Threshold model with external influence J. C. González-Avella, V. M. Eguíluz, M. San Miguel Fernando Vega-Redondo Matteo Marsili A basic puzzle posed by innovation diffusion is why there is often a long lag between an innovation's first appearance and the time when a substantial number of people have adopted it. Consider three basic types of innovation diffusion models, each arising from a different account of how innovations spread. - **1. Contagion.** People adopt an innovation when they come in contact with someone who has already adopted. - **2. Social threshold.** People adopt when enough other people in the group have adopted. - **3. Social learning.** People adopt once they see enough evidence among prior adopters to convince them that the innovation is worth adopting. # *IFISC ## The Model There is large population of agents, $N = \{1; 2; ...; n\}$, placed on a given Indirected network. Every player $i \in N$ chooses one of two alternative actions, action S=-1 or action S=+1. #### **Dynamics** At the beginning of every t, they receive a signal on the relative payoff of the two actions (E). with $p \rightarrow E = +1$ and $(1-p) \rightarrow E = -1$ if $E = S_i$ nothing happens. if $E \neq S$; then If and only if the fraction of neighbors with opposite action is greater than a threshold T then $Si \rightarrow -Si$ #### Question: What is the relationship between p (the quality of the signal) and \mathcal{T} (the threshold for action change) that underlies the spread and consolidation of action 1? ## Mean field analysis. ## **X(t)**= fraction of agents choosing action 1 at some t $$\dot{x} = -(1 - p)x \ \theta(1 - x - \tau) + p(1 - x) \ \theta(x - \tau)$$ where $\theta(z) = 1$ if $z \ge 0$ while $\theta(z) = 0$ if z < 0. It is useful to divide the analysis into two cases: #### Case I: $\tau > 1/2$ In this case, it is straightforward to check that $$\begin{array}{ccc} x < 1 - \tau & \Longrightarrow & \dot{x} = -(1 - p)x < 0 \\ 1 - \tau < x < \tau & \Longrightarrow & \dot{x} = 0 \\ x > \tau & \Longrightarrow & \dot{x} = p(1 - x) > 0 \end{array}$$ So, it follows that correct social learning occurs iff $p > \tau$. #### Case II: $\tau < 1/2$ In this case, we find: $$\begin{array}{ccc} x < \tau & \Longrightarrow & \dot{x} = -(1-p)x < 0 \\ \tau < x < 1-\tau & \Longrightarrow & \dot{x} = p-x \\ x > 1-\tau & \Longrightarrow & \dot{x} = p(1-x) > 0 \end{array}$$ And, therefore, correct social learning occurs iff $p > 1 - \tau$. To sum up, we can combine both cases simply stating that mean-field analysis predicts that correct social learning occurs if, and only if, $$p > \max\{\tau, 1 - \tau\}. \tag{1}$$ ## Phase diagram (p,τ) | case $\tau > 0.5$ | case $\tau < 0.5$ | |---------------------|-------------------| | <i>t</i> < <i>p</i> | $\tau > 1 - p$ | | p = 0.8 | p = 0.8 | | $\tau < 0.8$ | $\tau > 0.2$ | Phase I: Disorder (active) Phase II: Order Phase III: Disorder (Frozen) Phase I para τ <0.5 Phase III para τ >0.5 $$t \sim e^N$$ Phase I: $N \rightarrow \infty$; $x \approx p$ Regular lattice with k=8. System size 104 p = 0.60 $\tau = 0.30$ $\tau = 0.60$ #### Random network <k> = 8. (Poisson) Phase diagram (p,τ) $$p = 0.60$$ $\tau = 0.30$ $\tau = 0.60$ ## Regular lattice with k=8. N= 10⁴ 150 50 100 150 N = 100; T = 0.75; p = 0.60; 2d lattice with k=56N = 100; T = 0.75; p = 0.60; 2d lattice with k=560.8 0.55 0.5 0.45 0.2 0.2 150 200 0.4 0.6 0.4 100 time 150 200 50 100 0.7 0.55 0.6 0.5 0.5 10 0.4 0.45 0.3 L 150 N = 10000; T = 0.75; p = 0.60; 2d lattice with k=56N = 10000; T = 0.75; p = 0.60; 2d lattice with k=56600 0.8 500 400 300 300 0.4 200 200 0.2 0.2 100 100 150 100 150 0.4 time 0.6 600 500 400 300 0.4 200 200 0.2 0,2 100 $$p = 0.55$$ $\tau = 0.35$ $\tau = 0.75$ ### Random network. ## Summary The mean-field analysis and the simulations deliver the same message: depending on the quality of the signal, neither too strong nor too weak peer effects in action adjustment (as measured by the magnitude of τ) is required for correct social learning at the overall population level. Local interactions are more efficient to promote social learning that the case of global interaction. Introduce heterogeneity among the agents.