
Abstract

Due to its inherent turbulent nature, ocean motion possess a great complexity. We can barely describe the main patterns of general circulation at large scale, but the extreme richness of circulation patterns at mesoscale and 
lower scales makes the assessment of ocean evolution quite complicated. These difficulties are specially relevant when one tries to study problems of Lagrangian character, such as mixing, dispersion and transport of oceanic 
properties. For that reason, the implementation of appropriate Lagrangian diagnostic tools are in order.A prominent Lagrangian technique which starts to be widely used in oceanography is that of Finite-Size Lyapunov Exponents (FSLE). 
FSLE is a local measure of particle dispersion is obtained at each point, which serves to characterize Lagrangian structures. Although mathematically appealing, it is rather unclear how robust are FSLE analyses when confronted to real 
data, that is, data affected by noise and with limited scale sampling. In this study, we analyze the effect of finite scale samplings and of diverse types of noise on FSLE diagnostics. Both effects should be accounted to determine which 
part of the diagnostics is reliable. Most importantly, scale dependence of FSLE reveals the emergence of a cascade-like hierarchy in Lagrangian structures, which can be used to improve diagnostics and to better understand 
ocean dynamics.

  ■  Increasing the spatial resolution of FSLEs we improve the identification of surface mesoscale structures.

   ■ The surface mesoscales structures in the ocean remain when the spatial resolutions of the velocity decreases

   ■ All the dependence of FSLEs on scale parameters reveal a multifractal structure. What is diagnosed at the coarser scales is still valid when scale is refined. 

   ■ The FSLEs are rather robust. The relative error, even for an error of 10% of the velocity data, is smaller than 20 %.

   ■ Mesoscale structures are maintained when the eddy diffusion is included.
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FSLE at different spatial scales and at the same resolution of velocity data:

Multifractal character and scale invariance properties of FSLE

FSLE at diferent spatial resolution of the velocity field, and at the same spatial scale of FSLE

δ0  is the initial separation
δf   is the final separation
τ    is the time needed for two particles initially   
      separated δ0, to get separate δf

x0  are the initial coordinates 
t    time 

δ0 δf
The FSLEs are calculated by the formula 

The FSLEs are computed using daily surface velocity data of DieÇAST model applied to the Balearic Sea. 
In this model the resolution for velocity data is 1/8 degree. 
We modify the spatial scales at the FSLEs field changing the initial resolution δ0 . 
The  δ0 used for this computation are:  1/8 degree, 1/16 degree, 1/32 degree and 1/64 degree.

We calculated the probability distribution, P ( δ0, Λ),  
of the FSLEs at the different spatial resolutions 
δ0 (1/8, 1/16, 1/32, 1/64 degrees). 
The histograms have been normalized to the same 
area, by dividing  by the respective maximum 
values of the FSLEs. The plots shows that when 
the resolution is finer (smaller δ0), the probability 
distribution P(δ0, Λ ) narrows and the values of the
 peak increase, in a way consistent with a 
multifractal character of the FSLEs .

Histograms of FSLEs at differents scales
The scale behaviour of these histograms 
indicates that the distribution of the FSLEs 
at a scale  δ0  is given by:

           P (δ0, λ ) = P (λc )δ0 d-D(λ)  (1)

P(δ0, λc) is the maximun value of the probality
         distribution

d in this case is the surface dimension = 2
D (λ) is the fractal dimension of the set of 
         initial conditions leading to FSLE 
δ0 is the definition scale 

FSLEs   δ0 = 1/8 degree  FSLEs   δ0 = 1/16 degree  FSLEs   δ0 = 1/32 degree  FSLEs   δ0 = 1/64 degree  

Fractal dimension of FSLEs at differents scales From Eq (1) one obtains a properly normalized expression to computed
the fractal dimension at different scales

The plot of D(Λ)  shows a collapse of D (Λ) at the different scales. 
Because of lost of translational invariance the collapse is not perfect. 
This effect happens when the resolution and the 
domain is small. (i.e. It has a few pixels)

FSLEs    ∆ο =  1/4 degree   FSLEs      ∆ο =  1/2 degree  

The scale behaviour of these histograms 
indicates that the distribution of the FSLEs 
at a scale  δ0  is given by:

                                                         (1)

P(δ0, Λc) is the maximun value of the probality
         distribution

d in this case is the surface dimension = 2
D (Λ) is the fractal dimension of the set of 
         initial conditions leading to FSLE 
δ0 is the definition scale 

We compute the histograms of the spatial distributions of the FSLEs at the same spatial scale δ0 1/64 degree and a different spatial resolution of the velocity field: 
 ∆ο=1/8 , 1/4 and 1/2 degree Fig (1), and probability distributions (coded as grey level) of FSLEs derived at a coarse velocity resolution (Λc , vertical axis)  

conditioned by a finer velocity grid (Λf , horizontal axis)(Fig 2).

Fig. 1

Even decreasing the spatial resolution of the velocity data, the structures remain.  

Robustness of  FSLEs

Conclusions

Λ are the values of FSLEs without error in the velocity data.

Λε  are the values of FSLEs with error in the velocity data.

N is the total number of points in the  FSLEs field. 

α=ε•η      ε  is the % of error.

η  is a Gaussian distributed random number: 

       mean = 0, variance = 1.

 V is the velocity data.  V' is the perturbated velocity data

To study the robustness of the FSLEs, we compute the relative error of FSLE introducing 
a velocity data perturbated with a small random error, respect to FSLE without perturbation.. 

V                   perturbation V'  perturbated =V+error=V+ε⋅η⋅V=V 1+ε⋅η 

We computed the relative error of FSLEs by the formula:
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FSLEs  at δ0 = 1/64 degree with 20%                                  
of perturbation in the velocity data  

Error in the data Noise in the particle's trajectories
We have computed the FSLEs introducing white noise in the particles trajectories. We have solved the following equations:

u , v  are the components of the velocity.

Φ is the longitudinal coordinate.

λ  is the latitudinal coordinate.

D   is the eddy diffusivity  computed by the Okubo's formula (OKubo, 1971)  

〈ξ  t  ξ  t' 〉=δ t−t'  〈ξ  t 〉=0ξ (t)  is  white noise

Relative error of FSLE vs eddy diffusivity (D) 

at δ0 = 1/8 degree

Relative error of FSLE vsδ0. 

One plot using constant D and another 

taking the corresponding D for the scale δ0  

FSLEsδ0 = 1/64 degree with the 

diffusion D=0.9m2/s in the trajectories  

(2)

Even with a perturbation 10 times the velocity data, the error remains smaller than 0.2 The mesoscales structures are mainted Even with 10m2/s of diffusion, the relative error remains smaller y than 0.5 The mesoscales structures are maintaned with eddy diffusivity

This behaviour suggest a relation of scale between FSLE at different velocity resolutions.
Linel regresion analysis shows a correspondence one to one between values  of FSLEs at different velocity resolutions.  

Fig. 2

Linear regression fits:

FSLE at finer resolution

FSLE at lower resolution

Contribution not account by the 
lower resolution
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