The Voter Model in Complex Networks

KI FEDERICO VAZQUEZ

VICTOR M. EGUILUZ

IFISC

MAXI SAN MIGUEL

http://ifisc.uib.es - Mallorca - Spain

MODELS of SOCIAL CONSENSUS

Determine when and how the dynamics of a set of interacting agents that can choose among several **options** (*political vote, opinion, cultural features,...*) leads to a **consensus** in one of these opinions, or when a state with several **coexisting** options prevails.

INTERACTIONS: Mechanisms ("rule") and Network (with whom)

Prototype models with two excluding options:

- VOTER MODEL

- SPIN FLIP KINETIC ISING MODEL T=0

Complex Networks

Small World Networks

Watts-Strogatz, Nature 393, 440 (1998)

Barabasi-Albert Scale Free networks

Complex Networks Characteristics

	L Path Length	C Clustering	P(k) Degree distr.
Regular network	N ^{1/d}	Nº	δ(k-z)
Random ER	In N	N ⁻¹	Poisson
Small-World	In N	Nº	Exponential
<i>Barabasi-Albert Scale Free</i>	In N/InInN	(In N)²′N	k ⁻³
<i>Structured Scale</i> <i>Free: SSF</i>	N ¹	Nº	k⁻³

Voter Model

Voter Model in regular networks

 $<\rho>\sim \begin{cases} t^{-1/2}, \quad d=1\\ (\ln t)^{-1}, \quad d=2\\ \xi, \quad d>2 \end{cases} \quad \tau \sim \begin{cases} N^2, \quad d=1, \text{ time to reach absorbing state}\\ N\ln N, \quad d=2, \text{ time to reach absorbing state}\\ N, \quad d>2, \text{ survival time of metastable state} \end{cases}$

d=1,2: Coarsening/Ordering:

Unbounded growth of domains of absorbing states

d=2

Dornic et al, Phys. Rev.Lett. (2001)

Coarsening without surface tension: Driven by interfacial noise

Voter Model

K. Suchecki, V. M. Eguíluz and M. San Miguel Phys. Rev. E 72, 036132(2005)

d>2 regular and complex networks (Small World, Scale Free):

 $< \rho > \xi$ $\tau \sim N$, survival time of metastable state

d>2: No Coarsening : Dynamical Metastability

Disordered states.

Finite size fluctuations take the system to an absorbing state

Role of dimensionality

Degree distribution or network **disorder** are not relevant

Disorder: Rewiring parameter 0<p<1. d=1 → random networks

Role of Network Degree Heterogeneity

Role of Network Degree Heterogeneity: N-dependence

RN / EN 10^{0} 10 • B-A exponential E-R N=1k N=2kN=5k 10 10° 10^{1} 10^{2} 10^{4} 10^{5} 10^{5} data, exponential network data, E-R random graph 0 T=0.40*N^1.01 10 ų 10^{3} w 0.3 10 10^{2} 10^{3} 10^{5} 10 N Linear scaling $\tau \approx N$ Sood-Redner, cond-mat/0412599

Summary

<u>Dimensionality</u>: d=1 (SSF) < $\rho > \sim t^{-1/2}$; $d = \infty < \rho > \sim e^{-t/\tau}$

Degree Heterogeneity: SW vs SWSF; RN vs RSF

Fluctuations more efficient with hubs: $\tau_{SW} > \tau_{SWSF}$ $\tau_{RN} > \tau_{RSF}$

Hubs do not affect size of domains: $l_{SW} \cong l_{SWSF}$ $l_{RN} \cong l_{RSF}$

Hubs change scaling law: $\tau \approx N^{\gamma}$ SW, RN: $\gamma = 1$; RSF, SWSF: $\gamma \neq 1$

<*c*> *is not conserved in node-update dynamics*

Mean Field Voter Model

F. Vázquez, V. M. Eguíluz and M. San Miguel, Phys. Rev. Lett. 100, 108702 (2008)

• Mean Field Node Dynamics:

$$\frac{d < \sigma >}{dt} = 0$$

* Mean Field Link Dynamics:

ρ = global density of active links
n = active links *k*-n = inert links *k*= degree of node *i*

$$\Delta \rho = \frac{2(k-2n)}{< k > N}$$

Node i of degree k:
$$\frac{d\rho}{dt}\Big|_{k} = \frac{1}{1/N} \sum_{n=0}^{k} B(n,k) \frac{n}{k} \frac{2(k-2n)}{\langle k \rangle N}$$

B(n, k) = Prob. that node *i* has *n* active links

 $B(n,k) \approx \frac{k!}{n!(k-n)!} \rho^n (1-\rho)^{k-n} \longleftarrow$ Mean Field: $\rho \sim \text{ prob that a link from node } i \text{ is active}$

$$\frac{d\rho}{dt} = \sum_{k} P_{k} \frac{d\rho}{dt} \bigg|_{k} = \frac{2\rho}{\langle k \rangle} \left[(\langle k \rangle -1)(1-2\rho) -1 \right]$$

$$\rho^{s} = \frac{\langle k \rangle -2}{2(\langle k \rangle -1)}$$

<u>Mean Field Link Dynamics:</u> Single parameter theory

$$p^{s} = \xi = \frac{\langle k \rangle - 2}{2(\langle k \rangle - 1)}$$

Barabasi-Albert Scale Free Networks

Coevolution Voter Model

F. Vázquez, V. M. Eguíluz and M. San Miguel, Phys. Rev. Lett. 100, 108702 (2008)

Initial: Degree-regular random graph with μ neighbors.

Nodes take state S = -1 or S = +1 with the same probability 1/2.

- 1.Pick a node *i* and a neighbor *j* at random.
- 2. If $S_i = S_i$ nothing happens.
- 3. If $S_i \neq S_j$ then:
 - <u>Network dynamics</u>: *rewire* with probability *p* delete link i - jand create link i - k ($S_i = S_k$).
 - <u>State dynamics: copy</u>

with probability 1-p set $S_i = S_i$.

4. Repeat ad infinitum.

```
* Agents select interacting partner according to their state
```

* p gives a ratio of time scales of evolution of state of nodes and network

Link dynamics: Mean-Field approach

Active links: + - Inert links: + +, - -

 $P_{k} \equiv$ fraction of nodes with k neighbors.

$$\mu = \langle k \rangle = \sum_{k} k P_k(t) \equiv \text{average node degree.}$$

 $\rho \equiv \text{global density of active links.}$

*IFISC

Absorbing phase transition in a coevolving networks

$$\frac{d\rho}{dt} = \sum_{k} \frac{P_k}{1/N} \sum_{n=0}^{k} B_{n,k} \frac{n}{k} \left[(1-p) \frac{2(k-2n)}{\mu N} - p \frac{2}{\mu N} \right]$$
$$= \sum_{k} P_k \frac{2}{\mu k} \left[(1-p) \left(k \langle n \rangle_k - 2 \langle n^2 \rangle_k \right) - p \langle n \rangle_k \right],$$

 $B(n,k) \equiv$ Prob. that *n* active links are connected to a node of degree k. Mean-Field approximation: Probability that a given link is active $\approx \rho$.

$$B_{n,k} \simeq \frac{k!}{n!(k-n)!} \rho^n (1-\rho)^{k-n}$$

$$\langle n \rangle_k = \sum_{n=0}^k n B_{n,k} \simeq \rho k$$

$$\langle n^2 \rangle_k = \sum_{n=0}^k n^2 B_{n,k} \simeq \rho k + \rho^2 k(k-1)$$

Absorbing phase transition in a coevolving network

Master equation for the density of active links in the $N \rightarrow \infty$ limit:

$$\frac{d\rho}{dt} = \frac{2\rho}{\mu} \left[(1-p)(\mu-1)(1-2\rho) - 1 \right]$$

- * Active phase: Links continuosly being rewired and nodes flipping states
- *** Frozen phase:** Fixed network where connected nodes have the same state

Fragmentation transition in a FINITE coevolving network

<u>Why does the network break above p_{c} ?: a first-passage problem</u> One + \rightarrow - interaction:

rewire: $(N_{--}, N_{++}, N_{+-}) \rightarrow (N_{--}, N_{++} + 1, N_{+-} - 1)$ copy: $(N_{--}, N_{++}, N_{+-}) \rightarrow (N_{--} + n, N_{++} + n - k, N_{+-} + k - 2n)$ no update: $(N_{--}, N_{++}, N_{+-}) \rightarrow (N_{--}, N_{++}, N_{+-})$

System performs a random walk on the densities' space

SYSTEM	SPACE OF DENSITIES	
State	Point(, , ₊₊)	
Evolution	Motion of RW in ABD	
Frozen state	Absorbing boundaries	

Absorbing phase transition in a coevolving networks

p<p_c : slow rewiring keeps network connected until system fully orders and freezes in a single component.

p>p_c : fast rewiring leads to fragmentation of network into two components before system reaches full order.

Conservation laws for the voter model in complex networks

Suchecki, Krzysztof; Eguiluz, Victor M.; San Miguel, Maxi Europhysics Letters **69**, 228-234 (2005)

Voter model dynamics in complex networks: Role of dimensionality,

Suchecki, Krzysztof; Eguíluz Víctor M.;San Miguel, Maxi Physical Review E **72**, 036132(1-8) (2005)

Generic absorbing transition in coevolution dynamics

Vazquez, F.; Eguiluz, V. M.; San Miguel, M. Physical Review Letters **100**, 108702 (1-4) (2008)

Analytical Solution of the Voter Model on Uncorrelated Networks

Vazquez, F.; Eguiluz, V. M.

New Journal of Physics 10 No.6, 063011 (1-19) (2008)

Conservation laws for voter-like models on directed networks

Serrano, M. Ángeles; Klemm, Konstantin; Vazquez, Federico; Eguíluz, Victor M.; San Miguel, Maxi <u>arXiv:0902.1769</u> (2009)