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Outline:

- Introduction.

- Lotka-Volterra competition model in niche space. Results.

\"“"-—..._,\"\e%onclusions.
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PATRES

Interactions between different entities competing for the
same resources arise in a large variety of physical,
chemical, biological, social and economical systems.
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Lotka-Volterra competition.

- Multimode optical devices in which different lasing modes
are driven by the same population inversion.

- Technology substitution in which users decide between
alternative products.

- Spin-wave patterns.
-Mode-interaction in crystallization fronts.

| - Food web assembly.
--Groups Competlng for their technical niche in the Flicker??



This talk will be |

Introduction.

n the context of ecosystem
dynamics.

http://ifisc.uib.es
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-A central concept in Ecology is “limiting similarity”.

- It states that species can coexist if they are sufficiently different from
competing species.

- The way to quantify this difference is by using the niche space,
whose coordinates signal the phenotypic traits of an species relevant
~for the consumption of resources.

< One point
One species >

In niche space

\A\

\‘ P\h-.gnotypic traits: body size, peak size, preferred food, etc...

Y @ M\ |.e, any observed quality of an organism:

R\ = "“-‘1'-1::;..
L e

x\ | Genotype+environment+randomness = phenotype
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Marine ecosystem.

fish shark whale

Body size

http://ifisc.uib.es




Contradiction

COMPETITIVE EXCLUSION
PRINCIPLE (CEP)
Species can only survive
if they maintain
A minimum distance with
others in niche space.

In niche space the scenario:
Homogenous distribution

of species more or less equidistants

filling the whole niche space.

Introduction.

-Species experience stronger competition with close species in
niche space.

»
»

Ecologist: why are there so many
similar species in Nature?
.e. arbitrarily close in niche space|
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cheffer & Van Nes, PNAS 103, 6230 (2006).

LV model with Gaussian competition. Result is
against CEP./

CEP
\
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Lotka-Volterra competion model in niche space

The Lotka-Volterra symmetric competition model in niche space. (Classical
and simplest model).

| N total number of species; Ni population of species i; K carrying
“\capacity; x coordinate in niche space; g is the competition kernel

Typical'e \"'-_,,.Ialysis (Scheffer & Van Nes; Szabo & Meszena*: Fix the Kernel to Gaussian
‘ and\étugy the role of homogenous and non-homogenous carrying capacity.

\A\
1 \Il

\
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I__‘_____;,.\;_i,—'PJ:E:"'S'zab'(“j;j&:Q\\:.\__I\/Ieszena, OIKOS 112, 612 (2006).
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OUR STUDY IS SOMEWHAT DIFFERENT.

WEFOCUSS ON THE ROLE OF THE COMPETITION
KERNEL.
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Numerical results for LV:

- Runge-Kutta simulation of the LV model.
-Consider extinct and remove from the system if a population is below a threshold value.

“=Immigration mechanism by which new species are introduced in the system at a given rate. To reach a
stationary value we switch off it after some time.

- We consider a family of kernels given by:

g, (x) =exp[-(x//R)“]
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For the family of kernels
g, (x) =exp[-(x/R)’]

Transition for the Gaussian Kernel
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Analytical results:

- Let us consider that the number of species is large and differences between neighboring
phenotypes small. We can consider a continuus evolution equation for the expected density of
individuals at any given point of the continuus niche space:

0.4(xt) = J(x. DL~/ K [ dyg (x— y)g(y.t) |+ s

Stationary homogenous solutions for s=0: ¢0 =0; ¢o >0

nstability analysis of the positive solution: ¢ = ¢, + g%

1>0<9(q)=0  for  some g

Condition for pattern forming transition

A\
AERNEL FOURIER TRANSFORM

ONLY DEPENDS ON THE KERNEL AND NOT ON
\ A\ ANY OTHER PARAMETER OF THE SYSTEM.
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It is well-known that for the family of stretched-exponential functions their Fourier
transform never takes negative values for, (i.e., NO CLUSTERING OF SPECIES

WITH EXCLUSSION ZONESOCCUR) (< g <2
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Non-constant (phenotype-dependent) carrying capacity:
0,4(xt) = p(x,HIL-L1/ K(x) [ dyg(x— y)g(y. 1),

If the-kernel is symmetric (our case of interest) the equation is potential:

_9(x,1) 6V (9)
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K(x) = [dyg(x, )8" (y) & ¢ (@) ==, 2

«Q

N |~
O o
SN | N

These Fourier transforms and their inverses should exist and lead to positive
populations. This is not always the case (for e.g. when both K and g are
superexponentials and the exponent of K is larger than the one of g).

__ hen the natural solution exists, its stability depends, since V is a quadratic
A \e\emlal (form), on the-positive-definiteness* of the kernel. ITS STABILITY DOES
‘ / \ NOT DEPEND ON THE CARRYING CAPACITY.

\ We can extend these results * > aMa; >0;for any set {a}
tonQn symr‘netﬁc kernels
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SUMMING UP THIS SECTION:

. IN THE LV COMPETITION MODEL THERE IS A UNIFORM DISTRIBUTION OF
CLOSE SPECIES IF THE KERNEL IS POSITIVE DEFINITE. WHEN THIS IS NOT
THE CASE A LUMPY DISTRIBUTION OF SPECIES, WITH EXCLUSION ZONES,
APPEAR.

JE THAT POSITIVE-DEFINITENESS IS EQUIVALENT TO REQUIRE THAT THE

|\ ¢ L\ THE GAUSSIAN KERNEL IS A FRONTIER CASE THAT GIVES
VAN | “RISE TO A HOMOGENOUS DISTRIBUTION.
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The Gaussian Kernel.

The Gaussian Kernel is the one traditionally used in the ecological community.
To my knowledge is the one exclusively used.

WHY?

-It is ecologically sound: it fits to data.

. - Analytically manageable.

Hé\)v s |t sensitive to numericalissues and to ecologically second-order
=\ effects?



Gaussian kernel

- Almost identical

http://ifisc.uib.es
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2)

Scheffer & Van Nes, PNAS 103, 6230 (2006).
Use a Gaussian Kernel and they obtain a Lumpy
distribution??

It\is a numerical error of taking wrongly the periodic boundary conditions (PBC).

g (y) = Z g (y — n|_) L system size and n=0, +-1, +-2,...
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3) Ecological mechanisms (second order effects):

- We have added several mechanisms to study the stability of the
niche model with Gaussian competition
~.- Small immigration DOES NOT LUMP THE SPECIES DISTRIBUTION.

- Adding noise or an extinction threshold DOES NOT FORM CLUSTER but impose
some limit'to similarity (for any kernel).

- Species extinction and speciation: eliminate species below a given population
| thyeshold and introduced new ones at a given rate close to already existing species

Gaussian with
perfect PBC
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-Summing up this section:

The Gaussian competition function is rather marginal. It is a
borderline between a family of kernels giving rise to lumpy
species distributions (non positive definite) and a family (like the
Gaussian itself) that results in homogenous distributions.

\ Message: take care in numerical work. Second order ecological
\ X \ effects-may also-have a very strong influence.
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SIMPLE ECOLOGICAL MODELS GIVING RISE TO NON-POSITIVE DEFINED
KERNELS

-The LV model is some kind of effective model where competition coefficients
are postulated to be of a particular functional form (Gaussian, exponential,
etc..).

- At a more fundamental level species utilize a common distributed resource
X according to an utilization funcion y,(x)

_f dxu; (x)u; (x)
j dxu?’ (x)

g(‘x — X ‘_ glj

1 /,L’ —’_-_'_’-':'_ _—'--_:::\.;"x-_-_'-_:___:_:_:_ . i . . . -
'-\;__IQ,_-..?aii_tlcular, forGaussian utilization functions we get Gaussian coefficients (kernel)
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IMPORTANT: ONE CAN SHOW THAT ANY INTERACTION
KERNEL CONSTRUCTED FROM CONVOLUTION OF TWO
UTILIZATION FUNCTIONS IS POSITIVE DEFINITE.

- Non-sense our study for kernels (non-positive) giving rise to
Aumpy distribution of species??
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ANSWER: NO. We can construct a simple ecological model with a non-positive
defined kernel.

Meszena et al have pointed out that one should consider two different utilization-
like functions:

a) A sensitivity function describing the effect of resource x on species i. Si (x)

. b) Animpact function describing the depletion of resource x by species |. D. (x)

\ ‘__\\\
9 i — j dXSi ( X) Dj ( X) r——
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Let us obtain this sensitivity and impact functions from a simple ecological
model of predators competing for different types of preys or resources:

dRr,

Resources dt

R TannRa-

%: NizsiaRa_diNi

a

|f the time scale of the evolution of resources is much larger than that of the
—._ preys, i.e, dR/dt=0. One obtains a LV equation:

N |
\“-._\ \ ™, \

N\ dN
™ \
T
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Example: a situation in which consumer k grows only by consumer its
optimal resource at k, but it depletes also the neighbouring resources

Q, =0Q,;p, =p:d, =d;
Sia — ggia
a,; = aéaj + b(§0”._1 + 5aj+1)

“~\The LV dynamics is

\ dN.
A\ S — -
\| \ \ = Qi+ gN;(1-1/B(aN; +bN;,; +bN, ,))
| \\ Wh6-§§matural solution and stability eigenvalues
” \ \ \
\ NI p They can be positive or
WS " a+2b negative depending on

, _\ ,1q =—(Qg/ B)(a+2bcosq) aandb
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Conclusions:

-The competition kernel plays a fundamental role in the
stationary spatial structure of competing species/agents.

- We have shown that if it is positive-defined the distribution is
‘homogenous (coexistance o species), otherwise there are

| excl ¥sion zones where species cannot develop, or even
'-__Ius:ter\s of species.

The Ga\usaan Kernel is a frontier case. Much care have to be
taken In numerlcal work. Also, second-order ecological effects
may completely change the scenario.
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