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There have been two decades of intense research on photonic crystals to control spontaneous-emission in different devices [1]. In this work we show that photonic crystals (PC) can be used also to tune quantum
fluctuations in the context of spontaneous pattern formation in optics. Extended nonlinear optical devices are known to develop instabilities towards spatially multimode structures and it was recently proposed and
experimentally confirmed the use of PC to inhibit such modulation instabilities in presence of photonic band-gaps [2]. Moreover, nonlinear optical devices are common sources of non-classical light beams. In particular,
multimode optical parametric oscillators emit light exhibiting sub-Poissonian fluctuations, squeezing and entanglement between frequency, polarization and spatial components. In the last decade, spatial quantum
correlations have found applications in quantum information and imaging [3].

Our analysis predicts the possibility to control the signal emission threshold of a type I degenerate OPO with intracavity PC (PCOPO) when the unstable wavelength is in the band-gap. The instability can be inhibited
(as in [2]) but also stimulated. When considering quantum fluctuations, we find that PC can be used to tune spatial squeezing leading also to EPR entanglement above threshold [4].
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