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Introduction

Most real-life systems are complex:
many units interacting in a non-linear way give rise to

not obvious (unexpected) collective behavior.

« Ant colonies

« Human economies
» Social structures

* Nervous systems

e Cells, etc..

http://ifisc.uib.es
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How do we study complex systems?

« An Agent-Based Model (ABM) simulates operations of multiple
agents to recreate behavior of complex phenomena.

* ABMs describe systems at a microscopic level.

« Advantage: ABMs can be used as computer experiments to

explore the behavior of a system under a given input

Some terminology:

« Agent-based models (Sociology, Computer Science, Game Theory)
« Individual-based models (Ecology, Biology).

* Interacting particle systems (Physics).

http://ifisc.uib.es
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Examples of interacting particle systems

Ecology:
Species competition.

Invasion processes.

Predator-prey systems (Lotka Volterra).
Biology:

Epidemic spreading (ISI, IRSI).

Allele frequency (genetics).

Bacteria dynamics.

Neural networks.

Tumor growth.

http://ifisc.uib.es
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Social Science:
Opinion spreading.
Cultural propagation.

Language dynamics.

Surface Physics/ Chemistry:
Catalytic reactions.

Deposition/ reaction-diffusion/ aggregation.

http://ifisc.uib.es
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Mathematical description of ABMs

* Analytical treatment of systems provides insight of phenomena.

* But.., systems are composed by a huge number of agents!
(many degrees of freedom).

* |t is hard and unpractical to develop an analytical framework
(equations) to describe the evolution of each single agent.

*» Need to reduce number of degrees of freedom.

how?

http://ifisc.uib.es
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» Define a few collective variables that describe the system as a
whole.

» Still, a lot of information is obtained from this simplified viewpoint.

» Prediction of macroscopic behavior from a given microscopic
dynamics (ABM) becomes relevant.

» Statistical Physics provides a suitable framework that relates

micro with macro in systems with many particles/agents.

http://ifisc.uib.es
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» Equilibrium statistical physics: thermodynamic relations
between macroscopic/measurable variables (P,V,T) are

derived from Hamiltonian-Equipartition functions.
* But.., most real-life systems are out of equilibrium.

» Analytical techniques to treat non-equilibrium problems that

Involve time dependence:
Master equations, Fokker-Planck equations,

Langevin equations, etc.

http://ifisc.uib.es
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Field approaches to obtain macro evolution equations

The appropriate type of approach depends on the topology
of interactions between agents.

MEAN-FIELD:

» Rate equation for the time evolution of a global quantity.
Ex: density of particles, spin magnetization, population of species.

» Gives very good estimates on well mixed populations where every
agent interacts with any other agent (complete graph or fully
connected network).

» Simplest approach, but neglects spatial dependence, correlations and
fluctuations.

http://ifisc.uib.es
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PAIR APPROXIMATION:

» Rate equation for the evolution of the global density of different
types of pairs (neighboring sites).

» Account for nearest neighbor correlations, but neglects fluctuations.
» Used to obtain approximate solutions in square lattices.
» Gives some idea of spatial effects.

» Specially useful in complex networks, with very accurate results.

More refined methods for heterogeneous networks:

» Node approximation: group nodes in different degree classes.

» Heterogeneous pair approximation: group links in different classes.
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LANGEVIN EQUATION:

» Stochastic partial differential equation for the evolution of a
continuous field &(x,1).

* Accounts for stochastic fluctuations associated to discreteness
effects (agents).

° |t contains the mean-field term, a Laplacian term that accounts for
spatial dependence and a noise term related to fluctuations.

» Appropriate for spatially extended systems.
» Useful to study stability and and pattern formation.

» Essential in systems driven by noise (patterns, absorbing states).

http://ifisc.uib.es



A simple application: The Voter Model [Clifford 1973, Liggett 1975]

» Two possible positions (opinions) {-1=left,1=right} on a political issue.

* Individuals (“voters”) blindly adopt the position of a random neighbor.

Initial state: density o of — voters and 1-¢ of + voters.

Dynamics:
1) Pick a voter i with opinion x; at random.
2) Pick a neighbor j with opinion x; at random. .
. o _ 34,9 9@
i adopts j's opinion (x; = X;=X)). o ®
3) Repeat ad infinitum. 00
@ \ o
1/4™ o o0
Final state: -1 consensus with prob. o ®

+1 consensus with prob. 1-0

http://ifisc.uib.es
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Complete Graph

o = global density of voters with opinion -1 (spin -1)

o, = global density of voters with opinion 1 (spin 1)

m = 04 —0— = Global Magnetization
1 = o4+ o0_ (Total density of voters is conserved)
p = Hlinks between Tand +1spins__ = pensity of active links

Rate equation for m:

dm(t) 1 2 2

_ P(— 2 _ 5P )=
e vi vl Lo Sl A Sl
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Biased Voter Model:
i 1
Pt ——-)=5{0-vjo-, P(=—+)=5{1+v)oy

V = bias (preference for one of the opinions)

V > 0 (favor for + opinion), V < 0 (favor for - opinion)

Mean-field equation for the magnetization.

dm v
dt 2

(1—m?)
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fmt=0)=0 — m(t) = tanh(vt/2)

and p(t) = 204 0_ = % [1 — tanhQ(vt/Q)}

™ only rightists

P only leftists
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Symmetric case (v=0):

m(t) =0 = const, p(t) = 1/2 = const

But....we know the system ultimately reaches consensus!

or m(t=o00)==x1, p(t=00)=0 1!

Therefore:

» Fluctuations must lead the system to the ordered state.

» Mean-field approach is not enough to describe the system.

http://ifisc.uib.es
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Langevin approach

W(m—-2/N—m) W(m+2/N—m) W(m s 1 — 2/N) _ (1 - m2)

| mlm | (1 _?_ 'U)

m4N m2N £\ moN man Wm—omt2/N)
1
W(im—m) = l—i(l—mz)

W(m-—»m)

Master equation for the magnetization

Pim,t+1/N) = W(m+2/N —-m)P(m+2/N,t)
+ W(m—-2/N—->m)P(m-—2/N,t)+ W(m — m) P(m,t)
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Fokker-Planck equation

1 09?
2 Om2

Y (1 — m?)P(m, t)] + [ ;(1 — m2)P(m, 1)

Langevin equation for the magnetization:

drift noise

Gaussian white noise: (n(t)n(t")) =46(t —t')

http://ifisc.uib.es
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Solution to the Fokker-Plank equation:

P(m,t) — ZAZ Cl3/2(m) e—(l—l—l)(l_|_2) t/N
[=0

Average density of active links decays to zero:

(o) = 50— m®) = 5 [ dm (1 =) P(m 1

1
(p(t)):§e_2t/N — 0 as t— o

We recover the right behavior!

http://ifisc.uib.es
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Complex networks

@ Each node connected to p neighbors chosen at random.

————— n active links k—n active links

—— k—n inert links n inert links
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Equations for m and p:

k

dm(t) o_ P 1—|—v) ny 2
dt 2. 1/N n+ZOB ny,k k N
k
B o, Py (1—v)n_ 2
TN =TS
k
dp(t) o_Py (14+v)ny 2(k—2ny)
L B
dt Zk: 1/N 2_: BB "
ny=—
k
o+ Py (1—v)n_ 2(k—2n_)
B(n_
f N 2P T

Pair approximation: neglect 2" nearest-neighbor correlations.




Coupled equations for m and p:

dm(t)

—_— % — v
gt P

dp(t) p{(u_Q)_m—l)(va)p}

dt (1 —m?)
| o ~ E[1—m(t)? g B
Stationary solution: p(t) = 1 rom) §=(n—2)/2(p—1)

dm  v&(1 —m?)
dt ~ (1+vm)

==>  m(t) = tanh(v&t)
Forv <<

v =0 === p(t) =& [1 — m(t)Z] Like in complete graph!!



Symmetric case v=0:

Fokker-Planck equation: — _ (1 — m?2
q Ot 2 Om? T(l P )\ )

IP(m,t) 1 02 [1

2
Langevin equation: CZ_T — \/ (L —m) n(t)
T

Time decay constant depends on 1% and 2™ moments.

Topology affects relaxation to final state.

— 1)p*N
(p(t")) = (L —m?(t)) =€ e /T T= (ﬁu - 2)%2

Sparse networks (u small) take longer to reach consensus state.
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Square lattices

@ = “opinion field” at site r.
ol b e e w2 1< <1
bl Bl Continuous field time
ontinuous field over spacetti
+[+ @ —[+ °
+|—[+[ |+
T | | | o, = density of leftists in the
near neighborhood.

Prob(+ —-) =% (1-v) 1/4 in LI, %2 (1-v) 5/8 in L, V2 (1-v) Y2In
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How does the field evolve with time ?

P(F — +) = %(1j:v) (1i2¢r

) transition probability

= neighboring field
¢r — (;bl‘ _l_ AQSI-

Equation for the evolution of & :

O (1)

5 = 1= 6:()] P(= = +) = [1 + e ()] P(+ — =) + (1)
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Langevin equation for the opinion field:

= —[1=¢2(t)] + = [1 — vee(t)] A (t) + /T — $2(2) 1 (t)

drift diffusion noise

Typical
ordering
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Summary

» The dynamics of agent based models can be described, at the
macroscopic level, by a few collective (global) variables, like
density of particles, magnetization, etc.

» [llustration: starting from the microscopic dynamics, we
derived equations for the macroscopic evolution of a simple
opinion model, in different topologies.

» The type of analytical approach depends on the type of topology.

» Same techniques can be applied to more complicated models

(Language dynamics, savanna problem)... see next talks.

http://ifisc.uib.es



Z 52 14+v)(1—m){nde — (L —v)(1 +m)(n_)g]

dp(t

_ Z Zikk{ (14 v)(1 —m) [k<n+>k - 2(’”’3)*&] +
k

(1= 0)(1+m) [k{n_)x — 2(n2 )] |

15t and 2™ moments of Binomial distribution:

pk
S = B 3, B = P k
(n) 2_: (e, k) = P(s| = )b == 25
k
ko pPk(k—1)
2 — B . 2 ~ %
(7 )k nZ:O (ns, k) 205 * 402

Pair approximation: neglect 2" nearest-neighbor correlations.



For the symmetric case v=0:

p(t) =& [1—m(t)?] Like in complete graph!!

Uncorrelated networks are mean-field for voter model dynamics

Symmetric RW with steps of length 6; = 2k/uN:

W(m—m—10) = %(1— 2)P;C
W(im —m+6,) = %(1 m?) Py
W(im—m) = [1-¢(1—-m?)] P
Pim,t+1/N) = ZPk{W(m+5k—>m,)P(m+5k,t)

+ W(m—90r — m) P(m— 0, t) + W(m — m) P(m,t)}



