of a simulation of the full model !2"
starting from a random initial condition. The dashed line is
the steady state solution of Eq. !15" connecting the two !plus
and minus" homogeneous solutions #8$ times the critical
eigenmode v1 in the near field:
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The dot-dashed line in Fig. 7 is the envelope of Eq. !17". The
analytical result !17" is in very good agreement with the
domain wall obtained from the numerical simulations of the
full model !2".

B. Upper-half part

In the upper-half part of the photonic band gap the critical
mode v1 is associated with "1 and has the form *#%Eth

2 −1
+ i!Eth−1"$ /%2Eth!Eth−1"+sin!kpcx /2". As in the previous
case, we obtain a similar amplitude equation for the real
amplitude Ã1 of the unstable mode:
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In this case the pattern solutions is
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The bifurcation diagram and spatial form of this solution
is shown in Fig. 8. The analytical solution !19" is in very
good agreement with the stationary solution of the full model
computed numerically. As in the previous case, in large sys-
tems, fronts between the plus and minus solutions are
formed. The shape of the front is given in this case by
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Note that while the cosine solution in the lower-half part
of the band gap has the maxima of the intensity at the

FIG. 6. Left: bifurcation diagram for the pattern arising above
threshold in the lower-half of the band gap. Here #=−1.2. For this
value of the detuning Eth=1.04403. Right: real !solid line" and
imaginary !dashed line" parts of the pattern solution of the full
model for E=1.2. The dot-dashed and dotted lines correspond to the
real and imaginary parts of the pattern from the coupled-mode
theory. The gray solid line illustrates the modulation of the photonic
crystal for comparison.

FIG. 7. Two domains corresponding to the plus and minus sign
solutions !16" separated by domain walls. The final state is the
result of a numerical simulation starting from an arbitrary initial
condition. Left: real part of the field. Right: close-up of the intensity
around a domain wall. The dotted line shows the modulation of the
photonic crystal. Here #=−1.1, E=1.15, $=0.5, and kpc=2.0.
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Damià Gomila, Roberta Zambrini, and Gian-Luca Oppo
Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom

(Received 31 October 2003; published 24 June 2004)

Spatial structures as a result of a modulational instability are studied in a nonlinear cavity with a
photonic crystal. The interaction of the modulated refractive index with the nonlinearity inhibits the
instability via the creation of a photonic band gap. A novel mechanism of light localization due to
defects and pattern inhibition is also described.
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The investigation of spontaneous spatial structures in
nonlinear systems is a fast expanding research area, not
just in physics but also across science and technology [1].
In particular, spatially extended dissipative nonlinear
optical systems display, through self-organization and
control, a large variety of outputs and structures with
potential applications in photonics, such as optical mem-
ories, multiplexing, optical processing, and imaging [2].

There has also been a lot of scientific interest in pho-
tonic crystals [3] since the existence of band gaps in such
structured materials was predicted by Yablonovitch and
John in 1987 [4]. Their unique way of controlling light
has provided the field of photonics with new applications,
mostly related to guided light modes [5].

More recently, nonlinear effects in photonic crystals
were shown to play an important role in achieving all-
optical operations in switching devices [6,7]. Transverse
effects have been mainly studied in propagation in fiber
Bragg gratings within the coupled-mode theory or in
infinite coupled arrays of waveguides within the tight-
binding approximation. Studies on grating devices focus
on the so-called gap (or Bragg) solitons [8], which are
pulses with frequencies in the forbidden gaps and ex-
tended over a large number of grating periods. In arrays
of waveguides, two remarkable features are the forma-
tion of the so-called discrete solitons and the fact
that the (discrete) diffraction can be engineered [7,9].
Finally, modulation instability shifts due to periodically
modulated media have been studied in conservative sys-
tems [8,10].

Despite the considerable potential of (nonlinear) pho-
tonic crystals for controlling light, only a few recent
works [11,12] have considered their role in the formation
of dissipative spatial structures. The study of spatial
structures in nonlinear periodic systems has important
implications not only in nonlinear optics but also in many
branches of science, such as biology [13], solid state
physics [14], and Bose-Einstein condensates [15].

In this Letter we study the effects of a photonic crystal
in the formation of a spontaneous pattern on a nonlinear
dissipative system driven out of equilibrium. In particu-
lar, we show how the linear phenomenon of photonic band
gap affects the selection of a nonlinear spatial structure,

allowing for the complete inhibition of the off-axis emis-
sion associated with finite wavelength modulation insta-
bilities (MI).

We consider an optical cavity containing a self-
focusing Kerr medium and a linear medium with spa-
tially varying refractive index, i.e., a photonic crystal (see
Fig. 1). Both media are antireflection coated. In the mean
field approximation, the dynamics of the slowly varying
amplitude of the paraxial electric field E can be described
by [16,17]

@tE ! "#1$ i%!$ f&'E$ ir2E$ E0 $ ijEj2E; (1)

where ! is the average detuning between the frequency of
the pump and the frequency of the cavity, f accounts for
the weakly modulated refractive index in the transverse
direction of the photonic crystal, r2 is the transverse
Laplacian, and E0 is the input field. All quantities are
scaled as in [17].

In model (1) both modulations introduced by sponta-
neous pattern formation and by the periodic variation of
the photonic crystal are described within the paraxial
approximation. At difference with the coupled-mode
theory, which is limited to spatial structures extended
over a large number of photonic crystal wavelengths,
Eq. (1) can properly describe transverse structures
even smaller than a single period of the photonic
crystal. Moreover, while in the tight-binding approxima-
tion (discrete) diffraction appears only through the eva-

FIG. 1. Ring cavity containing a medium with a cubic non-
linearity ("%3&) and a photonic crystal (PC)slab. E0 is the plane
wave input field partially transmitted into the cavity. The other
mirrors are assumed to be perfectly reflecting.
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FIG. 2: Experimentally observed Brillouin zones for a one-
dimensional stripe pattern (period d = 16 m) at different
probe beam wavelengths; (a) 532 nm (b) 780 nm.

using a second lens. The cavity configuration corresponds
to a telescope providing self-imaging feedback and thus
preserving the high Fresnel number of the VCSEL [17].
After the second lens, a tilted plane wave emerging from
the VCSEL is again a tilted plane wave but the tilt an-
gle is decreased and hence the period of the interference
pattern is increased. The focal lengths of the lenses are
chosen such that the the length scale of the structure
in the VCSEL to be controlled (2–3 m) is mapped to
a scale of the order of some tens of m, which can be
conveniently written within the photorefractive crystal.

The polarizing beamsplitter ensures the extraordinary
polarization necessary to exploit the strong electro-optic
coefficient r33 of the crystal. At the same time, it en-
ables the imaging onto the two cameras CCD1 and CCD2
by slightly tilting the incoming polarization using a half
wave plate. In this case, CCD1 shows the real space
image of the VCSEL while CCD2 is used to image the
Fourier space. Behind the crystal, the cavity contains a
dichroitic mirror to remove the green light of the lattice
beams from the feedback path. The removed light is then
used to image the lattice wave onto the camera CCD3.

Fig. 1(b) shows the corresponding periodic intensity
distribution (period d = 46 m) at the front face of
the crystal. According to the two plane waves used for
creation of the interference pattern, the Fourier image
(Fig. 1(c)) consists of two bright spots which also deter-
mine the borders of the first Brillouin zone of the induced
lattice. For illustration, the Brillouin zone edges are ad-
ditionally marked by two dashed lines in Fig. 1(c).

Wave propagation at these transverse wave numbers
is forbidden as a result of multiple Bragg reflections in-
side the lattice and leads to dark lines in the transmis-
sion spectrum [3]. The experimentally observed Brillouin
zone pictures for a one dimensional stripe pattern are
shown in Fig. 2 for two different wavelengths. In both
cases, the dark lines marking the borders of the first
Brillouin zone where the Bragg condition is satisfied are
clearly visible. Therefore, the induced structure can be
used to control the feedback and selectively suppress the
propagation of the off-axis modes at this specific trans-
verse wavenumber in the external cavity.

Due to the reconfigurability of the optically induced

(a) (b)

(c) (d)

(e) (f)

FIG. 3: VCSEL output in real space (left column) as well as
in Fourier space (right column). (a)/(b) Output without an
induced lattice; (c)/d) Output with lattice; (e)/(f) Output
after erasing the lattice with homogeneous white light illumi-
nation.

lattices, the filtering can be dynamically tuned to another
transverse wavenumber by simply changing the lattice
constant or even turned off completely by erasing the
lattice using homogeneous white light illumination.

The experimental results of this dynamic control of
off-axis modes with a specific transverse wave number
are summarized in Fig. 3. The VCSEL is driven close to
threshold (13.15 mA) such that there is no laser emission
without feedback. However, including the feedback path,
it starts lasing in the modulated state shown in Figs. 3(a)
and (b). In the far field (Fig. 3(b)), the emission con-
tains an on-axis spot centered around wavenumber zero
together with a set of off-axis modes. The corresponding
real space image consists of a localized spot in addition
to a modulated stripe pattern as shown in Fig. 3(a).

By applying an electric field of 1 kV/cm and the writ-
ing beams, a photonic lattice with a period of 46 m is
induced inside the photorefractive crystal. As demon-
strated in Figs. 3(c) and (d) the corresponding trans-
verse wavenumbers can be suppressed this way. The far
field now consists of one single spot at wavenumber zero
(Fig. 3(d)) while in the near field only the well defined
localized spot remains (Fig. 3(c)).

The dynamic tunability of our control technique is de-
picted in Figs. 3(e) and (f). The lattice-writing beams
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using a second lens. The cavity configuration corresponds
to a telescope providing self-imaging feedback and thus
preserving the high Fresnel number of the VCSEL [17].
After the second lens, a tilted plane wave emerging from
the VCSEL is again a tilted plane wave but the tilt an-
gle is decreased and hence the period of the interference
pattern is increased. The focal lengths of the lenses are
chosen such that the the length scale of the structure
in the VCSEL to be controlled (2–3 m) is mapped to
a scale of the order of some tens of m, which can be
conveniently written within the photorefractive crystal.

The polarizing beamsplitter ensures the extraordinary
polarization necessary to exploit the strong electro-optic
coefficient r33 of the crystal. At the same time, it en-
ables the imaging onto the two cameras CCD1 and CCD2
by slightly tilting the incoming polarization using a half
wave plate. In this case, CCD1 shows the real space
image of the VCSEL while CCD2 is used to image the
Fourier space. Behind the crystal, the cavity contains a
dichroitic mirror to remove the green light of the lattice
beams from the feedback path. The removed light is then
used to image the lattice wave onto the camera CCD3.

Fig. 1(b) shows the corresponding periodic intensity
distribution (period d = 46 m) at the front face of
the crystal. According to the two plane waves used for
creation of the interference pattern, the Fourier image
(Fig. 1(c)) consists of two bright spots which also deter-
mine the borders of the first Brillouin zone of the induced
lattice. For illustration, the Brillouin zone edges are ad-
ditionally marked by two dashed lines in Fig. 1(c).

Wave propagation at these transverse wave numbers
is forbidden as a result of multiple Bragg reflections in-
side the lattice and leads to dark lines in the transmis-
sion spectrum [3]. The experimentally observed Brillouin
zone pictures for a one dimensional stripe pattern are
shown in Fig. 2 for two different wavelengths. In both
cases, the dark lines marking the borders of the first
Brillouin zone where the Bragg condition is satisfied are
clearly visible. Therefore, the induced structure can be
used to control the feedback and selectively suppress the
propagation of the off-axis modes at this specific trans-
verse wavenumber in the external cavity.

Due to the reconfigurability of the optically induced
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FIG. 3: VCSEL output in real space (left column) as well as
in Fourier space (right column). (a)/(b) Output without an
induced lattice; (c)/d) Output with lattice; (e)/(f) Output
after erasing the lattice with homogeneous white light illumi-
nation.

lattices, the filtering can be dynamically tuned to another
transverse wavenumber by simply changing the lattice
constant or even turned off completely by erasing the
lattice using homogeneous white light illumination.

The experimental results of this dynamic control of
off-axis modes with a specific transverse wave number
are summarized in Fig. 3. The VCSEL is driven close to
threshold (13.15 mA) such that there is no laser emission
without feedback. However, including the feedback path,
it starts lasing in the modulated state shown in Figs. 3(a)
and (b). In the far field (Fig. 3(b)), the emission con-
tains an on-axis spot centered around wavenumber zero
together with a set of off-axis modes. The corresponding
real space image consists of a localized spot in addition
to a modulated stripe pattern as shown in Fig. 3(a).

By applying an electric field of 1 kV/cm and the writ-
ing beams, a photonic lattice with a period of 46 m is
induced inside the photorefractive crystal. As demon-
strated in Figs. 3(c) and (d) the corresponding trans-
verse wavenumbers can be suppressed this way. The far
field now consists of one single spot at wavenumber zero
(Fig. 3(d)) while in the near field only the well defined
localized spot remains (Fig. 3(c)).

The dynamic tunability of our control technique is de-
picted in Figs. 3(e) and (f). The lattice-writing beams
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FIG. 2: Experimentally observed Brillouin zones for a one-
dimensional stripe pattern (period d = 16 m) at different
probe beam wavelengths; (a) 532 nm (b) 780 nm.

using a second lens. The cavity configuration corresponds
to a telescope providing self-imaging feedback and thus
preserving the high Fresnel number of the VCSEL [17].
After the second lens, a tilted plane wave emerging from
the VCSEL is again a tilted plane wave but the tilt an-
gle is decreased and hence the period of the interference
pattern is increased. The focal lengths of the lenses are
chosen such that the the length scale of the structure
in the VCSEL to be controlled (2–3 m) is mapped to
a scale of the order of some tens of m, which can be
conveniently written within the photorefractive crystal.

The polarizing beamsplitter ensures the extraordinary
polarization necessary to exploit the strong electro-optic
coefficient r33 of the crystal. At the same time, it en-
ables the imaging onto the two cameras CCD1 and CCD2
by slightly tilting the incoming polarization using a half
wave plate. In this case, CCD1 shows the real space
image of the VCSEL while CCD2 is used to image the
Fourier space. Behind the crystal, the cavity contains a
dichroitic mirror to remove the green light of the lattice
beams from the feedback path. The removed light is then
used to image the lattice wave onto the camera CCD3.

Fig. 1(b) shows the corresponding periodic intensity
distribution (period d = 46 m) at the front face of
the crystal. According to the two plane waves used for
creation of the interference pattern, the Fourier image
(Fig. 1(c)) consists of two bright spots which also deter-
mine the borders of the first Brillouin zone of the induced
lattice. For illustration, the Brillouin zone edges are ad-
ditionally marked by two dashed lines in Fig. 1(c).

Wave propagation at these transverse wave numbers
is forbidden as a result of multiple Bragg reflections in-
side the lattice and leads to dark lines in the transmis-
sion spectrum [3]. The experimentally observed Brillouin
zone pictures for a one dimensional stripe pattern are
shown in Fig. 2 for two different wavelengths. In both
cases, the dark lines marking the borders of the first
Brillouin zone where the Bragg condition is satisfied are
clearly visible. Therefore, the induced structure can be
used to control the feedback and selectively suppress the
propagation of the off-axis modes at this specific trans-
verse wavenumber in the external cavity.

Due to the reconfigurability of the optically induced

(a) (b)
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(e) (f)

FIG. 3: VCSEL output in real space (left column) as well as
in Fourier space (right column). (a)/(b) Output without an
induced lattice; (c)/d) Output with lattice; (e)/(f) Output
after erasing the lattice with homogeneous white light illumi-
nation.

lattices, the filtering can be dynamically tuned to another
transverse wavenumber by simply changing the lattice
constant or even turned off completely by erasing the
lattice using homogeneous white light illumination.

The experimental results of this dynamic control of
off-axis modes with a specific transverse wave number
are summarized in Fig. 3. The VCSEL is driven close to
threshold (13.15 mA) such that there is no laser emission
without feedback. However, including the feedback path,
it starts lasing in the modulated state shown in Figs. 3(a)
and (b). In the far field (Fig. 3(b)), the emission con-
tains an on-axis spot centered around wavenumber zero
together with a set of off-axis modes. The corresponding
real space image consists of a localized spot in addition
to a modulated stripe pattern as shown in Fig. 3(a).

By applying an electric field of 1 kV/cm and the writ-
ing beams, a photonic lattice with a period of 46 m is
induced inside the photorefractive crystal. As demon-
strated in Figs. 3(c) and (d) the corresponding trans-
verse wavenumbers can be suppressed this way. The far
field now consists of one single spot at wavenumber zero
(Fig. 3(d)) while in the near field only the well defined
localized spot remains (Fig. 3(c)).

The dynamic tunability of our control technique is de-
picted in Figs. 3(e) and (f). The lattice-writing beams
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using a second lens. The cavity configuration corresponds
to a telescope providing self-imaging feedback and thus
preserving the high Fresnel number of the VCSEL [17].
After the second lens, a tilted plane wave emerging from
the VCSEL is again a tilted plane wave but the tilt an-
gle is decreased and hence the period of the interference
pattern is increased. The focal lengths of the lenses are
chosen such that the the length scale of the structure
in the VCSEL to be controlled (2–3 m) is mapped to
a scale of the order of some tens of m, which can be
conveniently written within the photorefractive crystal.

The polarizing beamsplitter ensures the extraordinary
polarization necessary to exploit the strong electro-optic
coefficient r33 of the crystal. At the same time, it en-
ables the imaging onto the two cameras CCD1 and CCD2
by slightly tilting the incoming polarization using a half
wave plate. In this case, CCD1 shows the real space
image of the VCSEL while CCD2 is used to image the
Fourier space. Behind the crystal, the cavity contains a
dichroitic mirror to remove the green light of the lattice
beams from the feedback path. The removed light is then
used to image the lattice wave onto the camera CCD3.

Fig. 1(b) shows the corresponding periodic intensity
distribution (period d = 46 m) at the front face of
the crystal. According to the two plane waves used for
creation of the interference pattern, the Fourier image
(Fig. 1(c)) consists of two bright spots which also deter-
mine the borders of the first Brillouin zone of the induced
lattice. For illustration, the Brillouin zone edges are ad-
ditionally marked by two dashed lines in Fig. 1(c).

Wave propagation at these transverse wave numbers
is forbidden as a result of multiple Bragg reflections in-
side the lattice and leads to dark lines in the transmis-
sion spectrum [3]. The experimentally observed Brillouin
zone pictures for a one dimensional stripe pattern are
shown in Fig. 2 for two different wavelengths. In both
cases, the dark lines marking the borders of the first
Brillouin zone where the Bragg condition is satisfied are
clearly visible. Therefore, the induced structure can be
used to control the feedback and selectively suppress the
propagation of the off-axis modes at this specific trans-
verse wavenumber in the external cavity.

Due to the reconfigurability of the optically induced
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FIG. 3: VCSEL output in real space (left column) as well as
in Fourier space (right column). (a)/(b) Output without an
induced lattice; (c)/d) Output with lattice; (e)/(f) Output
after erasing the lattice with homogeneous white light illumi-
nation.

lattices, the filtering can be dynamically tuned to another
transverse wavenumber by simply changing the lattice
constant or even turned off completely by erasing the
lattice using homogeneous white light illumination.

The experimental results of this dynamic control of
off-axis modes with a specific transverse wave number
are summarized in Fig. 3. The VCSEL is driven close to
threshold (13.15 mA) such that there is no laser emission
without feedback. However, including the feedback path,
it starts lasing in the modulated state shown in Figs. 3(a)
and (b). In the far field (Fig. 3(b)), the emission con-
tains an on-axis spot centered around wavenumber zero
together with a set of off-axis modes. The corresponding
real space image consists of a localized spot in addition
to a modulated stripe pattern as shown in Fig. 3(a).

By applying an electric field of 1 kV/cm and the writ-
ing beams, a photonic lattice with a period of 46 m is
induced inside the photorefractive crystal. As demon-
strated in Figs. 3(c) and (d) the corresponding trans-
verse wavenumbers can be suppressed this way. The far
field now consists of one single spot at wavenumber zero
(Fig. 3(d)) while in the near field only the well defined
localized spot remains (Fig. 3(c)).

The dynamic tunability of our control technique is de-
picted in Figs. 3(e) and (f). The lattice-writing beams
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FIG. 2: Experimentally observed Brillouin zones for a one-
dimensional stripe pattern (period d = 16 m) at different
probe beam wavelengths; (a) 532 nm (b) 780 nm.

using a second lens. The cavity configuration corresponds
to a telescope providing self-imaging feedback and thus
preserving the high Fresnel number of the VCSEL [17].
After the second lens, a tilted plane wave emerging from
the VCSEL is again a tilted plane wave but the tilt an-
gle is decreased and hence the period of the interference
pattern is increased. The focal lengths of the lenses are
chosen such that the the length scale of the structure
in the VCSEL to be controlled (2–3 m) is mapped to
a scale of the order of some tens of m, which can be
conveniently written within the photorefractive crystal.

The polarizing beamsplitter ensures the extraordinary
polarization necessary to exploit the strong electro-optic
coefficient r33 of the crystal. At the same time, it en-
ables the imaging onto the two cameras CCD1 and CCD2
by slightly tilting the incoming polarization using a half
wave plate. In this case, CCD1 shows the real space
image of the VCSEL while CCD2 is used to image the
Fourier space. Behind the crystal, the cavity contains a
dichroitic mirror to remove the green light of the lattice
beams from the feedback path. The removed light is then
used to image the lattice wave onto the camera CCD3.

Fig. 1(b) shows the corresponding periodic intensity
distribution (period d = 46 m) at the front face of
the crystal. According to the two plane waves used for
creation of the interference pattern, the Fourier image
(Fig. 1(c)) consists of two bright spots which also deter-
mine the borders of the first Brillouin zone of the induced
lattice. For illustration, the Brillouin zone edges are ad-
ditionally marked by two dashed lines in Fig. 1(c).

Wave propagation at these transverse wave numbers
is forbidden as a result of multiple Bragg reflections in-
side the lattice and leads to dark lines in the transmis-
sion spectrum [3]. The experimentally observed Brillouin
zone pictures for a one dimensional stripe pattern are
shown in Fig. 2 for two different wavelengths. In both
cases, the dark lines marking the borders of the first
Brillouin zone where the Bragg condition is satisfied are
clearly visible. Therefore, the induced structure can be
used to control the feedback and selectively suppress the
propagation of the off-axis modes at this specific trans-
verse wavenumber in the external cavity.

Due to the reconfigurability of the optically induced
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FIG. 3: VCSEL output in real space (left column) as well as
in Fourier space (right column). (a)/(b) Output without an
induced lattice; (c)/d) Output with lattice; (e)/(f) Output
after erasing the lattice with homogeneous white light illumi-
nation.

lattices, the filtering can be dynamically tuned to another
transverse wavenumber by simply changing the lattice
constant or even turned off completely by erasing the
lattice using homogeneous white light illumination.

The experimental results of this dynamic control of
off-axis modes with a specific transverse wave number
are summarized in Fig. 3. The VCSEL is driven close to
threshold (13.15 mA) such that there is no laser emission
without feedback. However, including the feedback path,
it starts lasing in the modulated state shown in Figs. 3(a)
and (b). In the far field (Fig. 3(b)), the emission con-
tains an on-axis spot centered around wavenumber zero
together with a set of off-axis modes. The corresponding
real space image consists of a localized spot in addition
to a modulated stripe pattern as shown in Fig. 3(a).

By applying an electric field of 1 kV/cm and the writ-
ing beams, a photonic lattice with a period of 46 m is
induced inside the photorefractive crystal. As demon-
strated in Figs. 3(c) and (d) the corresponding trans-
verse wavenumbers can be suppressed this way. The far
field now consists of one single spot at wavenumber zero
(Fig. 3(d)) while in the near field only the well defined
localized spot remains (Fig. 3(c)).

The dynamic tunability of our control technique is de-
picted in Figs. 3(e) and (f). The lattice-writing beams
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describes free propagation of fields in the cavity,

Ĥext = i!
∫

d2xE
[
Â†

0(x) − Â0(x)
]

(5)

is due to the interaction with the external pump E, which
we choose to be real, and

Ĥint = i!g

2

∫
d2x

[
Â0(x)Â†2

1 (x) − Â†
0(x)Â2

1(x)
]

(6)

is the interaction term between first and second harmonic.
Density operators in state space can be mapped to

quasi-probability distribution densities on phase space.
These can be used to calculate ensemble averages of opera-
tors in defined orderings [25,26]. Using this “quantum-to-
classical” correspondence, equation (2) can be converted
into an equation of motion for a quasi-probability distribu-
tion in the phase-space of radiation fields αi(x), associated
with the operators Âi(x).

The presence of non-linearities leads to a functional
differential equation for the quasi-probability that is not
of the Fokker-Planck type, leading to difficulties in ob-
taining solutions [27]. The offending term for the system
of interest is Ĥint, which gives a functional term of the
form

[Â0(x)Â†2
1 (x) − h.c., ρ̂] ⇐⇒

(
sα0

δ2

δα2
1

+
1 − s2

4
δ3

δα2
1δα

∗
0

+
δ

δα0
α2

1 − 2α0α
∗
1

δ

δα1
+ c.c.

)
Ws. (7)

Here s denotes the operator ordering selected. We see that
third order derivatives appear in the temporal evolution of
the Wigner representation (s = 0). The approximate equa-
tions obtained simply dropping these third order terms
constitute the basis of stochastic electrodynamics [28]. This
approach works well in linear regimes, in which the Wigner
distribution satisfies a genuine Fokker-Planck equation. In
particular, in the DOPO below the threshold of signal gen-
eration the intensity of the signal is of the order of the
quantum noise, while the pump has a macroscopic mean
value, so that its fluctuations can be neglected. With the
assumption of a classical undepleted pump, the Hamilto-
nian that describes the quantum dynamics of the signal
is quadratic and the Langevin equation [27] – equivalent
to the Fokker Planck equation for Wigner representation
– can be analytically solved [13]. Recent investigations
have shown the limits of this stochastic electrodynamics
in reproducing quantum higher-order moments [29]. The
same type of approximation is generally possible above
threshold, linearizing around a pattern solution [16]. Due
to the in-homogeneity of the reference state, moreover,
only semi-analytical or numerical simulations can be pro-
vided. Above threshold great care has to be taken if the
system is translational invariant (flat mirrors and homo-
geneous transversal pump profile). The pattern solution
breaks the translational symmetry and therefore there is
a Goldstone mode which is neutrally stable [16]. Noise ex-
cites this mode, giving diffusion of the phase which fixes

the position of the pattern [16]. Moments involving such
big fluctuations cannot be correctly described within a lin-
earized treatment in the fields amplitudes. In particular,
such an approach leads to unphysically divergent quadra-
ture correlations, although correct results can be obtained
for the intensity correlations [18].

Another well-known quasi-probability is the P+ repre-
sentation [30], consisting in the extension of the normal
ordered P representation over a doubled phase space [31].
The P representation (s = 1 in Eq. (7)) suffers of nega-
tive diffusion in problems of interest, but the P+ generally
gives good results, with the advantage of the possibility
to obtain immediately also the moments outside the cav-
ity. However, in some systems this doubling phase-space
technique has shown divergent trajectories, as reviewed in
reference [32]. In particular, there are regimes in extended
systems – like the convective regime [20] – in which the
presence of large fluctuations around the unstable refer-
ence state would result in diverging trajectories in the P+

and alternative methods are needed.

In this paper we employ the Q-representation corre-
sponding to anti-normal ordering of field operators. The
most important property of this representation is that it
satisfies the requirements for a true probability distribu-
tion. In fact the Q-representation may be defined as the
diagonal matrix elements of the density operator in the
space of coherent states

Q(α0, α1) =
1
π
〈α0, α1|ρ̂|α0, α1〉 (8)

and so is both positive and bounded [26]. Due to the over
completeness of the coherent states ensemble, the def-
inition (8) uniquely determines the density operator ρ̂.
Physically this representation, resulting from a Gaussian
convolution of the Wigner representation, corresponds to
simultaneous measurements of orthogonal quadratures, as
limited by the Heisenberg principle, in a eight-port homo-
dyne detector [33]. From equation (7) (with s = −1) we
observe that the Q-representation suffers of negative diffu-
sion. Unlike the Wigner function, however, the Q-function
is always positive and well-behaved. The possibility to ob-
tain a positive solution in presence of a negative diffu-
sion [34] lies in the presence of a restricted ensemble of ini-
tial conditions, that cannot be arbitrarily narrow. In other
words, not all mathematical forms for the Q-function cor-
respond to physical states. The evolution of a physical
state – corresponding to an hermitian density operator –
in the Q-representation will always be positive [26,35]. We
should note that a Q-representation with a doubled phase-
space has been proposed in order to deal with negative
diffusion [36]. This has been shown to give good results in
some non-linear quantum systems [37].

In the next section we investigate the possibility to
use the Q-representation for devices consisting on a cav-
ity filled with a χ2 medium, as in the OPO and Second
Harmonic Generation (SHG).
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have to be addressed. First, from the conceptual point
of view one might ask if the quantum correlations are de-
graded by the subsidiary nonlinear processes of multimode
competition. In particular, can the twin beams that ap-
pear close to threshold be incoherently depleted by other
processes? If, however, quantum effects persist, then the
simple explanation in terms of emission of pairs of twin
photons needs to be revised. Secondly, and from a tech-
nical point of view, new calculation techniques or approx-
imations that go beyond linearized approximations need
to be developed.

We have previously examined these questions using
a time-dependent parametric approximation [20,21]. We
concluded that quantum correlations were strongly sup-
pressed in the noise-dominated convective regime [20].
However, in the regime of absolute instability we found
that non-classical correlations between the ±kc signal
beams persists in spite of nonlinear interactions with the
pump and with higher order harmonics of the signal [21].
This is still true in cases in which the mean intensity of
the two critical signal beams is different because of walk-
off [21]. Two limitations of our time dependent paramet-
ric approximation, which is well suited in the convective
regime, are that fluctuations in the pump are neglected
and that its validity is restricted to values relatively close
to threshold.

As an alternative approach we propose, in this paper,
the use of the Q-representation and its associated nonlin-
ear Langevin equations for c-number complex fields. With
this method we can study quantum spatial correlations in
the DOPO without any linearization, few mode approxi-
mation or time-dependent parametric approximation, for
values of the pump less than twice its threshold value. In
particular we can reach high pump values for which the
stationary classical solution for the signal field is not a
stripe pattern, but rather a homogeneous state with one
of two preferred phases. Spatial coexistence of domains
of these two homogeneous solutions separated by domain
walls gives rise to spatially disordered patterns (seemingly
chaotic). These have a broad spectrum in the far field for
both the pump and the signal field. This structure can-
not be described, not even as a first approximation, as
the interference of two twin beams of opposite transverse
critical wavenumber. This is because of other cascading
processes coupling many different modes and frequencies.
Nevertheless, we find that any ±k pair of modes in the
far field that lie within the active range of the broad spec-
trum show non-classical correlations. This seems to indi-
cate that the basic process of parametric down conversion
is behind correlations found even in these very compli-
cated spatial structures.

The paper is organized as follows. The quantum for-
mulation of the problem is presented in Section 2, where
phase space methods are briefly compared (Sect. 2.1) and
Langevin equations for the Q-representation are intro-
duced (Sect. 2.2). In Section 3 we briefly review relevant
classical results concerning the instabilities to pattern for-
mation and to homogeneous solutions well above thresh-
old. Our general aim is to study the quantum properties of

the correlations in regimes that have not been previously
studied. These include the critical point in presence of a
multimode interaction (Sect. 4), and the above threshold
region in presence of complex patterns (Sect. 5). We find
signatures of entanglement of the beams in the presence
of stripes influenced by the presence of higher harmon-
ics (Sect. 5.1). We show that such entanglement is not
only associated with a stripe pattern, but it is present
also in spatially disordered structures (Sect. 5.2). Finally
Section 6 is devoted to concluding remarks.

2 Quantum formulation of DOPO dynamics

To describe the intracavity dynamics in a DOPO we in-
troduce the boson spatial modes Â0(x, t) and Â1(x, t),
respectively at the pump frequency 2ω, and signal fre-
quency ω, and satisfying standard equal-time commuta-
tion relations [13]

[
Âi(x, t), Â†

j(x
′, t)

]
= δijδ(x − x′), i, j = 0, 1. (1)

Here x denotes the transverse coordinate(s). A Hamil-
tonian operator describes the interaction between these
modes in the non-linear medium. The intracavity fields
constitute an open device [22,23], modeled within a sta-
tistical approach in the Schrödinger picture by a Master
equation. In Section 2.1 we review the Master equation
of a DOPO. We then report on the possible phase-space
descriptions, introducing the Q-representation and the as-
sociated Langevin equations (Sect. 2.2).

2.1 Master equation and phase space descriptions

The intracavity dynamics of our open system is described
by a Master equation for the reduced density opera-
tor ρ̂ [22,23]:

∂ρ̂

∂t
=

1
i! [Ĥ, ρ̂] + Λ̂ρ̂. (2)

We consider a plane one-sided cavity, hence the Liouvillian
accounting for dissipation through the partially reflecting
mirror is given by

Λ̂ρ̂ =
∑

i=0,1

γi

∫
d2x

{
[Âi(x), ρ̂Â†

i (x)] + [Âi(x)ρ̂, Â†
i (x)]

}
·

The Hamiltonian operator, expressed as a function of
fields operators Â0(x, t) and Â1(x, t), is:

Ĥ = Ĥ0 + Ĥint + Ĥext (3)

where [24]

Ĥ0 = !
∫

d2x
∑

i=0,1

[
γiÂ

†
i (x)(∆i − ai∇2)Âi(x)

]
(4)
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describes free propagation of fields in the cavity,

Ĥext = i!
∫

d2xE
[
Â†

0(x) − Â0(x)
]

(5)

is due to the interaction with the external pump E, which
we choose to be real, and

Ĥint = i!g

2

∫
d2x

[
Â0(x)Â†2

1 (x) − Â†
0(x)Â2

1(x)
]

(6)

is the interaction term between first and second harmonic.
Density operators in state space can be mapped to

quasi-probability distribution densities on phase space.
These can be used to calculate ensemble averages of opera-
tors in defined orderings [25,26]. Using this “quantum-to-
classical” correspondence, equation (2) can be converted
into an equation of motion for a quasi-probability distribu-
tion in the phase-space of radiation fields αi(x), associated
with the operators Âi(x).

The presence of non-linearities leads to a functional
differential equation for the quasi-probability that is not
of the Fokker-Planck type, leading to difficulties in ob-
taining solutions [27]. The offending term for the system
of interest is Ĥint, which gives a functional term of the
form

[Â0(x)Â†2
1 (x) − h.c., ρ̂] ⇐⇒

(
sα0

δ2

δα2
1

+
1 − s2

4
δ3

δα2
1δα

∗
0

+
δ

δα0
α2

1 − 2α0α
∗
1

δ

δα1
+ c.c.

)
Ws. (7)

Here s denotes the operator ordering selected. We see that
third order derivatives appear in the temporal evolution of
the Wigner representation (s = 0). The approximate equa-
tions obtained simply dropping these third order terms
constitute the basis of stochastic electrodynamics [28]. This
approach works well in linear regimes, in which the Wigner
distribution satisfies a genuine Fokker-Planck equation. In
particular, in the DOPO below the threshold of signal gen-
eration the intensity of the signal is of the order of the
quantum noise, while the pump has a macroscopic mean
value, so that its fluctuations can be neglected. With the
assumption of a classical undepleted pump, the Hamilto-
nian that describes the quantum dynamics of the signal
is quadratic and the Langevin equation [27] – equivalent
to the Fokker Planck equation for Wigner representation
– can be analytically solved [13]. Recent investigations
have shown the limits of this stochastic electrodynamics
in reproducing quantum higher-order moments [29]. The
same type of approximation is generally possible above
threshold, linearizing around a pattern solution [16]. Due
to the in-homogeneity of the reference state, moreover,
only semi-analytical or numerical simulations can be pro-
vided. Above threshold great care has to be taken if the
system is translational invariant (flat mirrors and homo-
geneous transversal pump profile). The pattern solution
breaks the translational symmetry and therefore there is
a Goldstone mode which is neutrally stable [16]. Noise ex-
cites this mode, giving diffusion of the phase which fixes

the position of the pattern [16]. Moments involving such
big fluctuations cannot be correctly described within a lin-
earized treatment in the fields amplitudes. In particular,
such an approach leads to unphysically divergent quadra-
ture correlations, although correct results can be obtained
for the intensity correlations [18].

Another well-known quasi-probability is the P+ repre-
sentation [30], consisting in the extension of the normal
ordered P representation over a doubled phase space [31].
The P representation (s = 1 in Eq. (7)) suffers of nega-
tive diffusion in problems of interest, but the P+ generally
gives good results, with the advantage of the possibility
to obtain immediately also the moments outside the cav-
ity. However, in some systems this doubling phase-space
technique has shown divergent trajectories, as reviewed in
reference [32]. In particular, there are regimes in extended
systems – like the convective regime [20] – in which the
presence of large fluctuations around the unstable refer-
ence state would result in diverging trajectories in the P+

and alternative methods are needed.

In this paper we employ the Q-representation corre-
sponding to anti-normal ordering of field operators. The
most important property of this representation is that it
satisfies the requirements for a true probability distribu-
tion. In fact the Q-representation may be defined as the
diagonal matrix elements of the density operator in the
space of coherent states

Q(α0, α1) =
1
π
〈α0, α1|ρ̂|α0, α1〉 (8)

and so is both positive and bounded [26]. Due to the over
completeness of the coherent states ensemble, the def-
inition (8) uniquely determines the density operator ρ̂.
Physically this representation, resulting from a Gaussian
convolution of the Wigner representation, corresponds to
simultaneous measurements of orthogonal quadratures, as
limited by the Heisenberg principle, in a eight-port homo-
dyne detector [33]. From equation (7) (with s = −1) we
observe that the Q-representation suffers of negative diffu-
sion. Unlike the Wigner function, however, the Q-function
is always positive and well-behaved. The possibility to ob-
tain a positive solution in presence of a negative diffu-
sion [34] lies in the presence of a restricted ensemble of ini-
tial conditions, that cannot be arbitrarily narrow. In other
words, not all mathematical forms for the Q-function cor-
respond to physical states. The evolution of a physical
state – corresponding to an hermitian density operator –
in the Q-representation will always be positive [26,35]. We
should note that a Q-representation with a doubled phase-
space has been proposed in order to deal with negative
diffusion [36]. This has been shown to give good results in
some non-linear quantum systems [37].

In the next section we investigate the possibility to
use the Q-representation for devices consisting on a cav-
ity filled with a χ2 medium, as in the OPO and Second
Harmonic Generation (SHG).
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have to be addressed. First, from the conceptual point
of view one might ask if the quantum correlations are de-
graded by the subsidiary nonlinear processes of multimode
competition. In particular, can the twin beams that ap-
pear close to threshold be incoherently depleted by other
processes? If, however, quantum effects persist, then the
simple explanation in terms of emission of pairs of twin
photons needs to be revised. Secondly, and from a tech-
nical point of view, new calculation techniques or approx-
imations that go beyond linearized approximations need
to be developed.

We have previously examined these questions using
a time-dependent parametric approximation [20,21]. We
concluded that quantum correlations were strongly sup-
pressed in the noise-dominated convective regime [20].
However, in the regime of absolute instability we found
that non-classical correlations between the ±kc signal
beams persists in spite of nonlinear interactions with the
pump and with higher order harmonics of the signal [21].
This is still true in cases in which the mean intensity of
the two critical signal beams is different because of walk-
off [21]. Two limitations of our time dependent paramet-
ric approximation, which is well suited in the convective
regime, are that fluctuations in the pump are neglected
and that its validity is restricted to values relatively close
to threshold.

As an alternative approach we propose, in this paper,
the use of the Q-representation and its associated nonlin-
ear Langevin equations for c-number complex fields. With
this method we can study quantum spatial correlations in
the DOPO without any linearization, few mode approxi-
mation or time-dependent parametric approximation, for
values of the pump less than twice its threshold value. In
particular we can reach high pump values for which the
stationary classical solution for the signal field is not a
stripe pattern, but rather a homogeneous state with one
of two preferred phases. Spatial coexistence of domains
of these two homogeneous solutions separated by domain
walls gives rise to spatially disordered patterns (seemingly
chaotic). These have a broad spectrum in the far field for
both the pump and the signal field. This structure can-
not be described, not even as a first approximation, as
the interference of two twin beams of opposite transverse
critical wavenumber. This is because of other cascading
processes coupling many different modes and frequencies.
Nevertheless, we find that any ±k pair of modes in the
far field that lie within the active range of the broad spec-
trum show non-classical correlations. This seems to indi-
cate that the basic process of parametric down conversion
is behind correlations found even in these very compli-
cated spatial structures.

The paper is organized as follows. The quantum for-
mulation of the problem is presented in Section 2, where
phase space methods are briefly compared (Sect. 2.1) and
Langevin equations for the Q-representation are intro-
duced (Sect. 2.2). In Section 3 we briefly review relevant
classical results concerning the instabilities to pattern for-
mation and to homogeneous solutions well above thresh-
old. Our general aim is to study the quantum properties of

the correlations in regimes that have not been previously
studied. These include the critical point in presence of a
multimode interaction (Sect. 4), and the above threshold
region in presence of complex patterns (Sect. 5). We find
signatures of entanglement of the beams in the presence
of stripes influenced by the presence of higher harmon-
ics (Sect. 5.1). We show that such entanglement is not
only associated with a stripe pattern, but it is present
also in spatially disordered structures (Sect. 5.2). Finally
Section 6 is devoted to concluding remarks.

2 Quantum formulation of DOPO dynamics

To describe the intracavity dynamics in a DOPO we in-
troduce the boson spatial modes Â0(x, t) and Â1(x, t),
respectively at the pump frequency 2ω, and signal fre-
quency ω, and satisfying standard equal-time commuta-
tion relations [13]

[
Âi(x, t), Â†

j(x
′, t)

]
= δijδ(x − x′), i, j = 0, 1. (1)

Here x denotes the transverse coordinate(s). A Hamil-
tonian operator describes the interaction between these
modes in the non-linear medium. The intracavity fields
constitute an open device [22,23], modeled within a sta-
tistical approach in the Schrödinger picture by a Master
equation. In Section 2.1 we review the Master equation
of a DOPO. We then report on the possible phase-space
descriptions, introducing the Q-representation and the as-
sociated Langevin equations (Sect. 2.2).

2.1 Master equation and phase space descriptions

The intracavity dynamics of our open system is described
by a Master equation for the reduced density opera-
tor ρ̂ [22,23]:

∂ρ̂

∂t
=

1
i! [Ĥ, ρ̂] + Λ̂ρ̂. (2)

We consider a plane one-sided cavity, hence the Liouvillian
accounting for dissipation through the partially reflecting
mirror is given by

Λ̂ρ̂ =
∑

i=0,1

γi

∫
d2x

{
[Âi(x), ρ̂Â†

i (x)] + [Âi(x)ρ̂, Â†
i (x)]

}
·

The Hamiltonian operator, expressed as a function of
fields operators Â0(x, t) and Â1(x, t), is:

Ĥ = Ĥ0 + Ĥint + Ĥext (3)

where [24]

Ĥ0 = !
∫

d2x
∑

i=0,1

[
γiÂ

†
i (x)(∆i − ai∇2)Âi(x)

]
(4)
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E = 0.999 E = 1 E = 1.1 E = 1.5
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Fig. 1. Spatiotemporal evolution of the real part of the near field (NF) and of the intensity of the far field (FF) (in log scale), for
different values of the pump E = 0.999, 1, 1.1, 1.5. The FF intensity is defined as |αi(k)|2, where αi(k) is the Fourier transform
of the near field αi(x). The horizontal coordinate is the transversal position (x in NF and k in FF) describes by 64 points, and
the vertical one is the time interval 107 (in γ units), using a discretization time step of ∆t = 0.01. The initial condition for the
signal is α1(x, 0) = 10−5(ε(x) + 10 sin(kcx)) with ε(x) Gaussian random numbers of variance one.

pump A0 and signal A1 fields are resonated, is described
classically by equations identical to equations (12, 13) but
neglecting the noise terms. The classical equations have a
trivial homogeneous solution

Ast
1 = 0, Ast

0 =
E

1 + i∆0
· (18)

A linear stability analysis around this solution gives the
following dispersion relation for the growth of the signal
field perturbations with wave vector k (the pump field A0

is always stable) [5]

λ1(k) = −1 ±
√
|Ast

0 |2 − (∆1 + 2k2). (19)

For negative signal detunings, the zero homogeneous so-
lution becomes unstable at E = Ec =

√
1 + ∆2

0. The
perturbations with maximum growth rate are those with
wave number |kc| =

√
−∆1/2, and a pattern with this

wave number is formed at threshold [5]. For positive sig-
nal detunings the zero homogeneous solution is stable for
E < Ec =

√
(1 + ∆2

0)(1 + ∆2
1). In this case the instabil-

ity takes place at zero wave number leading to a non zero
homogeneous solution [40]

Ast
1 = ±

√
E|Ast

1 |2
(1 + i∆0)(1 + i∆1) + |Ast

1 |2
(20)

Ast
0 =

E(1 + i∆1)
(1 + i∆0)(1 + i∆1) + |Ast

1 |2
· (21)

There are two equivalent solutions for the signal field with
a π phase difference.

In this paper we will consider the case of zero pump
detuning (∆0 = 0) and negative signal detuning (∆1 < 0),
in which stripe pattern arises at threshold (Ec = 1). In-
creasing further the pump the nonzero homogeneous so-
lutions (20) become stable. In fact, we observe they are
stable for pump values around E = 1.1. This is lower
than the value at which the stripe pattern becomes lin-
early unstable [41,42]. Numerical studies in this regime
find multistability between the stripe pattern, the two

nonzero homogeneous solutions and several irregular spa-
tially modulated solutions. The latter are formed by fronts
with oscillatory tails connecting the two equivalent homo-
geneous solutions. In systems with two spatial dimensions,
there are also coexisting labyrinthine patterns. In this case
(D = 2) both the irregular spatially modulated solutions
and the labyrinthine patterns cease to exist at the modu-
lational instability of a flat front connecting the two homo-
geneous solutions [42,43]. Here we consider systems with
only one spatial dimension for which such an instability
does not exist. This means that the regime of multista-
bility in parameter space is much larger. The irregular
spatially modulated solutions found in this system are an
example of frozen chaos as described in reference [44]. In
that case the interaction of two distant fronts can be de-
scribed by a potential with several wells which become
progressively deeper as the distances between the fronts
decreases. The OPO cannot be described in terms of such
potentials, but numerical studies reveal equilibrium dis-
tances whenever the maxima (or the minima) of the local
oscillations of the front overlap with each other [41,42].

4 Quantum correlations below
and at threshold

The spatiotemporal dynamics of the signal field is shown
in Figure 1 for two relevant values of the pump, below but
near to threshold (quantum images regime), E = 0.999
and at threshold (E = 1). The far field (FF) shows strong
fluctuations dominated by the critical wave-vector: in Sec-
tions 4.1 and 4.2 we discuss the quadratures and intensity
quantum correlations of these modes.

4.1 Quadrature correlations

The direction in which quadrature squeezing appears is
determined by the eigenfunction V±(k,−k) of the linear
problem ∂tV±(k,−k) = λ±(k)V±(k,−k), as reported in

threshold inhibition -FOR DOWN CONVERSION & MI-

I0=0

Gomila, Oppo, PRE 72, 016614 (2005)

I1=0.5 I0=0
kp=2kc
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Fig. 1. Spatiotemporal evolution of the real part of the near field (NF) and of the intensity of the far field (FF) (in log scale), for
different values of the pump E = 0.999, 1, 1.1, 1.5. The FF intensity is defined as |αi(k)|2, where αi(k) is the Fourier transform
of the near field αi(x). The horizontal coordinate is the transversal position (x in NF and k in FF) describes by 64 points, and
the vertical one is the time interval 107 (in γ units), using a discretization time step of ∆t = 0.01. The initial condition for the
signal is α1(x, 0) = 10−5(ε(x) + 10 sin(kcx)) with ε(x) Gaussian random numbers of variance one.

pump A0 and signal A1 fields are resonated, is described
classically by equations identical to equations (12, 13) but
neglecting the noise terms. The classical equations have a
trivial homogeneous solution

Ast
1 = 0, Ast

0 =
E

1 + i∆0
· (18)

A linear stability analysis around this solution gives the
following dispersion relation for the growth of the signal
field perturbations with wave vector k (the pump field A0

is always stable) [5]

λ1(k) = −1 ±
√
|Ast

0 |2 − (∆1 + 2k2). (19)

For negative signal detunings, the zero homogeneous so-
lution becomes unstable at E = Ec =

√
1 + ∆2

0. The
perturbations with maximum growth rate are those with
wave number |kc| =

√
−∆1/2, and a pattern with this

wave number is formed at threshold [5]. For positive sig-
nal detunings the zero homogeneous solution is stable for
E < Ec =

√
(1 + ∆2

0)(1 + ∆2
1). In this case the instabil-

ity takes place at zero wave number leading to a non zero
homogeneous solution [40]

Ast
1 = ±

√
E|Ast

1 |2
(1 + i∆0)(1 + i∆1) + |Ast

1 |2
(20)

Ast
0 =

E(1 + i∆1)
(1 + i∆0)(1 + i∆1) + |Ast

1 |2
· (21)

There are two equivalent solutions for the signal field with
a π phase difference.

In this paper we will consider the case of zero pump
detuning (∆0 = 0) and negative signal detuning (∆1 < 0),
in which stripe pattern arises at threshold (Ec = 1). In-
creasing further the pump the nonzero homogeneous so-
lutions (20) become stable. In fact, we observe they are
stable for pump values around E = 1.1. This is lower
than the value at which the stripe pattern becomes lin-
early unstable [41,42]. Numerical studies in this regime
find multistability between the stripe pattern, the two

nonzero homogeneous solutions and several irregular spa-
tially modulated solutions. The latter are formed by fronts
with oscillatory tails connecting the two equivalent homo-
geneous solutions. In systems with two spatial dimensions,
there are also coexisting labyrinthine patterns. In this case
(D = 2) both the irregular spatially modulated solutions
and the labyrinthine patterns cease to exist at the modu-
lational instability of a flat front connecting the two homo-
geneous solutions [42,43]. Here we consider systems with
only one spatial dimension for which such an instability
does not exist. This means that the regime of multista-
bility in parameter space is much larger. The irregular
spatially modulated solutions found in this system are an
example of frozen chaos as described in reference [44]. In
that case the interaction of two distant fronts can be de-
scribed by a potential with several wells which become
progressively deeper as the distances between the fronts
decreases. The OPO cannot be described in terms of such
potentials, but numerical studies reveal equilibrium dis-
tances whenever the maxima (or the minima) of the local
oscillations of the front overlap with each other [41,42].

4 Quantum correlations below
and at threshold

The spatiotemporal dynamics of the signal field is shown
in Figure 1 for two relevant values of the pump, below but
near to threshold (quantum images regime), E = 0.999
and at threshold (E = 1). The far field (FF) shows strong
fluctuations dominated by the critical wave-vector: in Sec-
tions 4.1 and 4.2 we discuss the quadratures and intensity
quantum correlations of these modes.

4.1 Quadrature correlations

The direction in which quadrature squeezing appears is
determined by the eigenfunction V±(k,−k) of the linear
problem ∂tV±(k,−k) = λ±(k)V±(k,−k), as reported in

threshold inhibition -FOR DOWN CONVERSION & MI-

I0=0

Gomila, Oppo, PRE 72, 016614 (2005)

I1=0.5

for negative        emission of tilted waves
,kc

,kc
signal detuning

I0=0
kp=2kc

maximum at kp=2kc
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PARAMETRIC THRESHOLD

I0=I1, kp=2kcI0=0, kp=2kc

threshold lowering  

depending on the relative amplitude of 
modulation in pump and signal detu-
nings, the threshold value can be in-
creased (inhibition of the instability) or 
decreased (enhancement of the para-
metric effect for a given E).  

why? PC excites harmonic of critical mode kp=2kc....
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pump profile and signal pattern

CASE:  I0=I1, kp=2kc

Figure 1: In black is at initial time and in dashed green, the final time. 1)Homogeneous case for

Emax = 0.99 (below its threshold). 2)Homogeneous case for Emax = 1.01 (above its threshold).
3)Modulation intensities I0 = I1 = 0.5 for Emax = 0.95 (below its threshold). 4)Modulation

intensities I0 = I1 = 0.5 for Emax = 0.97 (above its threshold).5)Modulation intensities I0 =
I1 = 1.0 for Emax = 1.02 (below its threshold). 6)Modulation intensities I0 = I1 = 1.0 for
Emax = 1.04 (above its threshold)

4

Figure 1: In black is at initial time and in dashed green, the final time. 1)Homogeneous case for

Emax = 0.99 (below its threshold). 2)Homogeneous case for Emax = 1.01 (above its threshold).
3)Modulation intensities I0 = I1 = 0.5 for Emax = 0.95 (below its threshold). 4)Modulation

intensities I0 = I1 = 0.5 for Emax = 0.97 (above its threshold).5)Modulation intensities I0 =
I1 = 1.0 for Emax = 1.02 (below its threshold). 6)Modulation intensities I0 = I1 = 1.0 for
Emax = 1.04 (above its threshold)
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PC excites harmonic of critical mode kp=2kc
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1% BELOW THRESHOLD: QUANTUM IMAGES

Figure 1. Instability threshold obtained with photonic crystals as in Eq. (14) for ∆0 = 0, I0 = 0, kp = 2kc and ∆1 = −1
(left) and I1 = 0.5 (right).

counterpart of Eqs. (8). In Fig. 1 we show the instability threshold obtained in the case of detuning modulation
only in the signal field (I0 = 0). The stability analysis in this case is the same of a singly resonant DOPO, and
the instability threshold has been analytically obtained by Gomila and Oppo.12 The DOPO threshold in this
case is always increased with respect to the case without photonic crystal, whose value would be Ethr = 1. The
photonic crystal has, therefore, the effect of inhibiting the instability. Inhibition was also observed in the case
of a cubic instead of a quadratic non linearity,11 suggesting that this is a general effect of photonic crystals.
We find, however, that this is not the case. The analysis of the DOPO’s in which the modulation appears in
the pump detuning instead of the signal, or in both fields, shows a more complex scenario. The threshold, for
some parameters values, is found to be lowered by the presence of the photonic crystal, instead of being raised.
With respect to what shown in Fig. 1 the threshold is found to be a non monotonic function of the modulation
intensities Ii. As an example, for modulation frequency of the detuning at twice the critical one, kp = 2kc,
numerically evaluated thresholds for I0 = I1 = 0.5 is found at Eth ! 0.96 and for I0 = I1 = 1.0 is raised to
Eth ! 1.03.

In Fig. 2 we present results obtained by numerical simulation of the Langevin Eqs. (8). The integration
method is described in previous papers.8,10,21 We show the average far field intensities for the pump and the
signal light fields, just below threshold. In particular, instabilities occur just above the values E = 0.95, 1.02, and

Figure 2. Logarithm of the pump (a,b,c) and signal (d,e,f) far field. Parameters: ∆0 = 0, ∆1 = −1 and kp = 2kc. Three
different cases, all of them below the respective thresholds: for I0 = I1 = 0.5 with E = 0.95, for I0 = 0.0 and I1 = 0.5
with E = 1.02, for I0 = 0.5 and I1 = 0.0 with E = 0.93.

0               1

average far field intensity

kc

kp

kp=2kc
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Figure 1. Instability threshold obtained with photonic crystals as in Eq. (14) for ∆0 = 0, I0 = 0, kp = 2kc and ∆1 = −1
(left) and I1 = 0.5 (right).

counterpart of Eqs. (8). In Fig. 1 we show the instability threshold obtained in the case of detuning modulation
only in the signal field (I0 = 0). The stability analysis in this case is the same of a singly resonant DOPO, and
the instability threshold has been analytically obtained by Gomila and Oppo.12 The DOPO threshold in this
case is always increased with respect to the case without photonic crystal, whose value would be Ethr = 1. The
photonic crystal has, therefore, the effect of inhibiting the instability. Inhibition was also observed in the case
of a cubic instead of a quadratic non linearity,11 suggesting that this is a general effect of photonic crystals.
We find, however, that this is not the case. The analysis of the DOPO’s in which the modulation appears in
the pump detuning instead of the signal, or in both fields, shows a more complex scenario. The threshold, for
some parameters values, is found to be lowered by the presence of the photonic crystal, instead of being raised.
With respect to what shown in Fig. 1 the threshold is found to be a non monotonic function of the modulation
intensities Ii. As an example, for modulation frequency of the detuning at twice the critical one, kp = 2kc,
numerically evaluated thresholds for I0 = I1 = 0.5 is found at Eth ! 0.96 and for I0 = I1 = 1.0 is raised to
Eth ! 1.03.

In Fig. 2 we present results obtained by numerical simulation of the Langevin Eqs. (8). The integration
method is described in previous papers.8,10,21 We show the average far field intensities for the pump and the
signal light fields, just below threshold. In particular, instabilities occur just above the values E = 0.95, 1.02, and

Figure 2. Logarithm of the pump (a,b,c) and signal (d,e,f) far field. Parameters: ∆0 = 0, ∆1 = −1 and kp = 2kc. Three
different cases, all of them below the respective thresholds: for I0 = I1 = 0.5 with E = 0.95, for I0 = 0.0 and I1 = 0.5
with E = 1.02, for I0 = 0.5 and I1 = 0.0 with E = 0.93.
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Figure 11: I0 = I1 = 0.5 and Np = 1: Emax ! 1.08 (below its threshold)

13

multimode noisy precursors

QUANTUM IMAGES WITH HARMONICS

1.4 Optical quantum structures 35

in the transverse profile of the near field (a) and of the far field (b) of a type I OPO below threshold.

The quantum images are similar to the noisy precursors presented in the Sect.1.3.2: however in the

quantum images noise has a quantum nature [Gatti & al. (97)2]. An extensive literature is devoted

to the analysis of the quantum images generated by quantum fluctuations in several optical devices

[Gatti & Lugiato, Lugiato & al. (96), Marzoli & al., Gatti & al. (97)1, Lugiato & al. (97), Gatti & al. (99)a,

Lugiato & al. (99), Szwaj & al., Lodahl & Saffman, Bache & al.]. In these papers a description of this

phenomenon is given taking into account the whole infinite set of transverse cavity modes (continu-

ous models) in the fluctuation field operators, and linearizing the dynamics around the homogeneous

steady states.

Most features of the intensity correlations between different spatial modes below the threshold of

pattern formation are due to the microscopic process of generation of twin photons. For instance, in the

case of the OPOwith a flat pump, an approximated quadratic Hamiltonian can be introduced to describe

the small fluctuations around the stable homogeneous solution. The fundamental interaction consists

in the destruction of homogeneous pump photons, to create tilted signal photons, with any opposite

transverse moments [Gatti & Lugiato, Gatti & al. (97)1, Szwaj & al.]. The linearized Hamiltonian in type

I phase matching (see Appendix B) is

Ĥ = i
g
2
A0

∫
d2!k

[
ˆ

A†
1(

!k)
ˆ

A†
1(−!k)− h.c.

]
(1.57)

where A0 is the homogeneous constant classical pump, and Â1(!k) are the continuous of far field trans-

verse modes in the down-converted beam. This Hamiltonian describes the simultaneous generation

of photons pairs with opposite transverse momentum ±!k, where !k varies continuously in the far field

plane. Hence twin beams correlations are found measuring the intensity difference in any symmetric

portions of the far field (see two circles in Fig.1.15b). The less damped modes lie on the circle of

radius kc (precursors of the wavenumber that becomes unstable at threshold) and are more intense

(Fig.1.15b). But the intensity difference of any two opposite modes show the same amount of noise

reduction with respect to the shot noise level. An example of intensity correlations due to twin photons

processes in the quantum images regime is presented in Ch.5.

Figure 1.15: Near Field (a) and
far field (b) of the down-converted
field of a type I OPO, 2% below
threshold. In (b) the two small cir-
cles correspond to symmetric re-
gions.

kc

Re(A1(x,y)) Re(A1(kx,ky)) kc=kp

2kc

changing PC periodicity from                       tokp=2kc kp=kc

PC changes the spatial distribution of the spontaneous emission

harmonic
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NF quantum fluctuations in real part of signal 1% below threshold

BELOW THRESHOLD: QUANTUM IMAGES

PC            TRANSLATIONAL SYMMETRY BREAKING

no PC or I1

0              

FF

undamped fluctuations
 at kc, phase diffusion

undamped fluctuations in locked modes below threshold
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TWIN BEAMS CORRELATIONS
OPO without PC

below threshold above threshold

INTENSE 
TWIN BEAMS

PRESERVED TWIN BEAMS 
CORRELATIONS IN INTENSE MODES

SECONDARY PROCESSES: 
uncoherent symmetric photons.  
DECREASED CORRELATIONS 

BETWEEN TWIN BEAMS

...

Zambrini, Barnett, Colet, San Miguel, EPJD 22, 461 (2003) 
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reference [20]:

V±(k,−k) = eiΦ±δA1(k) ± δA∗
1(−k) (22)

eiΦ±(k) = ∓
i∆1 + 2ik2 ∓

√
|Ast

0 |2 − (∆1 + 2k2)2

Ast
0

·

The solution V+(k,−k) gives the direction of amplifica-
tion of fluctuations, while fluctuations are damped for
V−(k,−k), giving rise to quadrature squeezing. In partic-
ular, for the critical wave-vector kc and for our choice of
parameter (real Ast

0 ) we obtain V±(kc,−kc) = δA1(kc) ±
δA∗

1(−kc). Therefore, the largest squeezing at threshold
will be in the difference of real parts and the sum of imag-
inary parts of the field for wave-numbers kc and −kc.

We define the real quadrature operator:

X̂(k) = Â1(k) + Â†
1(k) (23)

and the quadrature superpositions

X̂−(k) = X̂(k) − X̂(−k) (24)
X̂+(k) = X̂(k) + X̂(−k), (25)

corresponding, respectively, to damped and undamped
quantities at threshold for k = kc.

Below threshold, within a linearization approxima-
tion [13], the normal-ordered variances normalized to the
shot noise (NX) [45] are:

〈: (X̂−(kc))2 :〉
NX

=
−E

1 + E
(26)

〈: (X̂+(kc))2 :〉
NX

=
E

1 − E
· (27)

These quantities coincide with the variances since the
mean values are zero: 〈X̂±(k)〉 = 0. The normal order-
ing allows us to immediately identify non-classical fea-
tures associated with squeezing such as negative variances.
Equation (26) shows an increasing degree of squeezing,
approaching the value −0.5 at threshold. In Figure 2 the-
oretical predictions and numerical results are shown to
be in good agreement, confirming the validity of equa-
tions (12, 13) below threshold. On the other hand equa-
tion (27) is always positive indicating that the the fluctua-
tions in the direction of instability are essentially classical
and larger than those found for a coherent state. In Fig-
ure 3 we show the agreement between theoretical predic-
tions and numerical results for the undamped quadrature,
even as close as 1 to threshold. The limits of the linear
treatment, discussed above, are now evident in the diver-
gence of equation (27) for E → 1. In contrast, numerical
simulation of the nonlinear equations (12, 13) gives the
expected saturation at the critical point, at a value which
depends on the noise level.

4.2 Intensity correlations

We can find non-classical features in the intensities of the
twin beams by evaluating the normal-ordered variance in

Fig. 2. Normal ordered variance of the damped quadrature
X̂−(kc) normalized to shot noise: diamonds are results ob-
tained by numerical simulation, while the continuous line cor-
responds to the analytical expression equation (26). For any
trajectory at given pump intensity, we average during a time
of 107, integrating with a time discretization of 10−3 (with time
scaled as in Eq. (11)).

Fig. 3. Variance of the undamped quadrature X̂+(kc): the
diamonds are results obtained with numerical simulation, while
the continuous line corresponds to the analytical expression
(Eq. (27)). At the last point, corresponding to E = 1, the linear
treatment gives an infinite variance (the asymptotic behavior
is represented by a dashed line), while our non-linear treatment
gives the expected saturation.

the difference of the two intensities:

V(k) =
〈: [δN̂1(k) − δN̂1(−k)]2 :〉

NN (k)
, (28)

normalized to the corresponding shot noise value NN (k).
This value is proportional to the sum of the intensities
of the two beams with wavevectors ±k. Negative values
of V indicate sub-Poissonian statistics for the intensity
difference of the two signal beams at ±k [21]. In a lin-
ear analytical treatment below threshold V(k) = −0.5,
independently of the pump intensity and of the wave-
vector [13,21]. In other words the normalized intensity
correlations, equation (28), do not show a non-classical
behavior which is stronger for the critical wave vector or
at the critical point. This is in contrast with the behavior
of the quadratures correlations equations (26, 27). Nev-
ertheless, the critical conditions are of significant interest
because of presence of higher intensities.

The numerical expression of V(k) for different spatial
modes (0 < k ≤ 5kc) is compared, in Figure 4, with the

analytical result
-0.5
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TWIN BEAMS CORRELATIONS (with PC)

I0 = 0.0 and I1 = 0.5 with E = 1.02 (triangles) 
I0 = I1 = 0.5 with E = 0.95 (stars)
I0 = 0.5 and I1 = 0.0 with E = 0.93 (crosses). 

np=2

I_0=I_1=0.5 con E=1.08 (triangles)
I0=0, I1=0.5 con E=0.99 

np=1
below threshold

PC is at the origin of multimode processes even below threshold: 
incoherent processes degrade twin beams correlations
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reference [20]:

V±(k,−k) = eiΦ±δA1(k) ± δA∗
1(−k) (22)

eiΦ±(k) = ∓
i∆1 + 2ik2 ∓

√
|Ast

0 |2 − (∆1 + 2k2)2

Ast
0

·

The solution V+(k,−k) gives the direction of amplifica-
tion of fluctuations, while fluctuations are damped for
V−(k,−k), giving rise to quadrature squeezing. In partic-
ular, for the critical wave-vector kc and for our choice of
parameter (real Ast

0 ) we obtain V±(kc,−kc) = δA1(kc) ±
δA∗

1(−kc). Therefore, the largest squeezing at threshold
will be in the difference of real parts and the sum of imag-
inary parts of the field for wave-numbers kc and −kc.

We define the real quadrature operator:

X̂(k) = Â1(k) + Â†
1(k) (23)

and the quadrature superpositions

X̂−(k) = X̂(k) − X̂(−k) (24)
X̂+(k) = X̂(k) + X̂(−k), (25)

corresponding, respectively, to damped and undamped
quantities at threshold for k = kc.

Below threshold, within a linearization approxima-
tion [13], the normal-ordered variances normalized to the
shot noise (NX) [45] are:

〈: (X̂−(kc))2 :〉
NX

=
−E

1 + E
(26)

〈: (X̂+(kc))2 :〉
NX

=
E

1 − E
· (27)

These quantities coincide with the variances since the
mean values are zero: 〈X̂±(k)〉 = 0. The normal order-
ing allows us to immediately identify non-classical fea-
tures associated with squeezing such as negative variances.
Equation (26) shows an increasing degree of squeezing,
approaching the value −0.5 at threshold. In Figure 2 the-
oretical predictions and numerical results are shown to
be in good agreement, confirming the validity of equa-
tions (12, 13) below threshold. On the other hand equa-
tion (27) is always positive indicating that the the fluctua-
tions in the direction of instability are essentially classical
and larger than those found for a coherent state. In Fig-
ure 3 we show the agreement between theoretical predic-
tions and numerical results for the undamped quadrature,
even as close as 1 to threshold. The limits of the linear
treatment, discussed above, are now evident in the diver-
gence of equation (27) for E → 1. In contrast, numerical
simulation of the nonlinear equations (12, 13) gives the
expected saturation at the critical point, at a value which
depends on the noise level.

4.2 Intensity correlations

We can find non-classical features in the intensities of the
twin beams by evaluating the normal-ordered variance in

Fig. 2. Normal ordered variance of the damped quadrature
X̂−(kc) normalized to shot noise: diamonds are results ob-
tained by numerical simulation, while the continuous line cor-
responds to the analytical expression equation (26). For any
trajectory at given pump intensity, we average during a time
of 107, integrating with a time discretization of 10−3 (with time
scaled as in Eq. (11)).

Fig. 3. Variance of the undamped quadrature X̂+(kc): the
diamonds are results obtained with numerical simulation, while
the continuous line corresponds to the analytical expression
(Eq. (27)). At the last point, corresponding to E = 1, the linear
treatment gives an infinite variance (the asymptotic behavior
is represented by a dashed line), while our non-linear treatment
gives the expected saturation.

the difference of the two intensities:

V(k) =
〈: [δN̂1(k) − δN̂1(−k)]2 :〉

NN (k)
, (28)

normalized to the corresponding shot noise value NN (k).
This value is proportional to the sum of the intensities
of the two beams with wavevectors ±k. Negative values
of V indicate sub-Poissonian statistics for the intensity
difference of the two signal beams at ±k [21]. In a lin-
ear analytical treatment below threshold V(k) = −0.5,
independently of the pump intensity and of the wave-
vector [13,21]. In other words the normalized intensity
correlations, equation (28), do not show a non-classical
behavior which is stronger for the critical wave vector or
at the critical point. This is in contrast with the behavior
of the quadratures correlations equations (26, 27). Nev-
ertheless, the critical conditions are of significant interest
because of presence of higher intensities.

The numerical expression of V(k) for different spatial
modes (0 < k ≤ 5kc) is compared, in Figure 4, with the

above threshold similar!
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MOMENTUM CONSERVATION
twin beams correlations conservation of transverse momentum

Grynberg & Lugiato (1993), Gomila &Colet (2002)

quantum effect depends on (translational) symmetry and conservation (of momentum)

0               1

kc=2kp

NO PC
perfect below threshold
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reference [20]:

V±(k,−k) = eiΦ±δA1(k) ± δA∗
1(−k) (22)

eiΦ±(k) = ∓
i∆1 + 2ik2 ∓

√
|Ast

0 |2 − (∆1 + 2k2)2

Ast
0

·

The solution V+(k,−k) gives the direction of amplifica-
tion of fluctuations, while fluctuations are damped for
V−(k,−k), giving rise to quadrature squeezing. In partic-
ular, for the critical wave-vector kc and for our choice of
parameter (real Ast

0 ) we obtain V±(kc,−kc) = δA1(kc) ±
δA∗

1(−kc). Therefore, the largest squeezing at threshold
will be in the difference of real parts and the sum of imag-
inary parts of the field for wave-numbers kc and −kc.

We define the real quadrature operator:

X̂(k) = Â1(k) + Â†
1(k) (23)

and the quadrature superpositions

X̂−(k) = X̂(k) − X̂(−k) (24)
X̂+(k) = X̂(k) + X̂(−k), (25)

corresponding, respectively, to damped and undamped
quantities at threshold for k = kc.

Below threshold, within a linearization approxima-
tion [13], the normal-ordered variances normalized to the
shot noise (NX) [45] are:

〈: (X̂−(kc))2 :〉
NX

=
−E

1 + E
(26)

〈: (X̂+(kc))2 :〉
NX

=
E

1 − E
· (27)

These quantities coincide with the variances since the
mean values are zero: 〈X̂±(k)〉 = 0. The normal order-
ing allows us to immediately identify non-classical fea-
tures associated with squeezing such as negative variances.
Equation (26) shows an increasing degree of squeezing,
approaching the value −0.5 at threshold. In Figure 2 the-
oretical predictions and numerical results are shown to
be in good agreement, confirming the validity of equa-
tions (12, 13) below threshold. On the other hand equa-
tion (27) is always positive indicating that the the fluctua-
tions in the direction of instability are essentially classical
and larger than those found for a coherent state. In Fig-
ure 3 we show the agreement between theoretical predic-
tions and numerical results for the undamped quadrature,
even as close as 1 to threshold. The limits of the linear
treatment, discussed above, are now evident in the diver-
gence of equation (27) for E → 1. In contrast, numerical
simulation of the nonlinear equations (12, 13) gives the
expected saturation at the critical point, at a value which
depends on the noise level.

4.2 Intensity correlations

We can find non-classical features in the intensities of the
twin beams by evaluating the normal-ordered variance in

Fig. 2. Normal ordered variance of the damped quadrature
X̂−(kc) normalized to shot noise: diamonds are results ob-
tained by numerical simulation, while the continuous line cor-
responds to the analytical expression equation (26). For any
trajectory at given pump intensity, we average during a time
of 107, integrating with a time discretization of 10−3 (with time
scaled as in Eq. (11)).

Fig. 3. Variance of the undamped quadrature X̂+(kc): the
diamonds are results obtained with numerical simulation, while
the continuous line corresponds to the analytical expression
(Eq. (27)). At the last point, corresponding to E = 1, the linear
treatment gives an infinite variance (the asymptotic behavior
is represented by a dashed line), while our non-linear treatment
gives the expected saturation.

the difference of the two intensities:

V(k) =
〈: [δN̂1(k) − δN̂1(−k)]2 :〉

NN (k)
, (28)

normalized to the corresponding shot noise value NN (k).
This value is proportional to the sum of the intensities
of the two beams with wavevectors ±k. Negative values
of V indicate sub-Poissonian statistics for the intensity
difference of the two signal beams at ±k [21]. In a lin-
ear analytical treatment below threshold V(k) = −0.5,
independently of the pump intensity and of the wave-
vector [13,21]. In other words the normalized intensity
correlations, equation (28), do not show a non-classical
behavior which is stronger for the critical wave vector or
at the critical point. This is in contrast with the behavior
of the quadratures correlations equations (26, 27). Nev-
ertheless, the critical conditions are of significant interest
because of presence of higher intensities.

The numerical expression of V(k) for different spatial
modes (0 < k ≤ 5kc) is compared, in Figure 4, with the

above threshold

S⊥ =
∫

k(N0(k) + N1(k))dk

: ∆2S⊥ :
NS

! −0.5
! 0

! 0

! −0.5, 0, 2....

http://ifsc.uib-csic.es
http://ifsc.uib-csic.es


http://ifsc.uib-csic.es

Control of spatial quantum fluctuations using PC

29

CONCLUSIONS

  PC in nonlinear cavities allow to tune the parametric (and MI) threshold

  twin beams correlations are changed due to secondary processes

 connection:  quantum noise suppression vs. translational symmetry

 explore role of wavelength and amplitudes of PC

 breaking of translational symmetry vs. 2 mode squeezing

IN PROGRESS
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