Variational principle for the Pareto power law

Marco Patriarca

National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), Palma de Mallorca, Spain

collaboration

Anirban Chakraborti anirban.chakraborti@ecp.fr

• Laboratoire de Mathematiques Appliquees aux Systemes, Ecole Centrale Paris, France

Marco Patriarca
marco.patriarca@gmail.com

- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
- IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), Spain

Anirban Chakraborti and Marco Patriarca, PRL 103, 228701 (2009)

Motivation

- The goal of the work is the study of plausible mechanisms of appearance of power-law distributions, such as Pareto's power law of income distribution and Zipf law for the rate of occurrence of words.
- Heterogeneity is known in general to be a main feature of complex systems and be responsible the emergence of some collective counterintuitive behaviors such as diversity-induced resonance.
- Here it is shown that heterogeneity in the number of degrees of freedom of the units composing a complex system may lead distributions with power laws.
- Known mechanisms leading to power law distributions are
- Avalanche processes, e.g. in Self Organized Criticality
- Multiplicative stochastic process
- Non-extensive thermodynamics/entropy (C. Tsallis, J.Stat.Phys. 52, 479 (1988); E.M.F. Curado and C. Tsallis, J.Phys.A 24, L69 (1991))
- Generalized Gibbs distribution (R.A. Treumann and C.H. Jaroschek, Phys. Rev. Lett. 100, 155005 (2008))
- Superstatistics (C. Beck, Physica A 365, 96 (2006)).

Outline

(homogeneous) Kinetic Exchange Models can appear in

- Kinetic theory in *D* dimensions
- Study of diffusion in a network
- Kinetic Wealth Exchange Models

with an identical formulation.

In their heterogeneous versions, they can reproduce power laws, e.g.

- Power law in load distribution of scale-free networks
- Zipf's law from the Random walk in the semantic network
- Pareto's Law from heterogeneous Kinetic Wealth Exchange Models

1. Kinetic Theory in *D* dimensions

If the initial particles momenta are p_i and p_j , introduce the momentum transfer

$$\Delta p = p_j' - p_j = p_i - p_i'$$

and the angles α_i and α_i respect to the initial momenta p_i and p_i , respectively.

Using energy and momentum conservation, one obtains for the kinetic energies $x_i = \frac{1}{2} (p_i)^2$ and $x_j = \frac{1}{2} (p_j)^2$ of particles i and j

where the ω 's coefficients are related to the cosines squared,

$$0 \le \widetilde{\omega}_i = (\cos \alpha_i)^2 \le 1$$

$$0 \leq \widetilde{\omega_j} = (\cos \alpha_j)^2 \leq 1$$

In D dimensions it can be shown that assuming initial random directions,

$$\langle \widetilde{\omega} \rangle = \langle (\cos \alpha)^2 \rangle = 1/D$$

For the equipartition theorem,

$$\langle x_i \rangle = D k_B T / 2 \sim D$$

2. Random Walk across a network

Consider N walkers moving across a network.

A generic node *i* has k_i links and $x_i(t)$ walkers at time *t*.

The update rules for the flow between nodes i and j, assuming homogeneous diffusion, is

$$x_{i}(t+1) = x_{i}(t) - \widetilde{\omega}_{i}x_{i}(t) + \widetilde{\omega}_{j}x_{j}(t)$$

$$x_{j}(t+1) = x_{j}(t) + \widetilde{\omega}_{i}x_{i}(t) - \widetilde{\omega}_{j}x_{j}(t)$$

 $k_i = \text{degree of node } i$

 $x_i(t)$ = number of walkers at node i

Here the ω 's are random coefficients in the range

$$O \leq \widetilde{w}_i \leq 1$$

$$0 \leq \widetilde{\omega_j} \leq 1$$

The average values are

$$\langle \widetilde{\omega}_i \rangle = 1/k_i$$

$$\langle \widetilde{\omega_j} \rangle = 1/k_j$$

It can be shown that in the stationary state

$$\langle x_i \rangle \sim k_i$$

3. Kinetic wealth exchange model with saving propensity (*)

Definition of the model

- *N* agents interacting randomly in pairs, characterized by the saving parameters $(\lambda_1, \lambda_2, ..., \lambda_N)$ with $0 < \lambda_i < 1$.
- The state of the system is specified through the agent wealths $(x_1, x_2, ..., x_N)$.
- At each time step *t* two agents *i* and *j* are extracted randomly and exchange wealth according to

$$x_i' = \lambda_i x_i + \epsilon_1 (1 - \lambda_i) x_i + \epsilon_2 (1 - \lambda_j) x_j$$

$$x_j' = \lambda_j x_j + (1 - \epsilon_1) (1 - \lambda_i) x_i + (1 - \epsilon_2) (1 - \lambda_j) x_j$$

Here $\mathbf{\varepsilon}_1$ and $\mathbf{\varepsilon}_2$ are uniform random numbers in (0,1), independent or possibly the same random number, depending on the model.

The update rule can be rewritten as

$$x_{i}(t+1) = x_{i}(t) - \widetilde{\omega}_{i}x_{i}(t) + \widetilde{\omega}_{j}x_{j}(t)$$

$$x_{j}(t+1) = x_{j}(t) + \widetilde{\omega}_{i}x_{i}(t) - \widetilde{\omega}_{j}x_{j}(t)$$

with

$$\widetilde{\omega}_{i} = (1 - \epsilon_{1})(1 - \lambda_{i}) \equiv (1 - \epsilon_{1})\omega_{i}$$

$$\widetilde{\omega}_{j} = \epsilon_{2}(1 - \lambda_{j}) \equiv \epsilon_{2}\omega_{j}$$

In a heterogeneous model the average value is $\langle x_i \rangle \sim 1/(1-\lambda_i)$

Model system of a perfect gas with heterogeneous dimensions

The model system can represent a perfect gas with heterogeneous dimensions (each particle lives in a space with a different dimension) or a heterogeneous mixture of polymers, each polymer having a different number of degree of freedoms.

The heterogeneity is described by the probability P(n) that a sub-system has a certain number D = 2 n of degrees of freedom.

For a fixed n, the equilibrium probability density of a D-dimensional harmonic oscillator is the gamma-distribution of order n,

$$f(x) = \frac{\beta^{n}}{\Gamma(n)} x^{n-1} e^{-\beta x}$$

Then, for a general P(n), the equilibrium distribution is the aggregate density,

$$f(x) = \int_{1}^{\infty} dn P(n) \beta \gamma_{n}(\beta x) = \int_{1}^{\infty} dn P(n) \frac{\beta^{n}}{\Gamma(n)} x^{n} e^{-\beta x}$$

This can be obtained by varying the Boltzmann entropy of the heterogeneous system.

Variational principle for heterogeneous dimensions

Given the dimension density P(n), $1 < n < \infty$, one can define the entropy functional as follows.

Entropy Functional
$$S[f] = \int dn P(n) \int dx f_n(x) \left\{ \ln \left[\frac{f_n(x)}{x^{n-1}} \right] + \mu_n + \beta x \right\} \right]$$

Constraints on probability conservation $I[f] = \int_0^\infty dx \, f_n(x) = 1$

(Single) constraint on energy conservation $X_{tot}[f] = \int dn P(n) \int_0^\infty dx \, x \, f_n(x) = 1$

By variation of S, one obtains the aggregate density, i.e. the probability density to obtain a certain value x of the energy, independently of the corresponding number 2n of degrees of freedom,

$$f(x) = \int_{1}^{\infty} dn P(n) \beta \gamma_{n}(\beta x) = \int_{1}^{\infty} dn P(n) \frac{\beta^{n}}{\Gamma(n)} x^{n} e^{-\beta x}$$

Result for the aggregate distribution

The aggregate density can be rewritten as

$$f(x) = \int dn P(n) \beta \gamma_n(\beta x) = \beta \exp(-\beta x) \int dm \exp(-\phi(m))$$

where m = n - 1. The integrand function has a maximum at $\beta x \sim 1$.

Then using the Stirling approximation, one can write

$$\phi(m) \approx -\ln[P(m+1)] - m\ln(\beta x) + \ln(\sqrt{2\pi}) + (m+\frac{1}{2})\ln(m) - m,$$

Using the saddle-point approximation, $f(x) \approx \beta \exp[-\beta x - \phi(m_0)]$

$$\times \int_{-\infty}^{+\infty} d\epsilon \exp[-\phi''(m_0)\epsilon^2/2]$$

$$=\beta\sqrt{\frac{2\pi}{\phi''(m_0)}}\exp[-\beta x - \phi(m_0)].$$

The asymptotic result is
$$f(x \gg \beta^{-1}) \equiv f_2(x) = \beta P(1 + \beta x)$$
.

Dimensional decomposition of the aggregate distribution $f(x) = \sum_{i} f_{i}(x)$

Aggregate distribution of dimensionally heterogeneous systems

Gas in *D* dimensions. For a given dimension *D*, the equipartition theorem provides an average kinetic energy

$$x(D) = D k_{_B} T/2 \sim D,$$

where T is the temperature of the system.

If P(D) is the dimension density of a heterogeneous system, then for probability conservation, i.e. f(x) dx = P(D) dD, one has

$$f(x) = P(D)\frac{dD}{dx} = \overline{x}^{-1}P(x/\overline{x})$$
$$\overline{x} = k_B T/\Upsilon$$

Complex Networks. In a complex network with degree distribution P(k), the average equilibrium load for the simplest case of free diffusion is

$$x(k) = x_0 k \sim k,$$

where x_0 is a constant (average flux per link and direction).

Then from probability conservation, f(x) dx = P(k) dk, it follows that

$$f(x) = P(k)\frac{dk}{dx} = x^{-1}P(x/x)$$

In particular, scale-free networks have a power law load distribution in the stationary state, $f(x) \sim 1/x^{\alpha}$.

Zipf's law from the random walk on the semantic network of language

Written text (or spoken language) can be conceived as a walk in the special space of concepts which can be represented by nouns, verbs, etc, the **semantic space**.

A. P. MASUCCI AND G. J. RODGERS

FIG. 1. Illustration of the language network for the first 60 words of Orwell's 1984.

After writing a long text (e.g. a novel) or speaking a long speech, what is the expected rank distribution of words?

This depends obviously on the correlations between subsequent words, i.e. on the probability that, given a word w, another word w' will follow.

← From:

A.P. Masucci and G.J. Rodgers, Phys. Rev. E 74, 026102 (2006) Measure of Zipf's law on "1984".

(a) The dashed line is a power law with slope -1.1, $x \sim r^{-1.1}$. If N is the total number of words, then

Y = r / N = F(x) = cumulative distribution $\rightarrow F(x) \sim x^{-1/1.1} \sim x^{-0.91}$ $\rightarrow f(x) \sim x^{-1.91}$

(b) The degree distribution P(k) measured on the same novel.

The slope found is -1.9.

A.P. Masucci and G.J. Rodgers, Phys. Rev. E 74, 026102 (2006)

From \leftarrow

Heterogeneous Kinetic Exchange Models

- The analogy with dimensionally heterogeneous systems is based on the similarities discussed above between the models.
- **Example**: If the saving propensities of the *N* agents $(\lambda_1, \lambda_2, ..., \lambda_N)$ are for 1% distributed uniformly λ in (0,1),

Income data overview

Colloquium: Statistical mechanics of money, wealth, and income [arXiv:0905.1518]

Victor M. Yakovenko, J. Barkley Rosser

Decomposition of the aggregate distribution $f(x) = \sum_{i} f_{i}(x)$ for λ 's in (0,1)

References:

- M. Patriarca, E. Heinsalu and A. Chakraborti Basic kinetic wealth-exchange models: common features and open problems Eur. Phys. J. B 73, (2010) 145 [arXiv:physics/0608174]
- A. Chakraborti and M. Patriarca
 A variational principle for the Pareto power law
 Phys. Rev. Lett. 103 (2009) 228701 [arXiv:cond-mat/0605325]
- A. Chakraborty and M. Patriarca *Gamma-distribution and Income inequality*Pramana J. Phys. 71 (2008) 233 [arXiv.org:0802.4410]
- M. Patriarca, A. Chakraborti, E. Heinsalu, and G. Germano *Relaxation in Statistical Many-agent Economy Models*Eur. Phys. J. B 57 (2007) 219 [arXiv:physics/0608174]
- M. Patriarca, A. Chakraborti, and G. Germano
 Influence of saving propensity on the power-law tail of wealth distribution
 Physica A 369 (2006) 723 [arXiv:physics/0506028]
- M. Patriarca, A. Chakraborti, K. Kaski, and G. Germano *Kinetic theory models for the distribution of wealth: power law from overlap of exponentials* in: *Econophysics of Wealth Distributions Econophys-Kolkata 1*, A. Chatterjee, S. Yarlagadda, and B.K. Chakrabarti, Editors, Springer, 2005 [arXiv:physics/0504153]
- M. Patriarca, A. Chakraborti, and K. Kaski
 A statistical model with a standard gamma distribution

 Phys. Rev. E 70, (2004) 016104 [arXiv:cond-mat/0402200]
- M. Patriarca, A. Chakraborti, and Kimmo Kaski *Gibb's versus non-Gibb's distributions in money dynamics* Physica A 340 (2004) 334 [arXiv:cond-mat/0312167]

Variational principle for one degre of freedom

Variational principle approaches based on the variation of an entropy functional find a natural application in the study of social and economic processes.

Entropy
$$S[f] = \int dq \, f(q) \ln[f(q)]$$
 Probability conservation
$$I[f] = \int dq \, f(q)$$
 Wealth conservation
$$X_{tot}[f] = \int dq \, f(q) \, X(q)$$

Lagrange method:

$$\delta S_{eff}[f] = \delta \left\{ S[f] + \mu I[f] + \beta X_{tot}[f] \right\}$$

$$= \delta \int dq f(q) \left[\ln[f(q)] + \mu + \beta X(q) \right] = \bullet \qquad f(x) = \frac{\exp(-\beta x)}{\langle x \rangle}$$

Variational principle for N degrees of freedom (dimensions)

Functional
$$S[f] = \int dq_1 dq_2 ... f(q_1, q_2, ...) [\ln[f(q_1, q_2, ...)] + \mu + \beta X(q_1, q_2, ...)]$$

Energy in *N*-dimensions:
$$X(q) = \frac{1}{2} [q_1^2 + ... + q_N^2]$$
 (independent particles)

Integrate
$$N-1$$
 angular variables: $S[f_1] = \int dq f_1(q) \left\{ \ln \left[\frac{f_1(q)}{\sigma_N q^{N-1}} \right] + \mu + \beta X(q) \right\}$

$$(N-1)$$
-dimensional surface: $\sigma_N = 2\pi^{N/2}/\Gamma(N/\Upsilon)$

Reduced density in
$$q$$

$$f_1(q) = f_N(q) / \sigma_N q^{N-1}$$

Move to energy variable $x = X(q^2)$ and apply Lagrange method:

$$\delta S[f] = \delta \int dx f(x) \left\{ \ln \left[\frac{f(x)}{\sigma_N x^{N/\tau - 1}} \right] + \mu + \beta x \right\} = \bullet \qquad \rightarrow \qquad f(x) = \frac{\beta^n}{\Gamma(n)} x^{n-1} e^{-\beta x}$$

Example: KWEM Aggregate distribution f(x) for distributed λ with density $\Phi(\lambda)$

Simple example: the agents have different saving propensities λ_i with a uniform λ -density $\Phi(\lambda)$.

$$\phi(\lambda)=1$$
 , $\cdot < \lambda < 1$ $\phi(\lambda)=0$ otherwise

Corresponding form of the *n*-density

$$P(n) = \frac{d\lambda(n)}{dn}\phi(\lambda(n)) = \frac{\Upsilon}{(n+\Upsilon)^2}$$

$$f(x) = \int_{1}^{\infty} dn \, P(n) \, \beta \, \gamma_{n}(\beta \, x)$$

Examples of dimensionally heterogeneous systems

(1) Interacting particles living in different *D*- and *D'*-dimensional spaces

(2) Interacting polymers with different numbers of harmonic degrees of freedom

(3) Heterogeneous Networks

Variational principle for the Pareto power law

Marco Patriarca

National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), Palma de Mallorca, Spain

Unwinding Complexity, Port Douglas 24-26 July, 2010 - Satellite Meeting of STATPHYS24

collaboration

Anirban Chakraborti anirban.chakraborti@ecp.fr

• Laboratoire de Mathematiques Appliquees aux Systemes, Ecole Centrale Paris, France

Marco Patriarca

marco.patriarca@gmail.com

- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
- IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), Spain

Anirban Chakraborti and Marco Patriarca, PRL 103, 228701 (2009)

Unwinding Complexity, Port Douglas 24-26 July, 2010 - Satellite Meeting of STATPHYS24

Motivation

- The goal of the work is the study of plausible mechanisms of appearance of power-law distributions, such as Pareto's power law of income distribution and Zipf law for the rate of occurrence of words.
- Heterogeneity is known in general to be a main feature of complex systems and be responsible the emergence of some collective counterintuitive behaviors such as diversity-induced resonance.
- Here it is shown that heterogeneity in the number of degrees of freedom of the units composing a complex system may lead distributions with power laws.
- Known mechanisms leading to power law distributions are
- Avalanche processes, e.g. in Self Organized Criticality
- Multiplicative stochastic process
- Non-extensive thermodynamics/entropy (C. Tsallis, J.Stat.Phys. 52, 479 (1988); E.M.F. Curado and C. Tsallis, J.Phys. A 24, L69 (1991))
- Generalized Gibbs distribution (R.A. Treumann and C.H. Jaroschek, Phys. Rev. Lett. 100, 155005 (2008))
- Superstatistics (C. Beck, Physica A 365, 96 (2006)).

Outline

(homogeneous) Kinetic Exchange Models can appear in

- Kinetic theory in *D* dimensions
- Study of diffusion in a network
- Kinetic Wealth Exchange Models

with an identical formulation.

In their heterogeneous versions, they can reproduce power laws, e.g.

- Power law in load distribution of scale-free networks
- Zipf's law from the Random walk in the semantic network
- Pareto's Law from heterogeneous Kinetic Wealth Exchange Models

1. Kinetic Theory in D dimensions

If the initial particles momenta are p_i and p_j , introduce the momentum transfer

$$\Delta p = p_j^{\;\prime} - p_j^{\;} = \; p_i^{\;} - p_i^{\;\prime}$$

and the angles α_i and α_i respect to the initial momenta p_i and p_j , respectively.

Using energy and momentum conservation, one obtains for the kinetic energies $x_i = \frac{1}{2} (p_i)^2$ and $x_j = \frac{1}{2} (p_j)^2$ of particles i and j

where the ω 's coefficients are related to the cosines squared,

•
$$\leq \widetilde{\omega}_i = (\cos \alpha_i)^2 \leq 1$$

 $0 \leq \widetilde{\omega}_j = (\cos \alpha_j)^2 \leq 1$

In D dimensions it can be shown that assuming initial random directions,

$$\langle \widetilde{\omega} \rangle = \langle (\cos \alpha)^2 \rangle = 1/D$$

For the equipartition theorem,

$$\langle x_i \rangle = D k_B T / \tau \sim D$$

2. Random Walk across a network

Consider N walkers moving across a network.

A generic node *i* has k_i links and $x_i(t)$ walkers at time *t*.

The update rules for the flow between nodes i and j, assuming homogeneous diffusion, is

$$\begin{array}{lll} x_i(t+1) &=& x_i(t) \; - \; \widetilde{\omega}_i x_i(t) \; + \; \widetilde{\omega}_j x_j(t) \\ x_j(t+1) &=& x_j(t) \; + \; \widetilde{\omega}_i x_i(t) \; - \; \widetilde{\omega}_j x_j(t) \end{array}$$

 $k_i =$ degree of node i

 $x_i(t)$ = number of walkers at node i

Here the ω 's are random coefficients in the range

$$O \, \leq \, \widetilde{\omega_i} \, \leq \, 1$$

$$0 \le \widetilde{w_j} \le 1$$

The average values are

$$\langle \widetilde{\omega_i} \rangle = 1/k_i$$

$$\langle \widetilde{\omega_j} \rangle = 1/k_j$$

It can be shown that in the stationary state

$$\langle x_i \rangle \sim k_i$$

3. Kinetic wealth exchange model with saving propensity (*)

Definition of the model

- *N* agents interacting randomly in pairs, characterized by the saving parameters $(\lambda_1, \lambda_2, ..., \lambda_N)$ with $0 < \lambda_i < 1$.
- The state of the system is specified through the agent wealths $(x_1, x_2, ..., x_N)$.
- At each time step *t* two agents *i* and *j* are extracted randomly and exchange wealth according to

$$\begin{array}{lll} x_i' &=& \lambda_i x_i \; + \; \epsilon_1 (1 - \lambda_i) x_i \; + \; \epsilon_2 (1 - \lambda_j) x_j \\ x_j' &=& \lambda_j x_j \; + \; (1 - \epsilon_1) (1 - \lambda_i) x_i \; + \; (1 - \epsilon_2) (1 - \lambda_j) x_j \end{array}$$

(*) J. Angle, Social Forces 65, 293 (1986),

A. Chakraborti and B.K. Chakrabarti, Eur. Phys. J. B 17, 167 (2000).

Here $\boldsymbol{\varepsilon}_1$ and $\boldsymbol{\varepsilon}_2$ are uniform random numbers in (0,1), independent or possibly the same random number, depending on the model.

The update rule can be rewritten as

$$x_{i}(t+1) = x_{i}(t) - \widetilde{\omega}_{i}x_{i}(t) + \widetilde{\omega}_{j}x_{j}(t)$$

$$x_{j}(t+1) = x_{j}(t) + \widetilde{\omega}_{i}x_{i}(t) - \widetilde{\omega}_{j}x_{j}(t)$$

with

In a heterogeneous model the average value is $\langle x_i \rangle \sim 1/(1-\lambda_i)$

Model system of a perfect gas with heterogeneous dimensions

The model system can represent a perfect gas with heterogeneous dimensions (each particle lives in a space with a different dimension) or a heterogeneous mixture of polymers, each polymer having a different number of degree of freedoms.

The heterogeneity is described by the probability P(n) that a sub-system has a certain number D = 2n of degrees of freedom.

For a fixed n, the equilibrium probability density of a D-dimensional harmonic oscillator is the gamma-distribution of order n,

$$f(x) = \frac{\beta^{n}}{\Gamma(n)} x^{n-1} e^{-\beta x}$$

Then, for a general P(n), the equilibrium distribution is the aggregate density,

$$f(x) = \int_{1}^{\infty} dn P(n) \beta \gamma_{n}(\beta x) = \int_{1}^{\infty} dn P(n) \frac{\beta^{n}}{\Gamma(n)} x^{n} e^{-\beta x}$$

This can be obtained by varying the Boltzmann entropy of the heterogeneous system.

Variational principle for heterogeneous dimensions

Given the dimension density P(n), $1 < n < \infty$, one can define the entropy functional as follows.

Entropy Functional
$$S[f] = \int dn P(n) \int dx f_n(x) \left\{ \ln \left[\frac{f_n(x)}{x^{n-1}} \right] + \mu_n + \beta x \right\}$$

Constraints on probability conservation $I[f] = \int_{1}^{\infty} dx f_n(x) = 1$

(Single) constraint on energy conservation $X_{tot}[f] = \int dn P(n) \int_{-\infty}^{\infty} dx \, x \, f_n(x) = 1$

By variation of S, one obtains the aggregate density, i.e. the probability density to obtain a certain value x of the energy, independently of the corresponding number 2n of degrees of freedom,

$$f(x) = \int_{1}^{\infty} dn P(n) \beta \gamma_{n}(\beta x) = \int_{1}^{\infty} dn P(n) \frac{\beta^{n}}{\Gamma(n)} x^{n} e^{-\beta x}$$

Result for the aggregate distribution

The aggregate density can be rewritten as

$$f(x) = \int dn P(n) \beta \gamma_n(\beta x) = \beta \exp(-\beta x) \int dm \exp(-\phi(m))$$

where m = n - 1. The integrand function has a maximum at $\beta x \sim 1$. Then using the Stirling approximation, one can write

$$\phi(m) \approx -\ln[P(m+1)] - m\ln(\beta x) + \ln(\sqrt{2\pi}) + (m+\frac{1}{2})\ln(m) - m,$$

Using the saddle-point approximation, $f(x) \approx \beta \exp[-\beta x - \phi(m_0)]$

$$\times \int_{-\infty}^{+\infty} d\epsilon \exp[-\phi''(m_0)\epsilon^2/2]$$

$$=\beta\sqrt{\frac{2\pi}{\phi''(m_0)}}\exp[-\beta x-\phi(m_0)].$$

The asymptotic result is

$$f(x \gg \beta^{-1}) \equiv f_2(x) = \beta P(1 + \beta x).$$

Dimensional decomposition of the aggregate distribution $f(x) = \sum_{i} f_{i}(x)$

Aggregate distribution of dimensionally heterogeneous systems

Gas in *D* **dimensions**. For a given dimension *D*, the equipartition theorem provides an average kinetic energy

$$x(D) = D k_{_B} T/2 \sim D,$$

where T is the temperature of the system. If P(D) is the dimension density of a heterogeneous system, then for probability conservation, i.e. f(x) dx = P(D) dD, one has

$$f(x) = P(D)\frac{dD}{dx} = \overline{x}^{-1}P(x/\overline{x})$$
$$\overline{x} = k_B T/T$$

Complex Networks. In a complex network with degree distribution P(k), the average equilibrium load for the simplest case of free diffusion is

$$x(k) = x_0 k \sim k,$$

where x_0 is a constant (average flux per link and direction). Then from probability conservation, f(x) dx = P(k) dk, it follows that

$$f(x) = P(k)\frac{dk}{dx} = x_0^{-1}P(x/x_0)$$

In particular, scale-free networks have a power law load distribution in the stationary state, $f(x) \sim 1/x^{\alpha}$.

Zipf's law from the random walk on the semantic network of language

Written text (or spoken language) can be conceived as a walk in the special space of concepts which can be represented by nouns, verbs, etc, the **semantic space.**

A. P. MASUCCI AND G. J. RODGERS

FIG. 1. Illustration of the language network for the first 60 words of Orwell's 1984.

After writing a long text (e.g. a novel) or speaking a long speech, what is the expected rank distribution of words?

This depends obviously on the correlations between subsequent words, i.e. on the probability that, given a word w, another word w' will follow.

← From:

A.P. Masucci and G.J. Rodgers, Phys. Rev. E 74, 026102 (2006) Measure of Zipf's law on "1984".

(a) The dashed line is a power law with slope -1.1, $x \sim r^{-1.1}$. If N is the total number of words, then

Y = r / N = F(x) = cumulative distribution $\rightarrow F(x) \sim x^{-1/1.1} \sim x^{-0.91}$ $\rightarrow f(x) \sim x^{-1.91}$

The slope found is -1.9.

A.P. Masucci and G.J. Rodgers, Phys. Rev. E 74, 026102 (2006)

Heterogeneous Kinetic Exchange Models

- The analogy with dimensionally heterogeneous systems is based on the similarities discussed above between the models.
- **Example**: If the saving propensities of the *N* agents $(\lambda_1, \lambda_2, ..., \lambda_N)$ are for 1% distributed uniformly λ in (0,1),

Income data overview

Colloquium: Statistical mechanics of money, wealth, and income

[arXiv:0905.1518]

Victor M. Yakovenko, J. Barkley Rosser

References:

• M. Patriarca, E. Heinsalu and A. Chakraborti

Basic kinetic wealth-exchange models: common features and open problems Eur. Phys. J. B 73, (2010) 145 [arXiv:physics/0608174]

• A. Chakraborti and M. Patriarca

A variational principle for the Pareto power law

Phys. Rev. Lett. 103 (2009) 228701 [arXiv:cond-mat/0605325]

· A. Chakraborty and M. Patriarca

Gamma-distribution and Income inequality

Pramana J. Phys. 71 (2008) 233 [arXiv.org:0802.4410]

• M. Patriarca, A. Chakraborti, E. Heinsalu, and G. Germano

Relaxation in Statistical Many-agent Economy Models

Eur. Phys. J. B 57 (2007) 219 [arXiv:physics/0608174]

• M. Patriarca, A. Chakraborti, and G. Germano

Influence of saving propensity on the power-law tail of wealth distribution Physica A 369 (2006) 723 [arXiv:physics/0506028]

• M. Patriarca, A. Chakraborti, K. Kaski, and G. Germano

Kinetic theory models for the distribution of wealth: power law from overlap of exponentials in: Econophysics of Wealth Distributions - Econophys-Kolkata 1, A. Chatterjee, S.Yarlagadda, and B.K. Chakrabarti, Editors, Springer, 2005 [arXiv:physics/0504153]

• M. Patriarca, A. Chakraborti, and K. Kaski

A statistical model with a standard gamma distribution

Phys. Rev. E 70, (2004) 016104 [arXiv:cond-mat/0402200]

• M. Patriarca, A. Chakraborti, and Kimmo Kaski

Gibb's versus non-Gibb's distributions in money dynamics

Physica A 340 (2004) 334 [arXiv:cond-mat/0312167]

Additional material

Variational principle for one degre of freedom

Variational principle approaches based on the variation of an entropy functional find a natural application in the study of social and economic processes.

Entropy
$$S[f] = \int dq f(q) \ln[f(q)]$$

Probability conservation
$$I[f] = \int dq f(q)$$

Wealth conservation
$$X_{tot}[f] = \int dq f(q) X(q)$$

Lagrange method:

$$\delta S_{eff}[f] = \delta [S[f] + \mu I[f] + \beta X_{tot}[f]]$$

$$= \delta \int dq f(q) [\ln[f(q)] + \mu + \beta X(q)] = 0 \quad \rightarrow \quad f(x) = \frac{\exp(-\beta x)}{\langle x \rangle}$$

Variational principle for N degrees of freedom (dimensions)

Functional $S[f] = \int dq_1 dq_2 ... f(q_1, q_2, ...) [\ln[f(q_1, q_2, ...)] + \mu + \beta X(q_1, q_2, ...)]$

Energy in *N*-dimensions: $X(q) = \frac{1}{2} [q_1^2 + ... + q_N^2]$ (independent particles)

Integrate N-1 angular variables: $S[f_{\downarrow}] = \int dq f_{\downarrow}(q) \left\{ \ln \left[\frac{f_{\downarrow}(q)}{\sigma_N q^{N-1}} \right] + \mu + \beta X(q) \right\}$

(N-1)-dimensional surface: $\sigma_N = 2\pi^{N/2}/\Gamma(N/2)$

Reduced density in q $f_1(q) = f_N(q)/\sigma_N q^{N-1}$

Move to energy variable $x = X(q^2)$ and apply Lagrange method:

$$\delta S[f] = \delta \int dx f(x) \left\{ \ln \left[\frac{f(x)}{\sigma_N x^{N/2-1}} \right] + \mu + \beta x \right\} = 0 \quad \rightarrow \quad f(x) = \frac{\beta^n}{\Gamma(n)} x^{n-1} e^{-\beta x}$$

Example: KWEM Aggregate distribution f(x) for distributed λ with density $\Phi(\lambda)$ Simple example: the agents have different $\phi(\lambda) = 1$, $\cdot < \lambda < 1$ saving propensities λ_i with a uniform $\phi(\lambda)=0$ otherwise λ -density $\Phi(\lambda)$. Corresponding form of the *n*-density $P(n) = \frac{d\lambda(n)}{dn}\phi(\lambda(n)) = \frac{3}{(n+2)^2}$ 10^{-2} $f(x)/\beta$ $f(x) = \int_{1}^{\infty} dn P(n) \beta \gamma_{n}(\beta x)$ 10-4 $f(x) \\ f_1(x) \\ f_2(x)$ 10^2 10 βx

Examples of dimensionally heterogeneous systems (1) Interacting particles living in different *D*- and *D'*-dimensional spaces (2) Interacting polymers with different numbers of harmonic degrees of freedom (3) Heterogeneous Networks