Thermally driven out-of-equilibrium Kondo system

Rosa López IFISC Jong Soo Lim KIAS **Miguel A. Sierra IFISC**

Phys. Rev. Lett. 121, 096801

-X-

- Thermoelectric transport
- Kondo effect in quantum dots
- Thermally driven single dot
- Theoretical approaches
- Results(I)

- Thermally driven two impurity Kondo system
- Theoretical model
- Results (II)
- Conclusions

First experimental evidences of Kondo effect

D. Goldhaber-Gordon *et al.*, *Nature* **391**, 156 (1998).
S. M. Cronenwett, T. H. Oosterkamp, L. P. Kouwenhoven, *Science* **281**, 540 (1998).
J. Schmid, J. Weis, K. Eberl, K. v. Klitzing, *Physica B* **256**, 182 (1998).

Circuit heat generation is one key limiting factor for scaling device speed

Waste heat recovery: typically 30-40 % efficiency for heatengines, waste heat 60%

THERMOELECTRICS is recognized as a potentially transformative energy conversion technology: heat is directly converted into electricity and vice versa

Thermolectric transport^{*}

Large thermal gradients large as 13K/mV R. Venkatasubramanian et al., Nature 413, 597 (2001)

Rectification effects due to interactions Thermopower changes sign, A.A.M. Staring et al., EPL 22, 57 (1993)

Thermolectric transport^{*}

Nanosystems exhibit REMARKABLE THERMOELECTRIC properties

Specially when transport properties depend very much on **energy** as in the case of **quantum dots**

Quantum Dots

Quantum dot: 0D system

Coulomb blockade phenomena

L. P. Kouwenhoven, Science 1997

*

Coulomb energy E_c=q²/2C

*

Resistance Minimum in Dilute Magnetic Alloys" Progress of Theoretical Physics 32 (1964) 37 J. Kondo

Temperature Kondo: characteristic energy scale

Kondo effect in quantum dots 关

L.I. Glazman and M.E. Raikh JETP Lett. 47, 452(1988), T.K..Ng and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

The resulting correlated motion gives rise to a Kondo resonance in the quasiparticle density of states at the Fermi energy Due to this resonance the transmission through the quantum dot is perfect, the socalled "unitary limit"

SPIN KONDO

Unitary limit in the even valleys when the temperature is lowered

Appearance of the Zero Bias Anomaly in the Coulomb diamond

Δ mΚ 2 (c) IV 693 G (e²/h) 301 82 32 0 10 e²/h 0.5 (d) $V_{sd}(mV)$ 2 0 0.5 3.4 3.6 3.2 -3 2.8 2.6 (V)

PHYSICAL REVIEW B 84 , 245316 (2011)

Single Quantum Dot case

Kondo Hamiltonian $\mathcal{H}_{K} = \mathcal{H}_{0} + \mathcal{H}_{1}$

$$\mathcal{H}_{0} = \sum_{\alpha k\sigma} \varepsilon_{\alpha k} C_{\alpha k\sigma}^{\dagger} C_{\alpha k\sigma} \quad \mathcal{H}_{1} = \sum_{\alpha k\sigma\beta qs} \mathcal{J}_{\alpha\beta}(t) x_{\sigma s} C_{\alpha k\sigma}^{\dagger} C_{\beta qs}$$

$$x_{\sigma s} = \delta_{\sigma s} / 4 + \hat{S}_l s_{\sigma s}^l$$

$$\mathcal{J}_{\alpha\beta}(t) = \mathcal{J}_{\alpha\beta}^{(0)} \exp\left(-\frac{ie}{\hbar}[V_{\alpha} - V_{\beta}]t\right),$$

Localized and delocalized electrons: spin operators

 $\mathcal{J}_{\alpha\beta}^{(0)} = -\mathcal{V}_{\alpha}\mathcal{V}_{\beta}U/[\varepsilon_d(U+\varepsilon_d)]$

 $S_l, l = x, y, z$

Poor man scaling procedure

Anderson Hamiltonian

FISC

$$\mathcal{H} = \mathcal{H}_{\text{leads}} + \mathcal{H}_{\text{dot}} + \mathcal{H}_{\text{tun}}$$
$$\mathcal{H}_{\text{leads}} = \sum_{\alpha k\sigma} \varepsilon_{\alpha k} C^{\dagger}_{\alpha k\sigma} C_{\alpha k\sigma}$$
$$\mathcal{H}_{\text{dot}} = \sum_{\alpha k\sigma} \varepsilon_{d} d^{\dagger}_{\sigma} d_{\sigma} + U d^{\dagger}_{\uparrow} d_{\uparrow} d^{\dagger}_{\downarrow} d_{\downarrow}$$
$$\mathcal{H}_{\text{tun}} = \sum_{\alpha k\sigma} \mathcal{V}_{\alpha k} C^{\dagger}_{\alpha k\sigma} d_{\sigma} + \text{H.c}$$

Mean-field approach

$$\langle b \rangle = \tilde{b}$$

$$\sum_{\alpha k\sigma} \tilde{\mathcal{V}}_{\alpha k} G^{<}_{f\sigma,\alpha k\sigma}(t,t) = -i N \lambda |\tilde{b}|^2 / \hbar$$

$$\sum G^{<}_{f\sigma,f\sigma}(t,t) = i(1-N|\tilde{b}|^2)/\hbar$$

$$U \longrightarrow \infty$$

$$d_{\sigma} = b^{\dagger} f_{\sigma}$$

pseudofermion operator f_{σ}
boson field operator b^{\dagger}

$$\mathcal{H}_{Lag} = \lambda \left(b^{\dagger} b + \sum f_{\sigma}^{\dagger} f_{\sigma} - 1 \right)$$

$$\mathcal{H}_{tun} = \sum_{\alpha k \sigma} \mathcal{V}_{\alpha k} C_{\alpha k \sigma}^{\dagger} b^{\dagger} f_{\sigma} + \text{H.c.}$$

$$\mathcal{V}_{Lk} \qquad \mathcal{V}_{Rk} \qquad \mathcal{V}_{Rk}$$

 $G^{<}_{f\sigma,\alpha k\sigma}(t,t') = -(i/\hbar) \langle C^{\dagger}_{\alpha k\sigma}(t') f_{\sigma}(t) \rangle$

Mean field parameters

Electrically driven

Thermally driven

FIG. 3. Position of the SBMET (a) renormalized energy level \tilde{s}_d and (b) width $\tilde{\Gamma}$ as a function of the applied voltage for different dot level positions. The case $s_d = -3.5\Gamma$ agrees with the analytical result given by Eq. (24). Parameters: $D = 100\Gamma$, $k_BT = 0$, and $\Gamma_L = \Gamma_R = \Gamma/2$.

Bias voltage induced Kondo splitting

FIG. 4. (a) Renormalized dot gate position \tilde{s}_d and (b) resonance width $\tilde{\Gamma}$ as a function of the thermal bias θ for different s_d values within SBMFT. (Inset) Resonance width versus the thermal bias from a numerical calculation (solid line) and from the analytical expression given by Eq. (27) (dashed line) for $s_d = -3.5\Gamma$. Parameters: D =100 Γ , $k_B T = 0$, and $\Gamma_L = \Gamma_R = \Gamma/2$.

Thermal bias Kondo width quenching

Electric, and Thermoelectrical transport 🔸

$$I = -\frac{e}{h} \int_{-\infty}^{\infty} d\omega \sum_{\sigma} \frac{4\Gamma_L \Gamma_R}{\Gamma} \mathrm{Im} \left[G_{\sigma,\sigma}^r(\omega) \right] [f_L(\omega) - f_R(\omega)].$$

$$L_2 = \frac{4\pi^2 e k_B^2}{3h} \tilde{\Gamma}_L \tilde{\Gamma}_R \frac{\tilde{\varepsilon}_d}{\tilde{\varepsilon}_d^2 + \tilde{\Gamma}^2}$$

Electrically driven

Thermally driven

FIG. 5. Current-voltage characteristics of a single level quantum dot in the Kondo regime using slave-boson mean-field theory for different values of the gate voltage (level position). (Inset) Differential conductance of the quantum dot as a function of the applied voltage. Parameters: $D = 100\Gamma$, $k_BT = 0$, and $\Gamma_L = \Gamma_R = \Gamma/2$.

Unitary limit in the deep Kondo regime

FIG. 6. Thermocurrent as a function the thermal gradient θ of a single level quantum dot in the Kondo regime using slave-boson mean-field theory for different values of the dot gate position. Inset: thermoelectric conductance as a function of the thermal bias for the same dot gate positions. Parameters: $D = 100\Gamma$, $k_BT = 0$, and $\Gamma_L = \Gamma_R = \Gamma/2$.

Larger thermocurrent when charge fluctuations are present

Equation of motion technique

By using EOM tenchique the dot Green function reads

$$G_{\sigma,\sigma}^{r}(\omega) = \frac{1 - \langle \tilde{n}_{\bar{\sigma}} \rangle}{\omega - \varepsilon_{d} - \Sigma_{0} + U\Sigma_{1} / [\omega - \varepsilon_{d} - U - \Sigma_{0} - \Sigma_{3}]} + \frac{\langle \tilde{n}_{\bar{\sigma}} \rangle}{\omega - \varepsilon_{d} - \Sigma_{0} - U - U\Sigma_{2} / [\omega - \varepsilon_{d} - \Sigma_{0} - \Sigma_{3}]}$$
$$T_{K0} \approx \sqrt{2\Gamma U} \exp\left[-\frac{\pi |\varepsilon_{d}| (U + \varepsilon_{d})}{2\Gamma U}\right]$$

Self-energies are determined and the dot occupation is computed self-consistently

$$\Sigma_0 \quad \Sigma_1 \quad \Sigma_2 \quad \Sigma_3 \mid \langle \tilde{n}_{\bar{\sigma}} \rangle$$

O. Entin-Wohlman, et at., Phys. Rev. B 71 035333 (2005)

Finite-U Equation of motion technique

*

Equilibrium spectral density

FIG. 8. Finite-*U* quantum dot spectral density at equilibrium for different background temperatures. Parameters: $\varepsilon_d = -3.5\Gamma$, $D = 100\Gamma$, and $U = 20\Gamma$. (Insets) (a) Detail of the dot spectral density of states around the Fermi energy. (b) Height of the Kondo peak as a function of the background temperature.

Electrical and thermal driven cases: spectral density

FIG. 7. (a) Nonequilibrium infinite-U quantum dot spectral density of states for different eV values. (Inset) Detail of the density of states around the Fermi energy ($\varepsilon_F = 0$). (b) Nonequilibrium infinite-U quantum dot spectral density of states for different thermal gradients. The background temperature is set at $T = 0.024T_{K0}$. (Inset) Detail of the density of states around the Fermi energy ($\varepsilon_F = 0$). Parameters: $\varepsilon_d = -3.5\Gamma$, $D = 100\Gamma$, and $T = 0.024T_{K0}$. The Kondo peak splits with the bias voltage

Kondo peak is quenched with the thermal bias

Artifact of the model: the cold reservoirs always yields a Kondo singularity even for large thermal gradients

Finite U electric, and thermoelectrical transport *

Electrical current

Electrically driven

Thermally driven

FIG. 9. *I-V* characteristics at different dot level positions. (Inset) Differential electric condutance vs voltage bias for the given values of the energy level. Parameters: $D = 100\Gamma$, $k_BT = 0.0001\Gamma$, $U = 20\Gamma$, and $\Gamma_L = \Gamma_R = \Gamma/2$.

Steps at the dot resonances: mean-field peaks and Kondo singularity

FIG. 10. Thermocurrent vs the thermal gradient for different dot gate positions. (Inset) Detail of the thermocurrent at low thermal gradients. Parameters: $U = 20\Gamma$, $D = 100\Gamma$, $k_BT = 0.01\Gamma$, and $\Gamma_L = \Gamma_R = \Gamma/2$.

Non trivial zero at the spin and charge fluctuation energy scales

Nontrivial zeros at the thermoelectrical current in the finite U case

A e-like dominant Kondo peak
B h-like dominant Kondo peak and
e-like contribution from the mean
field peak
C e-like dominant from the second
mean field peak, the others are h-like

The different electron-like and hole-like contributions of the Kondo and mean-field peaks leads to the appearance of the nontrivial zeros in the thermoelectrical current when the thermal bias increases

- A single quantum dot is considered in the Kondo regime.
- The Kondo effect is quenched with the thermal bias: results from perturbation theory, SBMFT, and EOM

Transport

Thermocurrent

- Nonlinear behavior
- Appearance of nontrivial zeros

Double Quantum Dot case

*

Double Quantum Dot case

The Kondo Effect in an Artificial Quantum Dot Molecule

H. Jeong, A. M. Chang and M. R. Melloch

Science 293 (5538), 2221-2223. DOI: 10.1126/science.1063182

Hybridization of Kondo singlets into a coherent superposition of Kondo states Bonding-Antibonding Kondo states!

R. Aguado, D. C. Langreth, *Phys. Rev. Lett.* 85, 1946 R. Aguado, D. C. Langreth, *Phys. Rev. B* 67, 245307 (2003) (2000).

N. J. Craig, et al., Science 304, 565 (2004)

★

Coherent control of quantum dot spins by a nonlocal RKKY-like interaction

$$\mathcal{H}_J = J\hat{S}_L \cdot \hat{S}_R$$

Slave boson mean field description 关

R. López et al., Physical review letters 89, 136802 (2003)

Serial QDs: Crossover from the Kondo phase to the antiferromagnetic phase

Temperature driven case for the Kondo temperature 🔭

$$T_{K\alpha} \equiv \tilde{\Gamma}_{\alpha}(\theta)$$

Renormalized width determines the role of the Kondo effect

Three different regimes depending on

t and $\Gamma = \Gamma_L + \Gamma_R$

Strong coupling

 $t > \Gamma$ Γ_{α} behave similarly Bonding and antibonding states

ratio

$$I = \frac{e}{h} \int d\omega [f_L(\omega) - f_R(\omega)] \mathcal{T}(\omega)$$

$$Transmission function$$

$$\mathcal{T}(\omega) = 4 \sum_{\sigma} \tilde{\Gamma}_L \tilde{\Gamma}_R |G_{fL\sigma,fR\sigma}^r|^2$$

$$\mu_{\alpha} = \varepsilon_F$$

$$\theta = T_L - T_R$$

$$f(u) = 4 \sum_{\sigma} (1 - \frac{1}{2}) \int_{\sigma}^{\sigma} (1 - \frac{1}{2})$$

Antiferromagnetic Kondo crossover

Case of relevant antiferromagnetic interactions.
$${\cal H}_J=J\hat{S}_L\cdot\hat{S}_R$$

A crossover can occur between the Kondo singlet and the dot-dot AF singlet.

P. Simon, R. López, and Y. Oreg, Phys. Rev. Lett. 94, 086602 (2005)

- A serially-coupled double quantum dot is considered in the Kondo regime.
- Depending on t/Γ , one can identify different regimes:
 - Weakly coupled regime
 - Intermediate coupled regime

Transport

- Heat current
 - $lacksim ext{Vanishing at large}^{ heta}$
 - Thermal diode behavior.
- Thermocurrent
 - Nonlinear behavior.

Critical value

Tunneling modifies the critical value of the crossover.

Phys. Rev. Lett. 121, 096801

1.0

10-1

 10^{0}

 θ/T_K

 10^{1}

 10^{2}

 $I(\theta) (e\Gamma/h)$

THANK YOU

for your attention

