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Motivation

Study of plausible mechanisms for the appearance of power-law distributions
s Examples:
Pareto’s power law of income distribution

Zipf law for the rate of occurrence of words.

s Heterogeneity is a key ingredient

Which heterogeneity? Diversity in the number of degrees of freedom.

s Known mechanisms leading to power law distributions are
» Avalanche processes, e.g. in Self Organized Criticality
Multiplicative stochastic process
Non-extensive thermodynamics/entropy (C. Tsallis, J.Stat.Phys. 52, 479 (1988);
E.M.F. Curado and C. Tsallis, J.Phys.A 24, .69 (1991))
Generalized Gibbs distribution (R.A. Treumann and C.H. Jaroschek, Phys. Rev. Lett.
100, 155005 (2008))
Superstatistics (C. Beck, Physica A 365, 96 (2006)).



Outline

Kinetic theory in D dimensions:

e Study of diffusion in a network
» Kinetic Wealth Exchange Models

Examples:
e Power law in load distribution of scale-free networks: the Zipf's law from the

Random walk in the semantic network
e Pareto's Law from heterogeneous Kinetic Wealth Exchange Models



Kinetic Theory in D dimensions

It the initial particles momenta are p.and p,

introduce the momentum transfer

/

Ap=p'=p = p-p,

l l

and the angles oc and o respect to the initial

momenta p_and P, respectively.




Using energy and momentum conservation, one obtains for the kinetic
energies x = ¥2 (p.)* and x = Y2 (p.)* of particles i and j
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where the W's coefficients are related to the cosines squared,

X, = X, T WX, T WX,

0 < @ = (coset,)’ < 1
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In D dimensions it can be shown that assuming initial random directions,
@) = <(cos o<)2> = 1/D
For the equipartition theorem,

x;) = Dk,TI2 ~ D



Random Walk across a network

I Consider N walkers moving across a network.
SIS Y, A generic node i has k links and x () walkers at time 7.
R i * \ X The update rules for the flow between nodes i and j, assuming
fle " W homogeneous diffusion, is
x,(t+1) = x,(t) — @w,x,(t) + @, x,(1)
x;(t+V) = x,(¢) + @;x,(t) — @, x,(1)

k kf
/\\ i N
X X

k= degree of node i

X (1) =/mumber of walkers at node i



Here the W's are random coefficients in the range
O <, <1
O < w, <1
The average values are

@] = 1/k,

l l

@] = Ik,

J

It can be shown that in the stationary state

<xi> ~ k.

l



Kinetic wealth exchange model with saving propensity (*)

Definition of the model

e N agents interacting randomly 1n pairs, characterized by the saving parameters
(A, A, ..., )xN) with 0 <A < 1.

» The state of the system 1s specified through the agent wealths (x, x,, ..., x ).

e At each time step ¢ two agents i and j are extracted randomly and exchange
wealth according to

x;" = Ax;, + €,(1-24)x; + €(1-A))x,
x," = Ax;, + (1—€)(1=-2)x;, + (1—¢,)(1-A))x,

J

(*) -J. Angle, Social Forces 65, 293 (1986)
- A. Chakraborti and B.K. Chakrabarti, Eur. Phys. J. B 17, 167 (2000)



Here € and € are uniform random numbers 1n (0,1), independent or possibly the

same random number, depending on the model.

The update rule can be rewritten as

x, (1Y) = x,(t) — @,x,(¢t) + @,;x (1)
x;(t+Y) = x(t) + @,x,(t) — @, x.(t)
with
(T)z=(1_€\)(1_2\z) = <\_€\)wi
®.=€,(1-2;) = €,w,

In a heterogeneous model the average value 1s <xi> ~ 1/(1-A))



Model system of a perfect gas with heterogeneous dimensions

The model system can represent a perfect gas with heterogeneous dimensions (each
particle lives in a space with a different dimension) or a heterogeneous mixture of
polymers, each polymer having a different number of degree of freedoms.

The heterogeneity is described by the : .\.\./.
probability P(n) that a sub-system has a certain o
number D = 2 n of degrees of freedom. O %

O .:

For a fixed n, the equilibrium probability @ O

density of a D-dimensional harmonic oscillator
1s the gamma-distribution of order n,

oo
— 3” xn—le—ﬁx

Then, for a general P(n), the equilibrium distribution is the aggregate density,

O

f(-x)=f?o d”P<”)3Yn(3x)=fT dnp(n> FB(;) xne—ﬁx

This can be obtained by varying the Boltzmann entropy of the heterogeneous system.




Variational principle for heterogeneous dimensions

Given the dimension density P(n), ‘\<n<oo ,
one can define the entropy functional as follows.

-
X
Entropy Functional S| f ]=~ dn P (n f dx f (x nn< ) +u,+B xT
X
Constraints on probability conservation [ f |= : dx f (x)=
(Single) constraint on energy conservation X, | f | —f dnP(n) fo dxx f (x)=
L J

By variation of S, one obtains the aggregate density, 1.e. the probability density
to obtain a certain value x of the energy, independently of the corresponding

number 2n of degrees of freedom,

= dnP(n)By, (B)=[ dnPn) s e




Result for the aggregate distribution

The aggregate density can be rewritten as
f(x) = [ dnP(n)By,(Bx) = Bexp(~Bx) [ dmexp(~g(m))

where m = n — 1. The integrand function has a maximum at Bx ~ 1.
Then using the Stirling approximation, one can write

d(m) = —In[P(m + 1)| — mIn(Bx) + In(~/27)
+ (m + %) In(m) — m,
Using the saddle-point approximation, f(x) = Bexp|—pBx — d(mg)]

X erm deexpl— " (my)e* /2]

— 0

27
- ﬁ\/d)”(z.'*{}) exp[ —Bx — ¢(my)]

The asymptotic resultis | f(x > B~1) = f,(x) = BP(1 + Bx).




Dimensional decomposition of the aggregate distribution f(x) =2 f (x)
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Aggregate distribution of dimensionally heterogeneous systems

Gas in D dimensions. For a given dimension D,
the equipartition theorem provides an average A

“ee”
kinetic energy (?O .bg ::O’}
®o-0
./04" O Q/J

x(D)= D kBT/2 ~ D, oo

where T is the temperature of the system.
If P(D) 1s the dimension density of a heterogeneous system, then for
probability conservation, 1.e. f(x) dx = P(D) dD, one has



Complex Networks. In a complex network with WA
degree distribution P(k), the average equilibrium load  : ’-v-hefp . = __'.! RN
for the simplest case of free diffusion 1s g N 7y 7=

ANV
x(k) = x K~k N

where x  1s a constant (average tlux per link and direction).
Then from probability conservation, f(x) dx = P(k) dk, it follows that

d_k
dx

= x, P(x/x,)

f(x) = P(k)

In particular, scale-free networks have a power law load distribution in
the stationary state, f(x) ~1/x"



Zipf's law from the random walk on the semantic network of language

Written text (or spoken language) can be conceived as a walk in the
special space of concepts which can be represented by nouns, verbs, etc,

the semantic space.
A. P. MASUCCI AND G. J. RODGERS

striking

thirteen

winston

FIG. 1. Illustration of the language network for the first 60
words of Orwell’s 7984.

After writing a long text (e.g. a
novel) or speaking a long
speech, what 1s the expected
rank distribution of words?

This depends obviously on the
correlations between subsequent
words, 1.e. on the probability
that, given a word w, another
word w' will follow.

< From:

A.P. Masucci and G.J. Rodgers,
Phys. Rev. E 74, 026102 (2006)



Measure of Zipf’s law on ‘“1984”

(1) Rank plot: frequency x versus rank r. ” '\'\'-
One finds a power law x ~ r ¢ g ) (1)
with slope a=-1.1
g 10°
£
100 T T T
(2) Degree distribution P(k) measured . ronk
on the same novel, P(k) ~ k ° i
The slope found 1s b =-1.9. 10 ‘-\l- 2)
JN
- 10 3 Y
vl ‘.‘_
From « m«s.; .ﬂ;._
A.P. Masucci and G.J. Rodgers, '.‘_'-E
Phys. Rev. E 74, 026102 (2006) o



From the rank to the probability distribution

From the rank r define the “fraction” variable
Y=r/N=Fx)

Where N i1s the number of items/data.
The variable Y is just the cumulative distribution F(x), since it give the fraction of
1tems with values smaller than x.

a 1/a

Therefore if x~r"“ and r~x-
the cumulative distribution is F(x) ~ x '’*

Then the probability density is fx) ~ x "+

According to the previous considerations, this compares well with the degree
distribution P(k),1.e.b~1/a+1 ~ 1.1



Heterogeneous Kinetic Exchange Models

e The analogy with dimensionally heterogeneous systems is based on the
similarities discussed above between the models.

- Example: If the saving propensities of the N agents (A, A,, ..., A )
are for 1% distributed uniformly A in (0,1),
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Compare with real data =



Income data overview

Adjusted gross income in 2001 dollars, k$

RO L1 _ 4017 40170 4017 ..o
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| g ane
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Colloquium: Statistical mechanics of money, wealth, and income [arXiv:0905.1518]
Victor M. Yakovenko, J. Barkley Rosser



Decomposition of the aggregate distribution f (x) = Zi fl (x) for A's in (0,1)
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Additional material



Variational principle for one degre of freedom

Variational principle approaches based on the variation of an entropy
functional find a natural application in the study of social and

economic Processces.

é )
Entropy S[f]=fde<Q)ln[f(Q)]
Probability conservation Il f ]=qu f(q)
Wealth conservation X |f ]=f dq f(q) X (q)
. J
Lagrange method:
6 Syl f1=0\S[f1+uIlf1+BX [ f] -
=0 [ da f@)l (@) urBX(g)=e — flr)= 2L




Variational principle for N degrees of freedom (dimensions)

( )
Functional S[f]=[dq,dq,...f(q,4,..)In[f(q, q,..) ]+ u+BX (g, q,...)

1

Energy in N-dimensions: X (q) =§[ T+ +Q?\/} (independent particles)
Integrate N — 1 angular variables: S [f\]=f dqg f,(gq){In fl(z)_l +u+BX(q)
N
(N —1)-dimensional surface: oy=2m""IT(N/2)
Reduced density in ¢ i) =fylgloyg" ™
\_ y,

Move to energy variable x = X(g?) and apply Lagrange method:

f(x)

N/2—1
X

=0 - flx)=

In +u+pBx

5S[f]=6 [ dx £ (x)

N




Example: KWEM Aggregate distribution f (x) for distributed A with density ®(A)

Simple example: the agents have different H(A)=1 0<A<]

saving propensities Ai with a uniform H(A)= otherwise

A-density @(R).

C ding form of the n-density dA(n) _ 3
orresponding fo —»  P(n) = d(A(n)) =

fx /B




Examples of dimensionally heterogeneous systems

(1) Interacting particles living in different D- and D’-dimensional spaces
» ® O
» O
O o ©©
O O @ O
0000000000000 00000000000

(2) Interacting polymers with different numbers of harmonic degrees of freedom

g %D'}&\

(3) Heterogeneous Networks e

iiiiiiii
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