Antonio Pérez-Serrano⁽¹⁾, Julien Javaloyes⁽²⁾, and Salvador Balle⁽³⁾

⁽¹⁾ IFISC (UIB-CSIC), Palma de Mallorca, Spain
⁽²⁾ Departament de Física, UIB, Palma de Mallorca, Spain
⁽³⁾ IMEDEA (UIB-CSIC), Esporles, Spain

171

Outline

I. Motivation

II. The Model

III. Multimode Dynamics

IV. Conclusions

CLEO Europe 2011, Munich.

I. Motivation

Ring Lasers

Two counter-propagating electric fields

Rich variety of dynamical behaviors

Bichromatic Emission and Coexisting Multimode Dynamics in RLs IFISC I. Motivation **Ring Lasers** Two counter-propagating electric fields Rich variety of dynamical behaviors Applications: **Bidirectional emission** Gyroscope Directional bistability → All-optical processing

Bichromatic Emission and Coexisting Multimode Dynamics in RLs IFISC I. Motivation **Ring Lasers** Two counter-propagating electric fields Rich variety of dynamical behaviors Applications: **Bidirectional emission** Gyroscope Directional bistability All-optical processing A detailed description is required to understand these dynamical behaviors and

their possible applications

Dimensionless TW Equations for the SVA in a Semi-classical approach:

$$\pm \frac{\partial A_{\pm}}{\partial s} + \frac{\partial A_{\pm}}{\partial \tau} = B_{\pm} - \alpha A_{\pm} \qquad \text{Electric Fields}$$

04

Dimensionless TW Equations for the SVA in a Semi-classical approach:

04

$$\pm \frac{\partial A_{\pm}}{\partial s} + \frac{\partial A_{\pm}}{\partial \tau} = B_{\pm} - \alpha A_{\pm} \quad \text{Electric Fields}$$
$$\frac{1}{\gamma} \frac{\partial B_{\pm}}{\partial \tau} = -(1 + i\tilde{\delta})B_{\pm} + g(D_0 A_{\pm} + D_{\pm 2} A_{\mp}) + \sqrt{\beta D_0}\xi_{\pm}(s,\tau) \quad \text{Polarization}$$

$$\frac{\partial D_0}{\partial \tau} = \epsilon [J - D_0 + \Delta \frac{\partial^2 D_0}{\partial s^2} - (A_+ B_+^* + A_- B_-^* + A_+^* B_+ + A_-^* B_-)]$$
 Carriers
$$\frac{\partial D_{\pm 2}}{\partial \tau} = -\eta D_{\pm 2} - \epsilon (A_\pm B_\mp^* + A_\mp^* B_\pm)$$

Dimensionless TW Equations for the SVA in a Semi-classical approach:

$$\pm \frac{\partial A_{\pm}}{\partial s} + \frac{\partial A_{\pm}}{\partial \tau} = B_{\pm} - \alpha A_{\pm} \qquad \text{Electric Fields}$$

$$\frac{1}{\gamma}\frac{\partial B_{\pm}}{\partial \tau} = -(1+i\widetilde{\delta})B_{\pm} + g(D_0A_{\pm} + D_{\pm 2}A_{\mp}) + \sqrt{\beta D_0}\xi_{\pm}(s,\tau) \quad \begin{array}{c} \mathbf{A_+} \\ \text{Polarization} \end{array}$$

$$\frac{\partial D_0}{\partial \tau} = \epsilon [J - D_0 + \Delta \frac{\partial^2 D_0}{\partial s^2} - (A_+ B_+^* + A_- B_-^* + A_+^* B_+ + A_-^* B_-)]$$
 Carriers

$$\frac{\partial D_{\pm 2}}{\partial \tau} = -\eta D_{\pm 2} - \epsilon (A_{\pm} B_{\mp}^* + A_{\mp}^* B_{\pm})$$

Boundary Conditions:
$$\begin{aligned} A_+(0,\tau) &= t_+ A_+(1,\tau) + r_- A_-(0,\tau) \\ A_-(1,\tau) &= t_- A_-(0,\tau) + r_+ A_+(1,\tau) \end{aligned}$$

CLEO Europe 2011, Munich.

http://ifisc.uib-csic.es

r_

Solving PDEs numerically:

Fleck, Phys. Rev. B 1, 84 (1970).

Tests for the numerical algorithm: Analytical Results (Unidirectional or UFL)

Solving PDEs numerically:

Fleck, Phys. Rev. B 1, 84 (1970).

Tests for the numerical algorithm:

Analytical Results (Unidirectional or UFL)

Single-Mode dynamics:

Zeghlache et al. Phys. Rev. A 37, 470 (1988).

III. Multimode Dynamics

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

CLEO Europe 2011, Munich.

IV. Conclusions

- A Travelling Wave Model for ring lasers is developed and tested.
- Analytical results are difficult to obtain for a bidirectional ring laser.
- We have studied how the detuning and the gain bandwidth affects to the multimode operation.
- The spatial effects strongly affects the dynamics and the stability of the different lasing states.
- Multimode behavior opens the scenario to multistability.
- Mode competition can be important depending on the parameters of the ring laser.

Work in progress:

- Modify the medium susceptibility — Semiconductor Ring Laser

Thank you for your attention!

For details:

Pérez-Serrano et al. Phys. Rev. A **81**, 043817 (2010). Pérez-Serrano et al. Opt. Express **19**, 3284 (2011).

Financial Support:

CLEO Europe 2011, Munich.