## Threshold model with external influence

J. C. González-Avella, V. M. Eguíluz, M. San Miguel

Fernando Vega-Redondo

Matteo Marsili







A basic puzzle posed by innovation diffusion is why there is often a long lag between an innovation's first appearance and the time when a substantial number of people have adopted it.

Consider three basic types of innovation diffusion models, each arising from a different account of how innovations spread.

- **1. Contagion.** People adopt an innovation when they come in contact with someone who has already adopted.
- **2. Social threshold.** People adopt when enough other people in the group have adopted.
- **3. Social learning.** People adopt once they see enough evidence among prior adopters to convince them that the innovation is worth adopting.

# \*IFISC

## The Model

There is large population of agents,  $N = \{1; 2; ...; n\}$ , placed on a given Indirected network.

Every player  $i \in N$  chooses one of two alternative actions, action S=-1 or action S=+1.

#### **Dynamics**

At the beginning of every t, they receive a signal on the relative payoff of the two actions (E). with  $p \rightarrow E = +1$  and  $(1-p) \rightarrow E = -1$ 

if  $E = S_i$  nothing happens.

if  $E \neq S$ ; then

If and only if the fraction of neighbors with opposite action is greater than a threshold T then  $Si \rightarrow -Si$ 

#### Question:

What is the relationship between p (the quality of the signal) and  $\mathcal{T}$  (the threshold for action change) that underlies the spread and consolidation of action 1?



## Mean field analysis.

## **X(t)**= fraction of agents choosing action 1 at some t

$$\dot{x} = -(1 - p)x \ \theta(1 - x - \tau) + p(1 - x) \ \theta(x - \tau)$$

where  $\theta(z) = 1$  if  $z \ge 0$  while  $\theta(z) = 0$  if z < 0. It is useful to divide the analysis into two cases:

#### Case I: $\tau > 1/2$

In this case, it is straightforward to check that

$$\begin{array}{ccc} x < 1 - \tau & \Longrightarrow & \dot{x} = -(1 - p)x < 0 \\ 1 - \tau < x < \tau & \Longrightarrow & \dot{x} = 0 \\ x > \tau & \Longrightarrow & \dot{x} = p(1 - x) > 0 \end{array}$$

So, it follows that correct social learning occurs iff  $p > \tau$ .

#### Case II: $\tau < 1/2$

In this case, we find:

$$\begin{array}{ccc} x < \tau & \Longrightarrow & \dot{x} = -(1-p)x < 0 \\ \tau < x < 1-\tau & \Longrightarrow & \dot{x} = p-x \\ x > 1-\tau & \Longrightarrow & \dot{x} = p(1-x) > 0 \end{array}$$

And, therefore, correct social learning occurs iff  $p > 1 - \tau$ .

To sum up, we can combine both cases simply stating that mean-field analysis predicts that correct social learning occurs if, and only if,

$$p > \max\{\tau, 1 - \tau\}. \tag{1}$$



## Phase diagram $(p,\tau)$



| case $\tau > 0.5$   | case $\tau < 0.5$ |
|---------------------|-------------------|
| <i>t</i> < <i>p</i> | $\tau > 1 - p$    |
| p = 0.8             | p = 0.8           |
| $\tau < 0.8$        | $\tau > 0.2$      |

Phase I: Disorder (active)

Phase II: Order

Phase III: Disorder (Frozen)

Phase I para  $\tau$  <0.5 Phase III para  $\tau$  >0.5











$$t \sim e^N$$

Phase I:  $N \rightarrow \infty$ ;  $x \approx p$ 



Regular lattice with k=8. System size 104



p = 0.60  $\tau = 0.30$  $\tau = 0.60$ 

#### Random network <k> = 8. (Poisson)







Phase diagram  $(p,\tau)$ 



$$p = 0.60$$
 $\tau = 0.30$ 
 $\tau = 0.60$ 

## Regular lattice with k=8. N= 10<sup>4</sup>





150

50

100

150

N = 100; T = 0.75; p = 0.60; 2d lattice with k=56N = 100; T = 0.75; p = 0.60; 2d lattice with k=560.8 0.55 0.5 0.45 0.2 0.2 150 200 0.4 0.6 0.4 100 time 150 200 50 100 0.7 0.55 0.6 0.5 0.5 10 0.4 0.45 0.3 L 150 N = 10000; T = 0.75; p = 0.60; 2d lattice with k=56N = 10000; T = 0.75; p = 0.60; 2d lattice with k=56600 0.8 500 400 300 300 0.4 200 200 0.2 0.2 100 100 150 100 150 0.4 time 0.6 600 500 400 300 0.4 200 200 0.2 0,2 100





$$p = 0.55$$
 $\tau = 0.35$ 
 $\tau = 0.75$ 

### Random network.





## Summary

The mean-field analysis and the simulations deliver the same message: depending on the quality of the signal, neither too strong nor too weak peer effects in action adjustment (as measured by the magnitude of  $\tau$ ) is required for correct social learning at the overall population level.

Local interactions are more efficient to promote social learning that the case of global interaction.

Introduce heterogeneity among the agents.