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1827, Brown observed the irregular unceasing motion of the pollen in water 
(1765, Ingenhousz)

1905, Einstein's explanation of diffusion, Pearson's random walk:

          1) the existence of a mean free path
          2) the existence of a mean time taken to perform a step
               or between collisions

1906, Smoluchowski
1908, Langevin

the theoretical works of Einstein, Smoluchowski and Langevin  on Brownian 
motion guided the experimentalists toward meaningful measurements.

what happens if the assumptions made by Einstein and Pearson do not 
hold ?!



experiments in the early 1970s: 
movement of the charge carriers in amorphous semiconductors 
could not be described by the classic diffusion equation.

1975, Scher, Montroll: 
charges moving in amorphous media tend 
to get trapped by local imperfections and 
then released due to thermal fluctuations. 
The trapping times are more likely to be 
described by a Pareto distribution with an 
infinite mean value than by a Gaussian 
distribution.

Gaussian exponential Pareto

green – median
blue – mean

This idea was not accepted easily by other researchers because it 
implied that a distribution that did not have a mean value might have a 
physical meaning.
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1965, Montroll and Weiss, 
continuous time random walk model:

after a random waiting time  τ   
drawn from a residence time 
distribution (RTD)  ψ

i
(τ), the 

particle jumps  with probability 
q

i
 ± (q

i
 + + q

i
 - = 1) from site i to site i ±1:

xn xn ± x ,
t n tn  ;

g i
±
=



 x2
exp[−U i±1−U i

2 ];
fractional hopping rates are:

qi
±
=

g i
±

g i
 g i

−

1D lattice  { x
i
 = i ∆x }

initial positions  x(n)(t
0
) = x

0

(n)

exponential RTD       normal diffusion

Pareto or Mittag-Leffler RTD

subdiffusion



≠1

01 − subdiffusion
1 − superdiffusion

〈 r2t 〉∝t
〈r t 〉∝t

normal diffusion

〈r t 〉∝t
〈 r2t 〉∝t

[v ]=cm s−1
 [v]=cm s−

[]=cm2s−1
 []=cm2 s−

Anomalous diffusion has been known since Richardson's 
treatise on turbulent diffusion in 1926.
Within transport theory it has been studied since the late 1960s.

diffusion coefficient:

current:



anomalous diffusion is relevant in many problems in physics and 
chemistry, in particular in electrochemistry, in geophysics and 
environmental physics, in biology and microbiology, medicine, in 
complex systems, and finance

superdiffusion:
● Richardson turbulent diffusion
● special domains of rotating flows 
● collective slip diffusion on solid 
surfaces
● layered velocity fields
● bulk-surface exchange controlled 
dynamics in porous glasses
● the transport in micelle systems
● heterogeneous rocks
● quantum optics
● single molecule spectroscopy
● the transport in turbulent plasma
● bacterial motion

subdiffusion:
● charge carrier transport in 
amorphous semiconductors
● glasses
● nuclear magnetic resonance
● diffusion in percolative and 
porous systems
● transport on fractal geometries
● dynamics of a bead in a 
polymeric network
● protein conformational dynamics
● molecular motors
● DNA unzipping
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diffusion equation describing normal Brownian motion:

 ∂
∂ t

P x , t = Dt
1−

0 
∂

2

∂ x2 P x , t  ,

 D ∗
 P  x , t =

∂
2

∂ x2 P  x , t  ,

or

Dt
1−

0 t =
1


∂
∂ t
∫
0

t

d t '
t ' 

t−t ' 1−

Riemann-Liouville
fractional derivative;
01

Caputo fractional 
derivativeD ∗

 P  x , t =
1

1−
∫
0

t

d t '
1

t−t ' 
∂
∂ t '

P  x , t ' 

fractional diffusion equation describing subdiffusion:
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master equation corresponding to the random walk:
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fractional master equation corresponding to the CTRW:
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One way to formally introduce fractional derivatives proceeds 
from the repeated differentiation of an integral power:

For an arbitrary power  μ, repeated differentiation gives

with gamma functions replacing the factorials.
The gamma functions allow for a generalization to an arbitrary 
order of differentiation α,

The latter equation corresponds to the Riemann-Liouville derivative.
It is sufficient for handling functions that can be expanded in Taylor series.

fractional calculus:



September 30th 1695 L'Hopital wrote to Leibniz asking him about a particular 
notation he had used in his publication for the nth-derivative of the linear 
function  f (x) = x:

dn f  x

d xn

– What would the result be if  n = ½ ?

Leibniz's response: “An apparent paradox, from which one day useful 
consequences will be drawn.”

The derivatives of integer order and their inverse operations – integrations – provide 
the language for formulating and analyzing many laws of physics.
However, about 300 years had to pass before what is now known as fractional 
calculus was slowly accepted as a practical instrument in physics.

“Leibniz's response has proven at least half right. Within the 20th century especially 
numerous applications and physical manifestations of fractional calculus have been 
found. However, these applications and the mathematical background surrounding 
fractional calculus are far from paradoxical. While the physical meaning is difficult 
(arguably impossible) to gasp, the definitions themselves are no more rigorous than 
those of their integer order counterparts.” [Adam Loverro]



diffusion on periodic substrates:

U  x=U 0x −Fx

U 0x =U 0 xL , F=const


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〈t  〉=0, 〈t t '  〉=2 k B T t−t ' 

Smoluchowski-Feynman ratchet: 
is it possible to convert Brownian motion 
into useful work?



●  normal Brownian motion of monomers and dimers under the 
influence of a spatially periodic forces
●  anomalously slow diffusion on periodic substrates

applications in physics, chemistry, 
nanotechnology, molecular biology:
● Josephson junctions diffusion of 
● rotating dipoles in external fields
● particle separation by electrophoresis
● charge density waves
● mode locking in laser gyroscopes
● plasma accelerators
● neural activity
● intracellular transport
● DNA unzipping
● diffusion of atoms and molecules (e.g. 
dimers) on crystal surfaces 
● motion of dissociated dislocations



F

motion of dimers (harmonically 
interacting Brownian particles): 

directed motion (current) is 
larger for the dimers with the 
length of half period of the 
potential period

diffusion coefficient is larger 
for the dimer configurations 
such that one of the particles 
is in the minimum of the 
washboard potential and the 
other one on the top of the 
potential barrier



motion of a monomer in a periodic substrate 
under the influence of an external bias: 
normal versus anomalously slow motion 

normal Brownian motion: the probability density is spreading and its 
maximum is moving in the direction of the external bias 

subdiffusion: the probability density is spreading in the direction of the 
external bias but the maximum remains close to the initial position, 
i.e. the system has memory 



f t =±F 0 , F 0=const , 0= time period

subdiffusion in time dependent fields:



F 0/=1

〈F t 〉0
=0 − average force is zero

anomalous: 
● in the long time limit the 
particles will not respond 
to the external force!
● diffusion coefficient is 
larger than the free 
diffusion coefficient!

normal: 
● mean particle position 
fluctuates around the 
initial condition;
● diffusion coefficient is 
equal to the free 
diffusion coefficient



more information in:

[I] E. Heinsalu, R. Tammelo, T. Örd, Phys. Rev. E 69, 021111 (2004).

[II] E. Heinsalu, R. Tammelo, T. Örd, Physica A 340, 292 (2004).

[III] E. Heinsalu, T. Örd, R. Tammelo, Phys. Rev. E 70, 041104 (2004).

[IV] E. Heinsalu, T. Örd, R. Tammelo, Acta Physica Polonica B 36, 1613 (2005).

[V] M. Patriarca, P. Szelestey, E. Heinsalu, Acta Physica Polonica B 36, 1745 (2005).

[VI] T. Örd, E. Heinsalu, R. Tammelo, Eur. Phys. J. B 47, 275 (2005).

[VII] I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, P. Hänggi, Phys. Rev. E 73, 020101(R) (2006).

[VIII] E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, P. Hänggi, Phys. Rev. E 73, 046133 (2006).

[IX] E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, J. Phys.: Condens. Matter 19, 065114 (2007).

[X] E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, Phys. Rev. Lett. 99, 120602 (2007).

[XI] E. Heinsalu, M. Patriarca, F. Marchesoni, Phys. Rev. E 77, 021129 (2008).

the study was carried out in collaboration with:

Igor Goychuk  (University of Augsburg)
Peter Hänggi  (University of Augsburg)
Fabio Marchesoni  (University of Camerino)
Marco Patriarca  (National Institute of Chemical Physics and Biophysics)
Gerhard Schmid  (University of Augsburg)
Peter Szelestey  (Helsinki University of Technology)
Risto Tammelo  (University of Tartu)
Teet Örd  (University of Tartu)


