We have presented in this work an opto-electronic involving feedback both in the light source (laser) and the electronic branch. We have evidenced that this technique can be an alternative to induce further chaos in a system. The efficiency of the model has been tested by comparing the resulted effects due to mismatch to those intensively investigated in the system with single feedback.

-5 feedback coefficient $\beta = 2.89 \times 10$ -8 -1 gain parameter $g_m = 1.5 \times 10^{-8}$ ps -7 gain saturation $S_f = 2 \times 10$ 8 carrier number at transparency N_0 =1.2×10 high frequency cutoff τ =25 ps low frequency cutoff θ =5 μ s delay time T=2.5ns inverse photon lifetime $\gamma=3.3\times10^{-11}s^{-1}$ $8 - 1$ inverse carrier lifetime γ =5×10 $\text{\textdegree{s}}$ $16 - 1$ injected current threshold J_{th} =7.1×10¹⁶ s⁻¹ Injected current J₀ Laser feedback coefficient J_1 offset phase Φ

1) L. Larger et al. Phys. Rev.E67, 6618 (1998) 2) G. P. Agrawal and N. K. Dutta, "Long Waves Semiconductor Lasers", New York: Nostrand Reinhold, 1986.

References

Set-up and Model

Equation

We consider two new schemes in which the laser input current is composed of a DC component plus a feedback term F[x]. In a) F[x] comes from the output of the RF driver while in b) F[x] is taken at the output of the Mach-Zehnder and undergoes an optoelectronic conversion. Figure c)

t 2 \mathbf{r} t0 dX ₁ 1 $X + \tau \frac{d^2X}{dt^2} + - \left[X(s) ds = \beta \int cos^2[X(t-T)+\Phi] \right]$ dtθ m 0 0 Te ^{1</sub> Cu _m Cu _m Cu _m Cu _m Cu _m} f dI $=(G_{m}-\gamma)I$ dt dN $N-N$ $N-N$ $=J_0 - \gamma_e N - G_m I + F[x]$ $G_m = g$ dt σ_0 is σ_m if σ_m is σ_m and $1+S_f I$ s $\left[\begin{array}{cc} \Gamma \text{-} \text{J}_1 \text{D}_1 \text{I} \text{COS} \text{I} \text{X} \text{U} \text{+} \text{P} \text{I} \end{array} \right]$ 2 $1^{\mathbf{\Lambda}(1)}$ b) $1^{\mathbf{\Lambda}}$ $2^{\mathbf{\Lambda}}$ $1^{\mathbf{\Lambda}}$ 0 $1^{\mathbf{\Lambda}}$ dF[x] a) $F[x]=J_1x(t)$ b) $\frac{dx}{t}L^{x}=-2\pi f_c \{F-J_1\beta_1I\cos^2[x(t)+\Phi]$ dt Φ The model is described in terms of normalized RF voltage x(t) hereafter [1] and the photon number I [2].

Parameters

a)

highlights upon the complete scheme to encode and decode the message using model displays in a). The similar can find out from model b)

Abstract

Previous research has shown that semiconductor lasers (SL) can be driven to chaotic regime by applying either optical injection or feedback process. Here we combine both, so that the feedback affects the SL, as well as, the electronic branch of the system. By the means of bifurcation diagram and correlation time, we numerically demonstrate from two different schemes how the chaos is induced for lower feedback levels or amplified for feedback strengths for which the system was already chaotic.

Introduction

Opto-electronic devices composed by a nonlinear interferometer (Mach-Zehnder) in which one of the arms is subject delay feedback modulation have been shown enough to provide rich variety of dynamics including a chaotic regime which is fruitful for chaos-based optical communications. In this context stronger chaos complexity is desirable. While chaos complexity increases with feedback strength there is a limitation imposed by the component bandwidths. Here we show that by combining feedback on the nonlinear interferometer and in the pump laser (previously under

Opto-electronic delay device with two feedback loops

Romain Modeste Nguimdo, Pere Colet and Claudio Mirasso

IFISC (CSIC-UIB) Palma de Mallorca – Spain.

The emitter synchronizes (solid line) with the receiver (dashed line) with a time shift corresponding to the difference in time delays. Left figure shows the effect of mismatch in the synchronization. Solid line corresponds to $1=0$ (no laser feedback), circles (o) to system a) and $(+)$ to system b). Parameters χ and χ are more sensitive to mismatch while in other parameters the effect is similar to the case without laser feedback.

